The Convex Geometry of Integrator Reach Sets

Shadi Haddad and Abhishek Halder

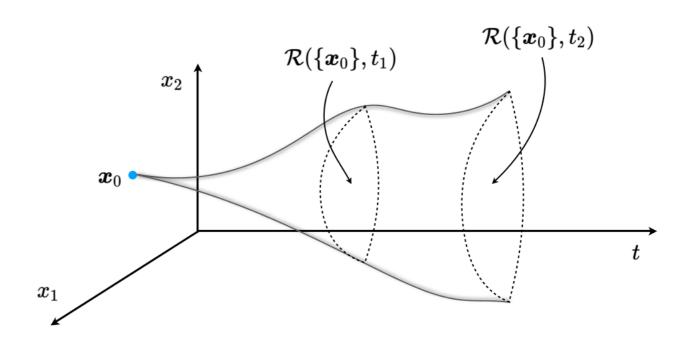
Department of Applied Mathematics University of California, Santa Cruz

American Control Conference, July 3, 2020

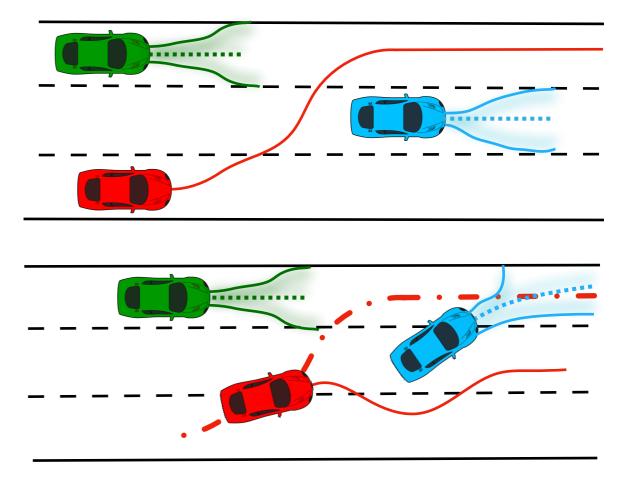
Support: Chancellor's Fellowship, UC Santa Cruz

Reach Sets

Predicting the states of an uncertain system



Safety critical applications such as motion planning & collision warning systems



Reach Set For Integrator Dynamics

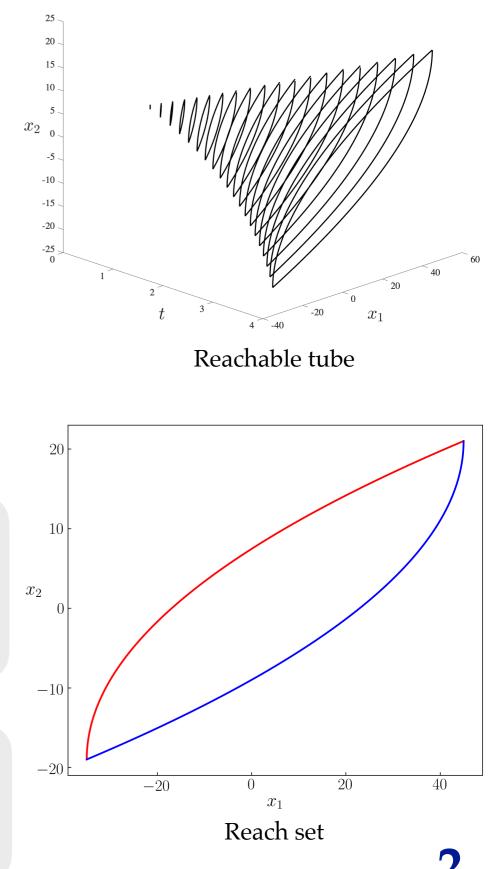
$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u, \quad \mathbf{x} \in \mathbb{R}^d, \quad u \in [-\mu, \mu]$$

