Gradient Flows in Filtering and Fisher-Rao Geometry

Abhishek Halder

Department of Applied Mathematics and Statistics University of California, Santa Cruz Santa Cruz, CA 95064

Joint work with Tryphon T. Georgiou

Uncertainty Propagation as Transport

Uncertainty Propagation as Transport

Trajectory flow:

 $d\mathbf{X}(t) = \mathbf{f}(\mathbf{X}, t) dt + \mathbf{g}(\mathbf{X}, t) d\mathbf{w}(t), \quad d\mathbf{w}(t) \sim \mathcal{N}(0, \mathbf{Q} dt)$

Uncertainty Propagation as Transport

Trajectory flow: $d\mathbf{x}(t) = \mathbf{f}(\mathbf{x}, t) dt + \mathbf{g}(\mathbf{x}, t) d\mathbf{w}(t), \quad d\mathbf{w}(t) \sim \mathcal{N}(0, \mathbf{Q}dt)$ Density flow: Fokker-Planck-Kolmogorov PDE $\frac{\partial \rho}{\partial t} = \mathcal{L}_{\text{FP}}(\rho) := -\nabla \cdot (\rho \mathbf{f}) + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^2}{\partial x_i \partial x_j} \left(\left(\mathbf{g} \mathbf{Q} \mathbf{g}^{\mathsf{T}} \right)_{ij} \rho \right)$

Filtering as Transport

Filtering as Transport

Trajectory flow:

 $\begin{aligned} \mathbf{d}\mathbf{X}(t) &= \mathbf{f}(\mathbf{X},t) \, \mathrm{d}t + \mathbf{g}(\mathbf{X},t) \, \mathrm{d}\mathbf{w}(t), \quad \mathbf{d}\mathbf{w}(t) \sim \mathcal{N}(0,\mathbf{Q}\mathrm{d}t) \\ \mathbf{d}\mathbf{Z}(t) &= \mathbf{h}(\mathbf{X},t) \, \mathrm{d}t + \mathbf{d}\mathbf{v}(t), \qquad \mathbf{d}\mathbf{v}(t) \sim \mathcal{N}(0,\mathbf{R}\mathrm{d}t) \end{aligned}$

Filtering as Transport

Trajectory flow: $d\mathbf{X}(t) = \mathbf{f}(\mathbf{X}, t) dt + \mathbf{g}(\mathbf{X}, t) d\mathbf{w}(t), \quad d\mathbf{w}(t) \sim \mathcal{N}(0, \mathbf{Q}dt)$ $d\mathbf{Z}(t) = \mathbf{h}(\mathbf{X}, t) dt + d\mathbf{v}(t), \qquad d\mathbf{v}(t) \sim \mathcal{N}(0, \mathbf{R}dt)$ Density flow: Kushner-Stratonovich SPDE

$$\mathbf{d}\rho^{+} = \left[\mathcal{L}_{\mathrm{FP}} \mathbf{d}t + \left(\mathbf{h}(\mathbf{x}, t) - \mathbb{E}_{\rho^{+}} \{ \mathbf{h}(\mathbf{x}, t) \} \right)^{\mathsf{T}} \mathbf{R}^{-1} \left(\mathbf{d}\mathbf{z}(t) - \mathbb{E}_{\rho^{+}} \{ \mathbf{h}(\mathbf{x}, t) \} \mathbf{d}t \right) \right] \rho^{+}$$

Research Scope

Density flow ~> gradient descent in infinite dimensions

Gradient Descent in Finite Dimensions

Gradient Descent Arrow Proximal Operator

$$\mathbf{x}_{k} = \mathbf{x}_{k-1} - h\nabla\phi(\mathbf{x}_{k-1})$$

$$\mathbf{x}_{k} = \operatorname{proximal}_{h\phi}^{\|\cdot\|}(\mathbf{x}_{k-1})$$

$$:= \operatorname{argmin}_{\mathbf{x}} \left\{ \frac{1}{2} \|\mathbf{x} - \mathbf{x}_{k-1}\|^{2} + h\phi(\mathbf{x}) \right\}$$

Gradient Descent Arrow Proximal Operator

$$\mathbf{x}_{k} = \mathbf{x}_{k-1} - h\nabla\phi(\mathbf{x}_{k-1})$$

$$\mathbf{x}_{k} = \operatorname{proximal}_{h\phi}^{\|\cdot\|}(\mathbf{x}_{k-1})$$

$$:= \operatorname{argmin}_{\mathbf{x}} \left\{\frac{1}{2} \|\mathbf{x} - \mathbf{x}_{k-1}\|^{2} + h\phi(\mathbf{x}_{k-1})\right\}$$

