Prediction and Optimal Feedback Steering of Probability Density Functions for Safe Automated Driving

Shadi Haddad, Kenneth F. Caluya, Abhishek Halder, Baljeet Singh

Department of Applied Mathematics

University of California, Santa Cruz

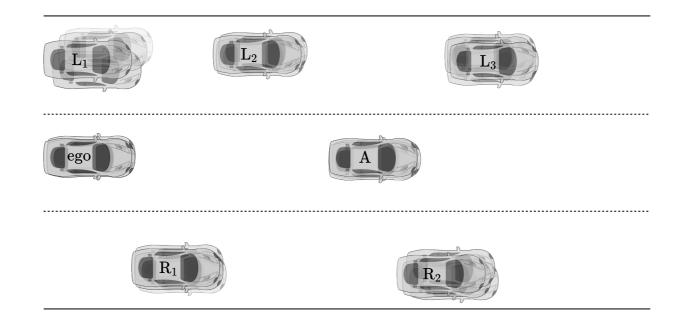
&

Ford Motor Company, Greenfield Labs

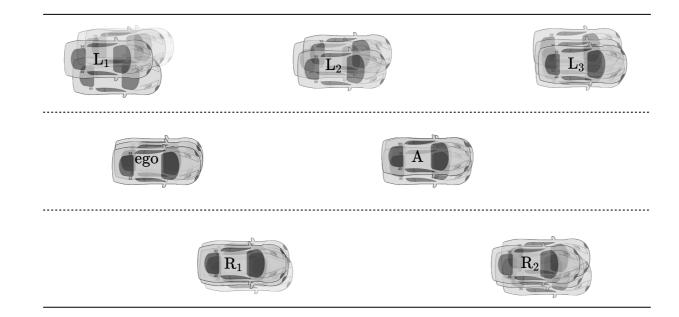
American Control Conference, May 27, 2021

Stochastic Uncertainties in Multi-lane Highway Driving

The ego vehicle's estimate at time $t = t_0$



The ego vehicle's estimate at time $t = t_0 + T$



The Present Paper

Stochastic uncertainties: joint state PDFs

Nonparametric prediction of PDFs: characteristic ODEs

Feedback synthesis for the ego vehicle's stochastic states

Prediction Problem

Kinematic bicycle model

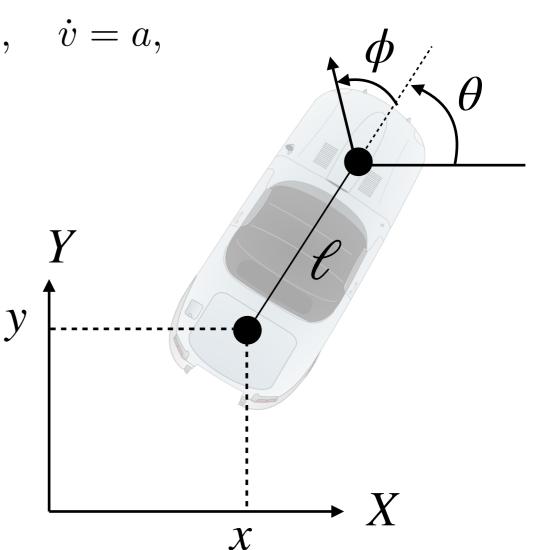
$$\dot{x} = v \cos \theta, \quad \dot{y} = v \sin \theta, \quad \dot{\theta} = \frac{v}{\ell} \tan \phi, \quad \dot{v} = a$$

 $\boldsymbol{x} := (x, y, \theta, v)^{\top}$
 $\boldsymbol{u} := (a, \phi)^{\top}$