 $\mathbf{A} = [\mathbf{0} \quad \mathbf{e}_1 \quad \mathbf{e}_2 \quad \mathbf{e}_3 \quad \dots \quad \mathbf{e}_{d-1}], \quad \mathbf{b} = \mathbf{e}_d$
 $\mathcal{R}(\mathcal{X}_0, t) = \exp(t\mathbf{A})\mathcal{X}_o + \int_0^t \exp(s\mathbf{A})\mathbf{b}[-\mu, \mu]\mathrm{d}s$

Minkowski sum 🧹

Nonlinear control systems of practical interest such as aerial and ground vehicles with bounded control: in normal form

Prototypical example in the systems-control literature on reach set computation



Integrator Reach Sets

Previous Studies	This Study
Approximation algorithms: elipsoidal, zonotopic, inner and outer approximation	Exact closed form formula for volume and diameter of the integrator reach sets
No quantitative assessment for comparison, content with statistical and graphical assessments	A foundation for benchmarking of algorithms

Support Function of the Integrator Reach Set

$$h_{\mathcal{R}(\mathcal{X}_{0},t)}(\boldsymbol{y}) := \sup_{\boldsymbol{x}\in\mathcal{R}} \left\{ \langle \boldsymbol{y}, \boldsymbol{x} \rangle \mid \boldsymbol{y} \in \mathbb{R}^{d} \right\}$$

$$= h_{\mathcal{X}_{0}} \left(\exp\left(t\boldsymbol{A}^{\top}\right) \boldsymbol{y} \right) + h_{\int_{0}^{t} \exp(s\boldsymbol{A})\boldsymbol{b}[-\mu,\mu] \, \mathrm{d}s} \left(\boldsymbol{y} \right) \quad \begin{array}{l} \text{Supporting} \\ \text{hyperplane} \\ = h_{\mathcal{X}_{0}} \left(\exp\left(t\boldsymbol{A}^{\top}\right) \boldsymbol{y} \right) + \int_{0}^{t} h_{\boldsymbol{b}[-\mu,\mu]} \left(\exp\left(s\boldsymbol{A}^{\top}\right) \boldsymbol{y} \right) \, \mathrm{d}s \\ \\ h_{\boldsymbol{b}[-\mu,\mu]} \left(\boldsymbol{y} \right) = \sup_{\boldsymbol{u}\in[-\mu,\mu]} \langle \boldsymbol{y}, \boldsymbol{b}u \rangle = \mu |\langle \boldsymbol{y}, \boldsymbol{b} \rangle |$$

$$h_{\mathcal{R}(\mathcal{X}_{0},t)} \left(\boldsymbol{y} \right) = \sup_{\boldsymbol{x}_{0}\in\mathcal{X}_{0}} \langle \boldsymbol{y}, \exp\left(t\boldsymbol{A}\right) \boldsymbol{x}_{0} \rangle + \mu \int_{0}^{t} |\langle \boldsymbol{y}, \boldsymbol{\xi}(s) \rangle| \, \mathrm{d}s \\ \boldsymbol{\xi}(s) := \left(\frac{s^{d-1}}{(d-1)!} \quad \frac{s^{d-2}}{(d-2)!} \quad \dots \quad s \quad 1 \right)^{\top}$$

 $\mathcal{R}(\mathcal{X}_0,t)$

Functional of the Integrator Reach Set

Volume:

$$\begin{aligned}
& \text{Euclidean} \\
& \text{unit sphere} \\
\end{aligned}$$

$$& \text{vol}\left(\mathcal{R}\left(\mathcal{X}_{0},t\right)\right) = \frac{1}{d} \int_{\mathbb{S}^{d-1}} h_{\mathcal{R}\left(\mathcal{X}_{0},t\right)}\left(\boldsymbol{\eta}\right) \, \mathrm{d}S_{\mathcal{R}\left(\mathcal{X}_{0},t\right)}\left(\boldsymbol{\eta}\right), \quad \boldsymbol{\eta} \in \mathbb{S}^{d-1}
\end{aligned}$$

