Exact Computation of LTI Reach Set from Integrator Reach Set with Bounded Input

Abhishek Halder

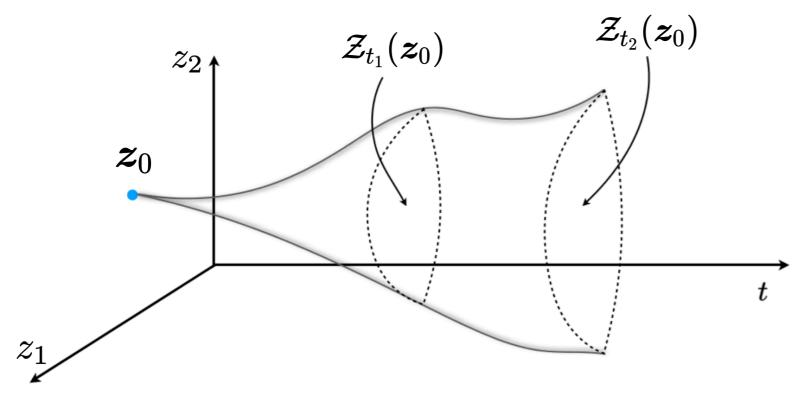
Department of Aerospace Engineering, Iowa State University

Joint work with

Shadi Haddad and Pansie Khodary

2024 American Control Conference, Toronto, Session: ThB19 July 11, 2024

Single Input LTI Reach Set



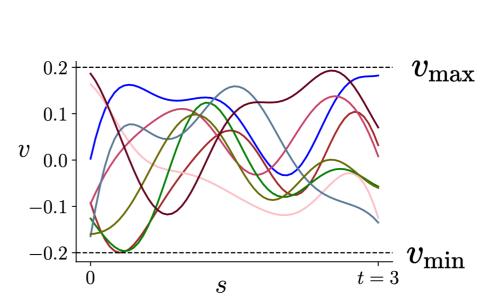
Assumption: (*A*, *b*) controllable

Reach set at time t

$$\mathcal{Z}_t(oldsymbol{z}_0) = igcup_{v(\cdot)\in\mathcal{V}}igg\{oldsymbol{z}(t)\in\mathbb{R}^n\mid \dot{oldsymbol{z}}=oldsymbol{A}oldsymbol{z}+oldsymbol{b} v, \;oldsymbol{z}(t=0)=oldsymbol{z}_0igg\}$$

Set-valued input

$$\mathcal{V} = igg\{ v \in C([0,t]) \mid v(s) \in [v_{\min},v_{\max}] orall s \in [0,t] igg)$$



Canonical Forms: Controllable and Brunovsky

Let
$$\boldsymbol{M} := (\boldsymbol{q}^\top \quad \boldsymbol{q}^\top \boldsymbol{A} \quad \dots \quad \boldsymbol{q}^\top \boldsymbol{A}^{n-1})^\top$$