This is nice because

- argmin of $\phi \equiv$ fixed point of prox. operator
- prox. is smooth even when ϕ is not

reveals metric structure of gradient descent

Gradient Descent in Infinite Dimensions

Gradient Descent Summary

Finite dimensions

 $\boxed{\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = -\nabla\phi(\mathbf{x}), \ \mathbf{x} \in \mathbb{R}^n}$

$$\mathbf{x}_k(h) = \mathbf{x}_{k-1} - h\nabla\phi(\mathbf{x}_{k-1})$$

$$= \underset{\mathbf{x}}{\operatorname{argmin}} \{ \frac{1}{2} \| \mathbf{x} - \mathbf{x}_{k-1} \|^2 + h\phi(\mathbf{x}) \}$$

 $= \operatorname{proximal}_{h\phi}^{\|\cdot\|}(\mathbf{x}_{k-1})$

 $\mathbf{x}_k(h) \rightarrow \mathbf{x}(t = kh)$, as $h \downarrow 0$

Infinite dimensions

$$\left[\frac{\partial\rho}{\partial t} = \mathcal{L}(\mathbf{x},\rho), \ \mathbf{x} \in \mathbb{R}^n, \ \rho \in \mathscr{D}\right]$$

 $\rho_k(\mathbf{x},h)$

 $= \underset{\rho}{\operatorname{argmin}} \{ \frac{1}{2} d(\rho, \rho_{k-1})^2 + h \Phi(\rho) \}$

 $= \operatorname{proximal}_{h\Phi}^{d(\cdot,\cdot)}(\rho_{k-1})$

$$\rho_k(\mathbf{x},h) \rightarrow \rho(\mathbf{x},t=kh)$$
, as $h \downarrow 0$

Related Work

Transport PDE $\frac{\partial \rho}{\partial t} = \mathcal{L}(\mathbf{x}, \rho)$	Gradient descent scheme	
$\mathcal{L}(\mathbf{x}, ho)$	$\frac{1}{2}d^2(ho, ho_{k-1})$	$\Phi(ho)$
riangle ho	$\frac{1}{2} \parallel \rho - \rho_{k-1} \parallel^2_{L_2(\mathbb{R}^n)}$	$rac{1}{2}\int_{\mathbb{R}^n} \parallel abla ho \parallel^2$
Heat equation (1822)	Squared L ₂ norm of difference	Dirichlet energy, CFL (1928)
$ abla \cdot (abla U(\mathbf{x}) ho) + \beta^{-1} riangle ho$	$\frac{1}{2}W^2(\rho,\rho_{k-1})$	$\mathbb{E}_{\rho} \big[U(\mathbf{x}) + \beta^{-1} \log \rho \big]$
Fokker-Planck-Kolmogorov PDE (1914,/17,/31)	Optimal transport cost	Free energy, JKO (1998)
$\left(\left(\mathbf{h} - \mathbb{E}_{\rho}[\mathbf{h}] \right)^{T} \mathbf{R}^{-1} \left(d\mathbf{z} - \mathbb{E}_{\rho}[\mathbf{h}] dt \right) \right) \rho$	$D_{KL}(ho ho_{k-1})$	$\frac{1}{2}\mathbb{E}_{\rho}[(\mathbf{y}_k-\mathbf{h})^{\top}\mathbf{R}^{-1}(\mathbf{y}_k-\mathbf{h})]$
Kushner-Stratonovich SPDE (1964,'59)	Kullback-Leibler divergence	Quadratic surprise, LMMR (2015)

Our Contribution

Transport description	Gradient descent scheme	
SDE/ODE	$rac{1}{2}d^2(ho, ho_{k-1})$	$\Phi(ho)$
* Mean ODE, Lyapunov ODE	$\frac{1}{2}W^2(ho, ho_{k-1})$	$\mathbb{E}_{\rho}\left[U(\mathbf{x},t) + \frac{\operatorname{tr}(\mathbf{P}_{\infty})}{n}\log\rho\right]$
Linear Gaussian uncertainty propagation	Optimal transport cost	Generalized free energy
* Conditional mean SDE, Riccati ODE	$D_{KL}(ho ho_{k-1})$	$\frac{1}{2}\mathbb{E}_{ ho}[(\mathbf{y}_k-\mathbf{h})^{\top}\mathbf{R}^{-1}(\mathbf{y}_k-\mathbf{h})]$
Kalman-Bucy filter	Kullback-Leibler divergence	Quadratic surprise
** ditto	$\frac{1}{2}d_{\mathrm{FR}}^2(ho, ho_{k-1})$	ditto
	Fisher-Rao metric	