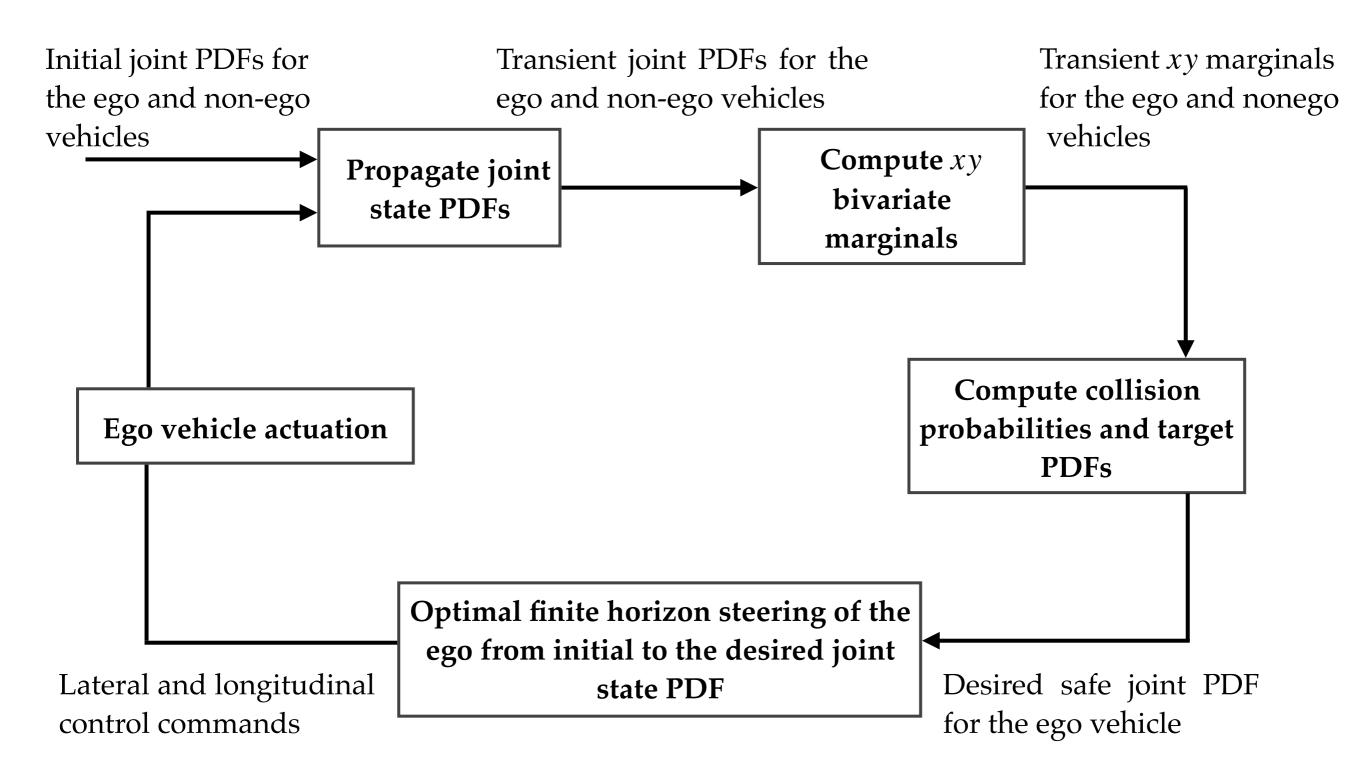
Nominal MPC policy for each vehicle $\boldsymbol{u} = \boldsymbol{\pi}_{\mathrm{MPC}}(\boldsymbol{x}, t)$

Known initial joint PDFs at $t = t_0$ $\rho_0^{\text{ego}}, \rho_0^{\text{A}}, \rho_0^{\text{L}_i}, \rho_0^{\text{R}_j}$

Want to predict joint PDFs at $t = t_0 + T$ $\rho^{\text{ego}}(\boldsymbol{x}, t), \rho^{\text{A}}(\boldsymbol{x}, t), \rho^{\text{L}_i}(\boldsymbol{x}, t), \rho^{\text{R}_j}(\boldsymbol{x}, t)$



Framework



PDF Prediction Layer

Joint state PDF propagation using Liouville PDE

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{\pi}_{\text{MPC}}(\boldsymbol{x}, t))\rho) = 0,$$
vehicle dynamics