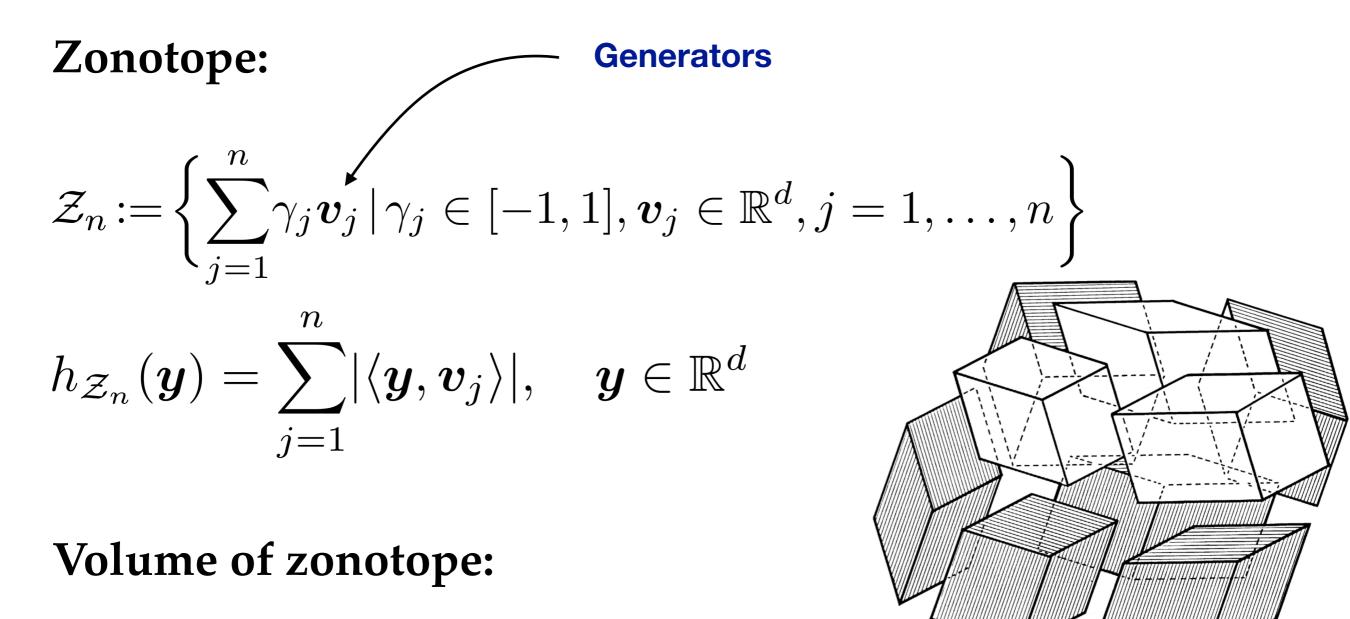
Lack analytical handle on the surface measure...

Alternative approach:

$$\operatorname{vol}\left(\mathcal{R}\left(\{\boldsymbol{x}_{0}\},t\right)\right) = \operatorname{vol}\left(\int_{0}^{t} \exp\left(s\boldsymbol{A}\right)\boldsymbol{b}\left[-\mu,\mu\right] \mathrm{d}s\right) \xrightarrow{\text{of } n + 1 \text{ intervals}} = \operatorname{vol}\left(\lim_{n \to \infty} \sum_{i=0}^{n} \frac{t}{n} \exp\left(t_{i}\boldsymbol{A}\right)\boldsymbol{b}\left[-\mu,\mu\right]\right)$$

$$= \lim_{n \to \infty} \left(\frac{\mu t}{n}\right)^{d} \operatorname{vol}\left(\sum_{i=0}^{n} \exp\left(t_{i}\boldsymbol{A}\right)\boldsymbol{b}\left[-1,1\right]\right)$$