* CDC 2017: "Gradient Flows in Uncertainty Propagation and Filtering of Linear Gaussian Systems"

```
** ACC 2018: This paper
```

The Distance Functional *d*_{FR}

 $d_{\text{FR}}(\cdot, \cdot)$ is **minimal geodesic distance** induced by the Fisher-Rao (Riemannian) metric on \mathscr{D}

 $d_{\mathrm{FR}}\left(\rho_{1},\rho_{2}
ight)=\arccos\langle\sqrt{\rho_{1}},\sqrt{\rho_{2}}
angle$

Filtering as Variational Recursion

- Developed theory to carry out the recursion
- Explicit recovery of the Kalman-Bucy filter

The Case for Linear Gaussian Systems Model:

$$d\mathbf{x}(t) = \mathbf{A}\mathbf{x}(t)dt + \mathbf{B}d\mathbf{w}(t), \quad d\mathbf{w}(t) \sim \mathcal{N}(0, \mathbf{Q}dt)$$

 $d\mathbf{z}(t) = \mathbf{C}\mathbf{x}(t)dt + d\mathbf{v}(t), \qquad d\mathbf{v}(t) \sim \mathcal{N}(0, \mathbf{R}dt)$

Given $\mathbf{x}(0) \sim \mathcal{N}(\mu_0, \mathbf{P}_0)$, want to recover:

For uncertainty propagation:

$$\begin{split} \dot{\mu} &= \mathbf{A}\mu, \ \mu(0) = \mu_0; \quad \dot{\mathbf{P}} = \mathbf{A}\mathbf{P} + \mathbf{P}\mathbf{A}^\top + \mathbf{B}\mathbf{Q}\mathbf{B}^\top, \ \mathbf{P}(0) = \mathbf{P}_0. \end{split}$$
For filtering:

$$\begin{aligned} \mathbf{P}^+ \mathbf{C}\mathbf{R}^{-1} \\ &\downarrow \\ \mathbf{d}\mu^+(t) = \mathbf{A}\mu^+(t)\mathbf{d}t + \quad \mathbf{K}(t) \quad (\mathbf{d}\mathbf{z}(t) - \mathbf{C}\mu^+(t)\mathbf{d}t), \\ \dot{\mathbf{P}}^+(t) = \mathbf{A}\mathbf{P}^+(t) + \mathbf{P}^+(t)\mathbf{A}^\top + \mathbf{B}\mathbf{Q}\mathbf{B}^\top - \mathbf{K}(t)\mathbf{R}\mathbf{K}(t)^\top. \end{split}$$

The Case for Linear Gaussian Systems

```
Challenge 1:
```

How to actually perform the infinite dimensional optimization over \mathcal{D}_2 ?

Challenge 2:

If and how one can apply the variational schemes for generic linear system with Hurwitz **A** and controllable (\mathbf{A}, \mathbf{B}) ?

Addressing Challenge 1: How to Compute

Two Step Optimization Strategy

- Choose a parametrized subspace of \mathscr{D}_2 such that the individual minimizers over that subspace match
- Then optimize over parameters

-
$$\mathscr{D}_{\mu,\mathbf{P}} \subset \mathscr{D}_2$$
 works!

Addressing Challenge 2: Generic $(A, \sqrt{2}B)$

Two Successive Coordinate Transformations

#1. Equipartition of energy:

- Define thermodynamic temperature $\theta := \frac{1}{n} \operatorname{tr}(\mathbf{P}_{\infty})$, and inverse temperature $\beta := \theta^{-1}$

- State vector:
$$\mathbf{x} \mapsto \mathbf{x}_{\mathrm{ep}} := \sqrt{\theta} \mathbf{P}_{\infty}^{-\frac{1}{2}} \mathbf{x}$$

- System matrices:

$$\begin{array}{ccc} \mathbf{A}_{ep} & \mathbf{B}_{ep} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{A}, \sqrt{2}\mathbf{B} \mapsto \mathbf{P}_{\infty}^{-\frac{1}{2}}\mathbf{A}\mathbf{P}_{\infty}^{\frac{1}{2}}, \sqrt{2\theta} & \mathbf{P}_{\infty}^{-\frac{1}{2}}\mathbf{E} \\ - \text{ Stationary covariance:} \\ \mathbf{P}_{\infty} \mapsto \theta \mathbf{I} \end{array}$$

Addressing Challenge 2: Generic $(A, \sqrt{2}B)$

Two Successive Coordinate Transformations

- Emerging theory on proximal filtering
- Future work: computation for nonlinear filtering

Thank You

Backup Slides

Proximal Propagation: 1D Linear Gaussian

Proximal Propagation: 2D Linear Gaussian

Proximal Propagation: Nonlinear non-Gaussian