Solve characteristic ODE over $t \in [t_0, t_0 + T]$

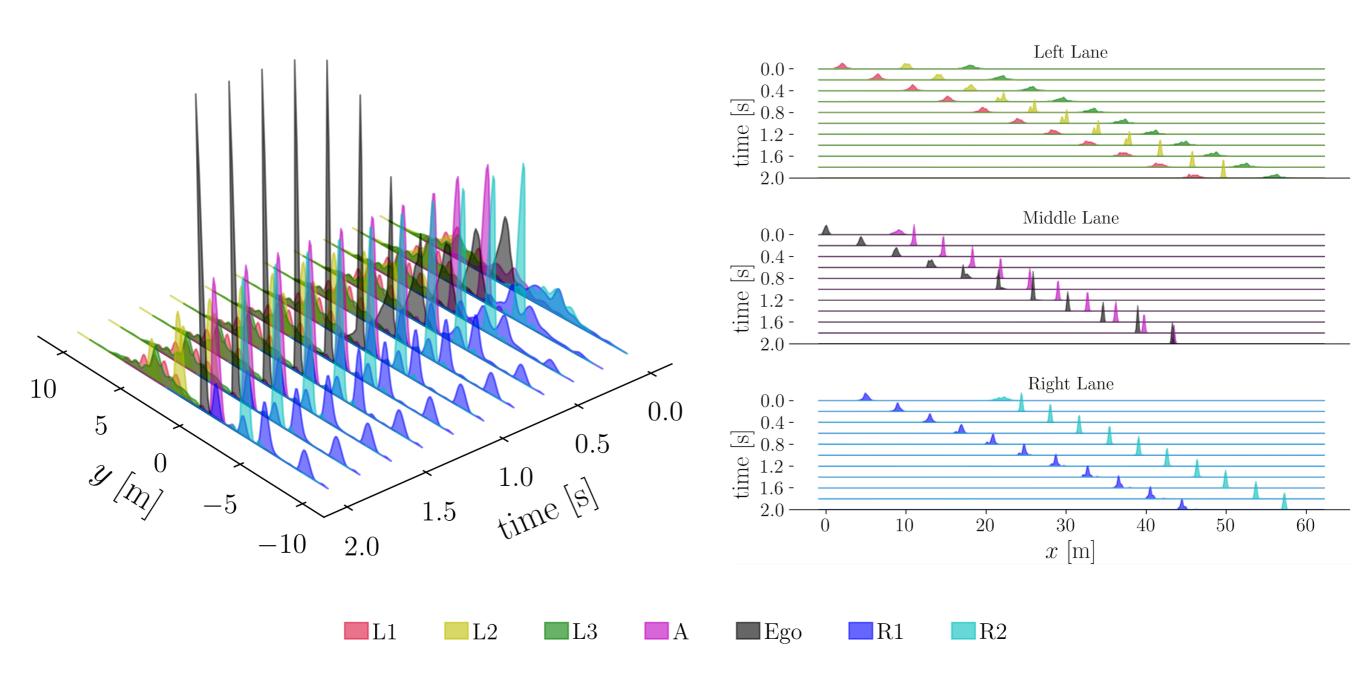
$$\{x_0^i, \rho_0^i\}_{i=1}^N \longrightarrow \{x^i(t), \rho^i(t)\}_{i=1}^N$$

$$\dot{\rho}^i = -\nabla_{\boldsymbol{x}^i} \cdot \boldsymbol{f}(\boldsymbol{x}^i, \boldsymbol{\pi}_{\text{MPC}}(\boldsymbol{x}^i, t)), \quad i = 1, \dots, N$$

- Probability weighted scattered point cloud evolution: method of characteristics
- No approximation of the statistics
- No approximation of the dynamics

PDF Prediction Layer

y marginals (left figure), x marginals (right figure)