last row of the inverse of the controllability matrix

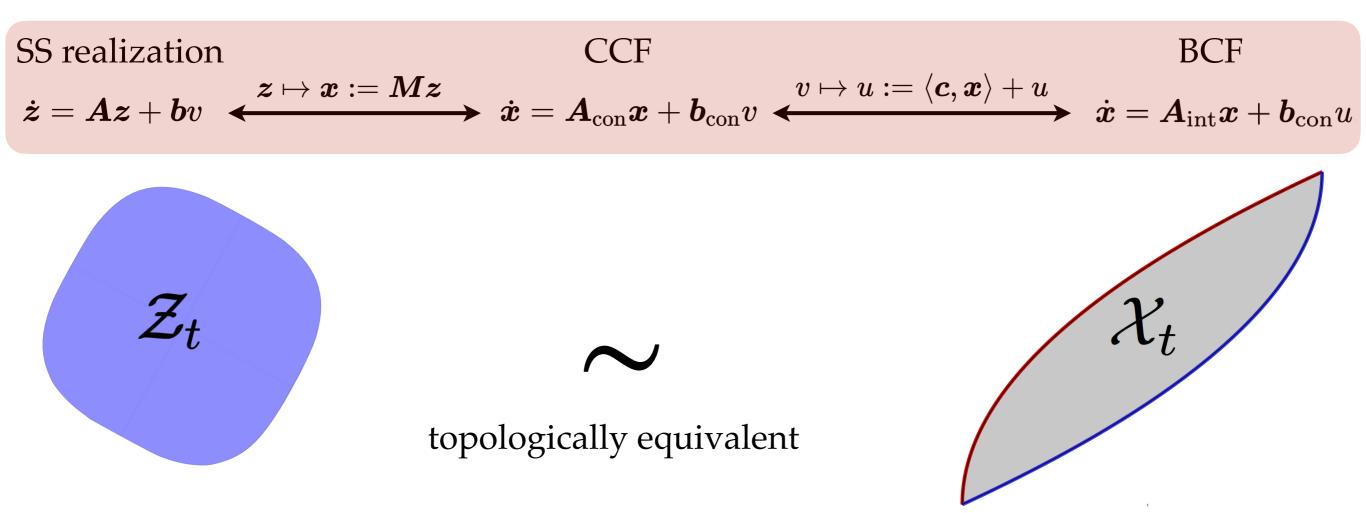
Canonical Forms: Controllable and Brunovsky

Let
$$\boldsymbol{M} := (\boldsymbol{q}^{\top} \quad \boldsymbol{q}^{\top} \boldsymbol{A} \quad \dots \quad \boldsymbol{q}^{\top} \boldsymbol{A}^{n-1})^{\top}$$

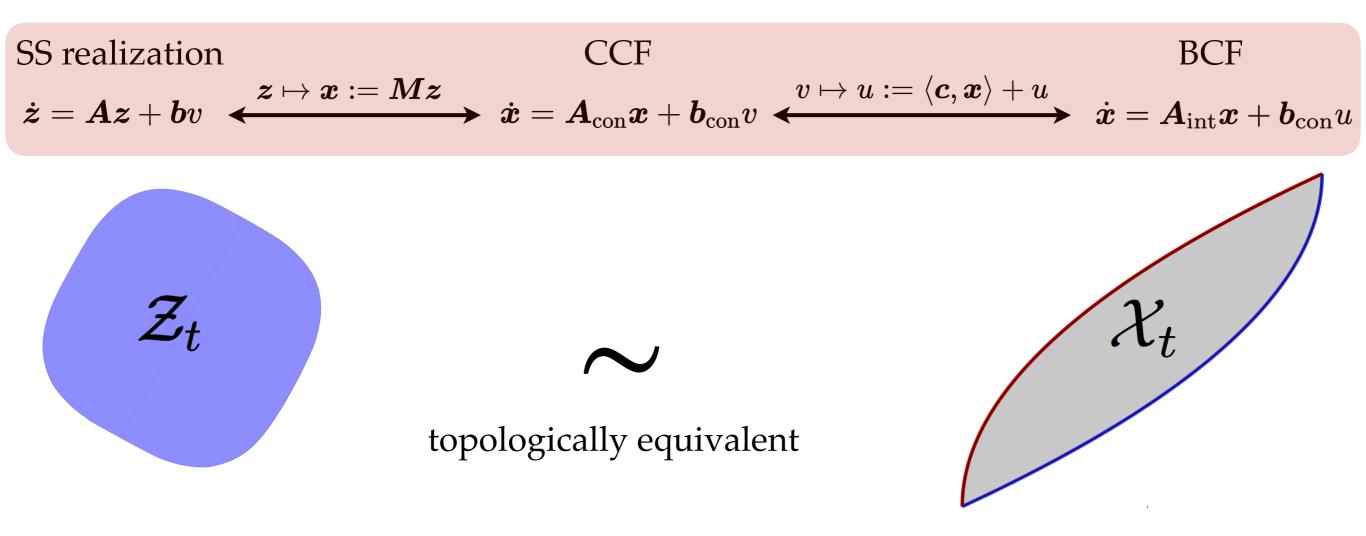
last row of the inverse of the controllability matrix