Functional of the Integrator Reach Set



$$\operatorname{vol}\left(\mathcal{Z}_{n}\right) = 2^{d} \sum_{1 \leq j_{1} < j_{2} < \ldots < j_{d} \leq n} \left|\det\left(\boldsymbol{v}_{j_{1}} | \boldsymbol{v}_{j_{2}} | \ldots | \boldsymbol{v}_{j_{d}}\right)\right|$$

P. McMullen, "On zonotopes", Transactions of the American Mathematical Society, Vol. 159, 1971

Volume Formula

Theorem: Let $x_0 \in \mathbb{R}^d$, $\mathcal{X}_0 \equiv \{x_0\}$. Then:

$$\operatorname{vol}\left(\mathcal{R}\left(\{\boldsymbol{x}_{0}\},t\right)\right) = \frac{(2\mu)^{d}t^{d(d+1)/2}}{\prod_{k=1}^{d-1}k!} \lim_{n \to \infty} \frac{1}{n^{d(d+1)/2}}$$
$$\times \sum_{0 \le i_{1} < i_{2} < \ldots < i_{d} \le n} \prod_{1 \le \alpha < \beta \le d} \left(i_{\beta} - i_{\alpha}\right)$$

Further Simplification of the Volume Formula

$$\mathrm{vol}(\mathcal{R}(\{m{x}_0\},t))=(2\mu)^dt^{rac{d(d+1)}{2}}\prod_{k=1}^{d-1}rac{k!}{(2k+1)!}$$

Proof sketch:

Step 1: The following sum returns a polynomial in *n* of degree d(d + 1)/2.

$$\sum_{0\leq i_1 < i_2 < ... < i_d \leq n} \quad \prod_{1\leq p < q \leq d} (i_q-i_p)$$

Step 2: By Euler-Maclaurin formula, the leading coefficient c(d) of this polynomial:

$$egin{aligned} c(d) &= \int_{x_1=0}^{x_1=1} \int_{x_2=0}^{x_2=x_1} \ldots \int_{x_d=0}^{x_d=x_{d-1}} (x_1-x_2) \ \ldots (x_{d-1}-x_d) \ \mathrm{d} x_1 \mathrm{d} x_2 \ldots \mathrm{d} x_d \ &= \sum_{\sigma \in S_d} \mathrm{sgn}(\sigma) rac{1}{\prod_{i=1}^d (\sigma_1+\sigma_2+\ldots+\sigma_i)}, & ext{where } \mathrm{sgn}(\sigma) := (-1)^m \ m := \{\#(i,j) \mid i < j, \sigma(i) > \sigma(j)\} \end{aligned}$$

Step 3: Using Pfaffians:

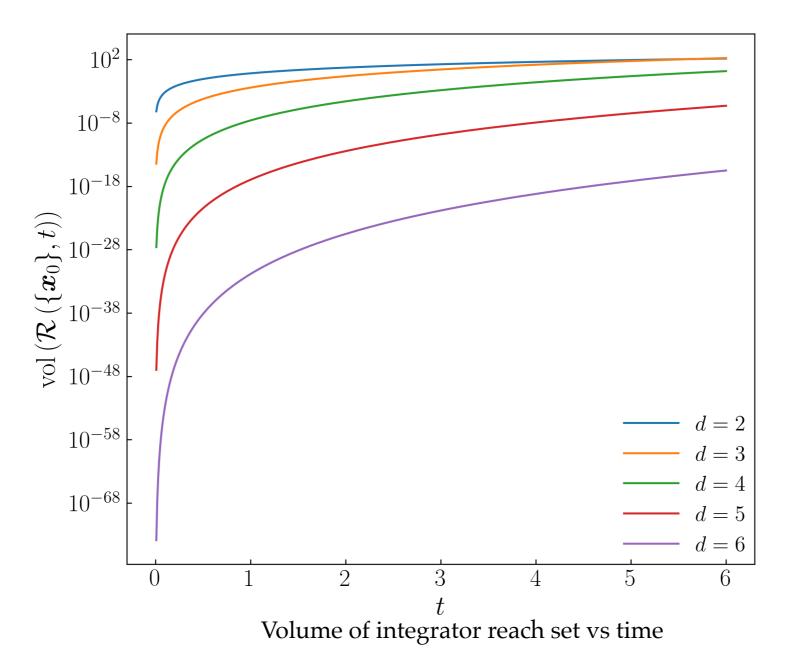
$$c(d) = \prod_{k=1}^{d-1} \frac{(k!)^2}{(2k+1)!}$$