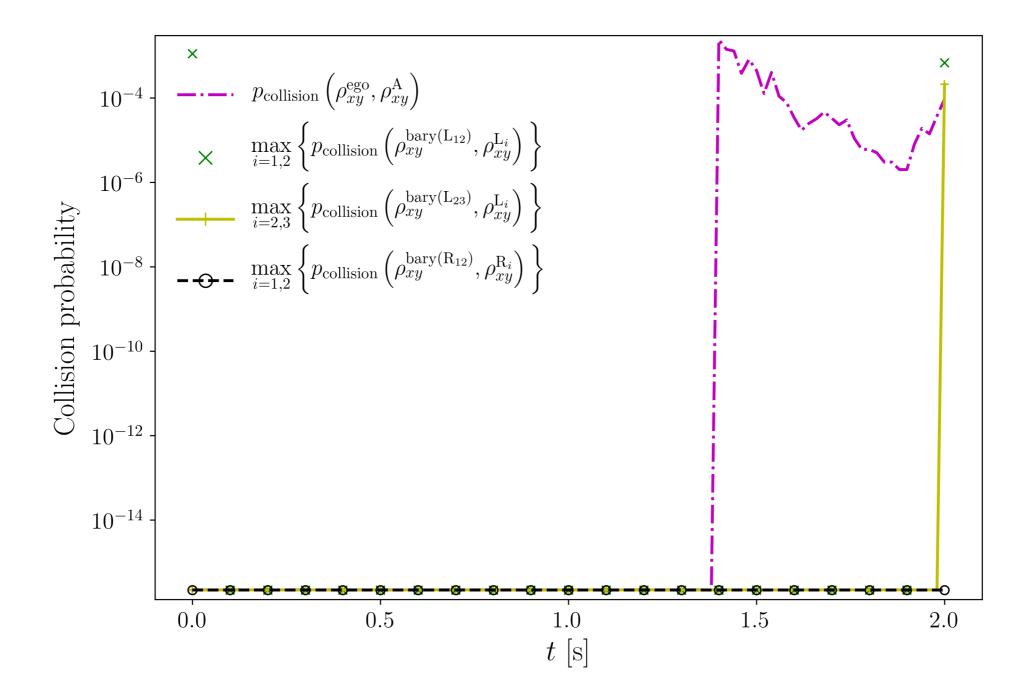


Compute Desired State PDF for the Ego at $t = t_0 + T$

Wasserstein barycenter

 $\rho^{\text{bary}} := \arg \inf_{\rho} \{\lambda_1 W^2(\rho, \rho_1) + \lambda_2 W^2(\rho, \rho_2)\}$

Compute collision probabilities using *xy* **bivariate marginals**



State feedback linearization

Feedback steering of the ego toward the desired joint state PDF

$$\inf_{\substack{\left(\sigma^{\widetilde{\boldsymbol{u}}},\widetilde{\boldsymbol{u}}\right)}} \mathbb{E}_{\sigma^{\widetilde{\boldsymbol{u}}}}\left[\int_{t_{0}}^{t_{0}+T} \frac{1}{2} \|\widetilde{\boldsymbol{u}}\|_{2}^{2} dt\right]$$
subject to
$$\frac{\partial \sigma^{\widetilde{\boldsymbol{u}}}}{\partial t} + \nabla_{\boldsymbol{z}} \cdot \left(\left(\boldsymbol{A}\boldsymbol{z} + \boldsymbol{B}\widetilde{\boldsymbol{u}}\right)\sigma^{\widetilde{\boldsymbol{u}}}\right) = 0$$

$$\sigma^{\widetilde{\boldsymbol{u}}}\left(\boldsymbol{z}, t = 0\right) = \boldsymbol{\tau}_{\sharp}\rho_{0}^{\text{ego}}$$

$$\sigma^{\widetilde{\boldsymbol{u}}}\left(\boldsymbol{z}, t = T\right) = \boldsymbol{\tau}_{\sharp}\rho_{T}^{\text{desired}}$$

$$\overline{\boldsymbol{u}}\left(\boldsymbol{z}, t\right) \text{ State feedback}$$

$$\sharp \text{ Pushforward}$$

$$\mathbb{E}_{\rho}\left[\cdot\right] \text{ Expectation operator}$$

Stochastic regularization: actuation noise

$$d\boldsymbol{z} = (\boldsymbol{A}\boldsymbol{z} + \boldsymbol{B}\widetilde{\boldsymbol{u}}) dt + \sqrt{2\varepsilon}\boldsymbol{B} d\boldsymbol{w}$$

Schrodinger Bridge Problem

$$\inf_{\left(\sigma^{\widetilde{\boldsymbol{u}}},\widetilde{\boldsymbol{u}}\right)} \quad \mathbb{E}_{\sigma^{\widetilde{\boldsymbol{u}}}}\left[\int_{t_0}^{t_0+T} \frac{1}{2} \|\widetilde{\boldsymbol{u}}\|_2^2 \,\mathrm{d}t\right]$$

subject to

$$\frac{\partial \sigma^{\widetilde{\boldsymbol{u}}}}{\partial t} + \nabla_{\boldsymbol{z}} \cdot \left(\left(\boldsymbol{A} \boldsymbol{z} + \boldsymbol{B} \widetilde{\boldsymbol{u}} \right) \sigma^{\widetilde{\boldsymbol{u}}} \right) = \varepsilon \left\langle \boldsymbol{B} \boldsymbol{B}^{\top}, \operatorname{Hess}(\sigma^{\widetilde{\boldsymbol{u}}}) \right\rangle.$$

$$\sigma^{\widetilde{\boldsymbol{u}}} \left(\boldsymbol{z}, t = 0 \right) = \boldsymbol{\tau}_{\sharp} \rho_0^{\text{ego}}$$
$$\sigma^{\widetilde{\boldsymbol{u}}} \left(\boldsymbol{z}, t = T \right) = \boldsymbol{\tau}_{\sharp} \rho_T^{\text{desired}}$$

$$\sigma^{\widetilde{\boldsymbol{u}}}(\boldsymbol{z},t) \text{ Controlled joint PDF} \\ \widetilde{\boldsymbol{u}}(\boldsymbol{z},t) \text{ State feedback} \\ & \sharp \text{ Pushforward} \\ \mathbb{E}_{\rho}\left[\cdot\right] \text{ Expectation operator} \end{cases}$$

Solution of Stochastic Optimal Control

$$\left(\sigma_{\varepsilon}^{\widetilde{\boldsymbol{u}}}, \widetilde{\boldsymbol{u}}_{\varepsilon}\right)_{\text{opt}} = \left(\widehat{\varphi}(\boldsymbol{z}, t)\varphi(\boldsymbol{z}, t), \ 2\varepsilon \boldsymbol{B}^{\top} \nabla_{\boldsymbol{z}} \varphi(\boldsymbol{z}, t)\right)$$