8

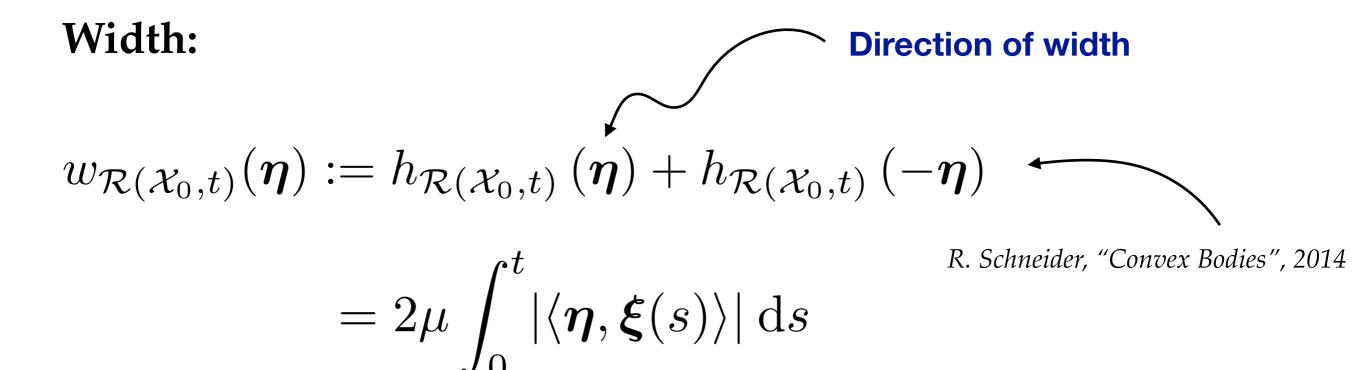
Scaling Law for Volume

Volume of integrator reach set vs time

 $oldsymbol{x}_0 \in \mathbb{R}^d, \, \mathcal{X}_0 \equiv \{oldsymbol{x}_0\}$



Functional of the Integrator Reach Set



Diameter:

diam
$$(\mathcal{R}(\mathcal{X}_0, t)) := \max_{\boldsymbol{\eta} \in \mathbb{S}^{d-1}} w_{\mathcal{R}(\mathcal{X}_0, t)}(\boldsymbol{\eta})$$

for $oldsymbol{x}_0\in\mathbb{R}^d,\,\mathcal{X}_0\equiv\{oldsymbol{x}_0\}$

Diameter Formula

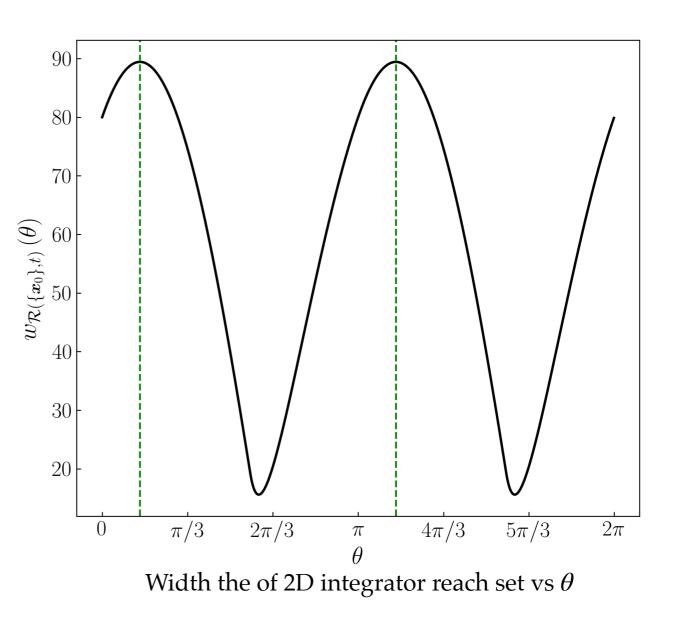
Theorem: Let $x_0 \in \mathbb{R}^d$, $\mathcal{X}_0 \equiv \{x_0\}$. Then:

diam
$$(\mathcal{R}(\{\boldsymbol{x}_0\}, t)) = 2\mu \| \boldsymbol{\zeta}(t) \|_2 = 2\mu \left\{ \sum_{j=1}^d \left(\frac{t^j}{j!} \right)^2 \right\}^{\frac{1}{2}}$$

2 dimensional case:

$$\boldsymbol{\eta} \equiv (\cos\theta, \sin\theta)^{\top}, \, \theta \in \mathbb{S}^1$$

diam
$$(\mathcal{R}(\lbrace \boldsymbol{x}_0 \rbrace, t)) = \mu t \sqrt{t^2 + 4}$$

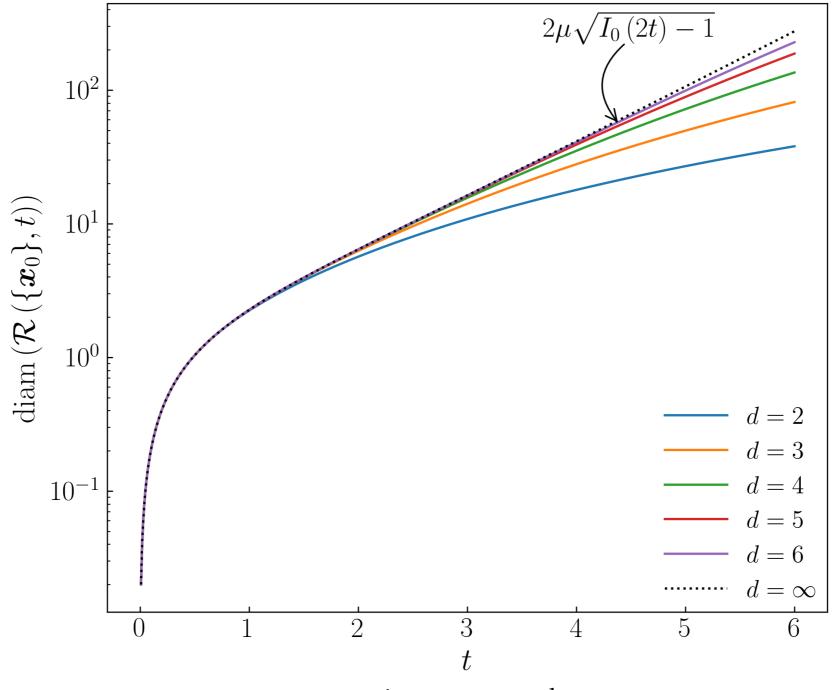


11

Scaling Law for Diameter

Diameter the of integrator reach set vs time

 $oldsymbol{x}_0 \in \mathbb{R}^d, \, \mathcal{X}_0 \equiv \{oldsymbol{x}_0\}$



Summary

Volume formula:

vol
$$(\mathcal{R}(\mathcal{X}_0, t)) = (2\mu)^d t^{\frac{d(d+1)}{2}} \prod_{k=1}^{d-1} \frac{k!}{(2k+1)!}$$

Diameter formula:

diam
$$(\mathcal{R}(\{x_0\}, t)) = 2\mu \| \boldsymbol{\zeta}(t) \|_2 = 2\mu \left\{ \sum_{j=1}^d \left(\frac{t^j}{j!} \right)^2 \right\}^{\frac{1}{2}}$$

Future work

Multi-input case

Algorithms for computing reach sets of state feedback linearizable systems

Thank You