Where

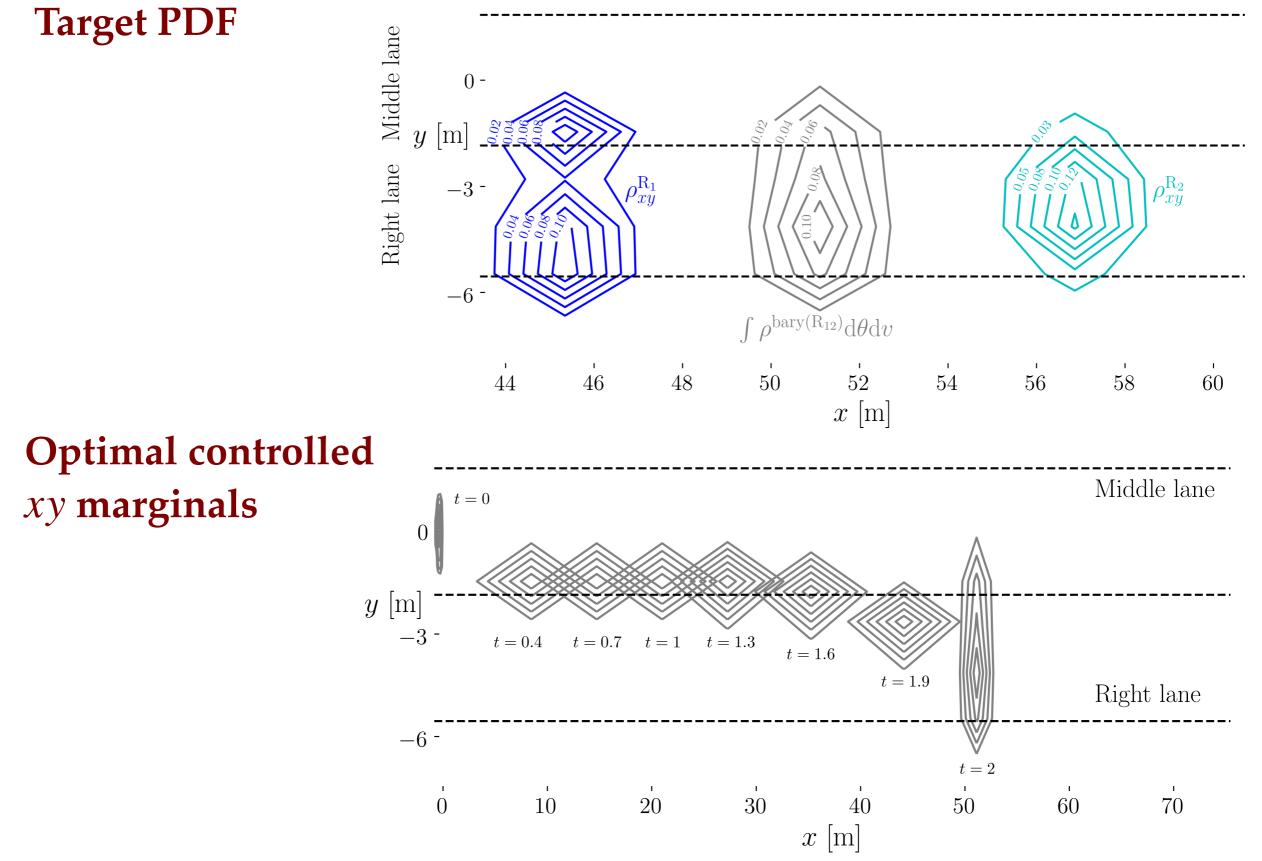
$$\begin{split} \widehat{\varphi}(\boldsymbol{z},t) &= \int_{\mathcal{Z}_0} \kappa(t_0, \widetilde{\boldsymbol{z}}, t, \boldsymbol{z}) \, \widehat{\varphi}_0\left(\boldsymbol{z}_0\right) \mathrm{d}\boldsymbol{z}_0, \\ \varphi(\boldsymbol{z},t) &= \int_{\mathcal{Z}_T} \kappa(t, \boldsymbol{z}, t_0 + T, \boldsymbol{z}_T) \, \varphi_T\left(\boldsymbol{z}_T\right) \mathrm{d}\boldsymbol{z}_T \\ \kappa(s, \boldsymbol{z}, t, \widetilde{\boldsymbol{z}}) &:= \frac{\det\left(\boldsymbol{M}_{ts}\right)^{-1/2}}{(4\pi\varepsilon)^{n/2}} \exp\left(-\frac{1}{4\varepsilon} \times \left(\boldsymbol{z} - \boldsymbol{\Phi}_{ts} \widetilde{\boldsymbol{z}}\right)^\top \boldsymbol{M}_{ts}^{-1} \left(\boldsymbol{z} - \boldsymbol{\Phi}_{ts} \widetilde{\boldsymbol{z}}\right)\right) \end{split}$$

$$\begin{pmatrix} \sigma_{\varepsilon}^{\widetilde{\boldsymbol{u}}}, \widetilde{\boldsymbol{u}}_{\varepsilon} \end{pmatrix}_{\text{opt}} & \text{Optimal pair based on the choice } \varepsilon > 0 \\ \kappa(s, \boldsymbol{z}, t, \widetilde{\boldsymbol{z}}) & \text{Markov Kernel for } t_0 \leq s < t \leq t_0 + T \\ & [\boldsymbol{M}_{ts} & \text{Controllability Gramian} \\ & \boldsymbol{\Phi}_{ts}. & \text{State transition matrix} \\ \end{cases}$$

Contractive fixed point recursion

$$egin{aligned} \widehat{arphi}_{0}arphi_{0} &= oldsymbol{ au}_{\sharp}
ho_{0}^{ ext{ego}}, \quad \widehat{arphi}_{T}arphi_{T} &= oldsymbol{ au}_{\sharp}
ho_{T}^{ ext{desired}}, \ & \left(oldsymbol{ au}_{J} & \left(oldsymbol{ au}_{J} & oldsymbo$$

Numerical Simulation



Summary

Moving horizon nonparametric prediction of joint state PDFs

Compute safest terminal PDF for the ego vehicle

Feedback synthesis for joint PDF steering for the ego vehicle

Thank You

Support: Ford University Research Project