SS realization $\boldsymbol{A}_{\text{con}} := \boldsymbol{M} \boldsymbol{A} \boldsymbol{M}^{-1} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -c_0 & -c_1 & -c_2 & \dots & -c_{n-1} \end{pmatrix} = \begin{bmatrix} \boldsymbol{0}_{(n-1)\times 1} & \boldsymbol{I}_{n-1} \\ & -\boldsymbol{c}_{\boldsymbol{\lambda}}^{\top} \end{bmatrix}$ coeff vector for charpoly of \boldsymbol{A} $oldsymbol{b}_{ ext{con}} \, := oldsymbol{M}oldsymbol{b} = egin{matrix} 0 & 0 & \dots & 1 \end{pmatrix}^ op$ $oldsymbol{A}_{ ext{int}} \coloneqq egin{bmatrix} oldsymbol{0}_{(n-1) imes 1} & oldsymbol{I}_{n-1} \ oldsymbol{0}_{1 imes n} \ oldsymbol{0}_{1 imes n} \end{bmatrix}$

Idea for Reach Set Computation



Idea for Reach Set Computation



Algorithm

Step 1: Analytically compute (the boundary of) compact set $\mathcal{X}_t(Mz_0)$ subject to TBD input range $[u_{\min}(s), u_{\max}(s)] \forall s \in [0, t]$

Step 2: Compute $\partial \mathcal{Z}_t(\boldsymbol{z}_0) = \boldsymbol{M}^{-1} \partial \mathcal{X}_t(\boldsymbol{M} \boldsymbol{z}_0)$

Step 1.1: Determining $\left[u_{\min}(s), u_{\max}(s)\right] \forall s \in [0, t]$

s

$$egin{aligned} u_{ ext{min}}(s) &= -ig\langle oldsymbol{c}, e^{soldsymbol{A}_{ ext{con}}}oldsymbol{M}oldsymbol{z}_0ig
angle + I_{ ext{min}}(s) \ u_{ ext{max}}(s) &= -ig\langle oldsymbol{c}, e^{soldsymbol{A}_{ ext{con}}}oldsymbol{M}oldsymbol{z}_0ig
angle + I_{ ext{max}}(s) \end{aligned}$$

Variational problems:

$$egin{aligned} &I_{\min}(s) := \inf_{v(\cdot) \in C([0,s])} I(v) \ & ext{ subject to } v_{\min} \leq v(\cdot) \leq v_{\max} \ &I_{\max}(s) := \sup_{v(\cdot) \in C([0,s])} I(v) \ & ext{ subject to } v_{\min} \leq v(\cdot) \leq v_{\max} \end{aligned}$$

and

$$I(v):=v(s)-\int_0^s f(au)v(au)\mathrm{d} au, f(au):=\left\langle oldsymbol{c},e^{(s- au)oldsymbol{A}_{\mathrm{con}}}oldsymbol{b}_{\mathrm{con}}
ight
angle$$

Step 1.1: Determining $\left[u_{\min}(s), u_{\max}(s)\right] \forall s \in [0, t]$

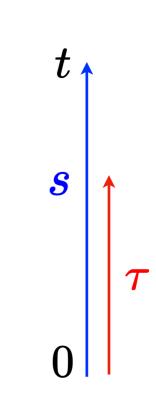
Lemma: (Spectral representation)

For *A* with distinct eigenvalues $\{\lambda_i\}_{i=1}^n \in \mathbb{C}^n$,

$$f(au) = -\sum_{i=1}^n rac{\lambda_i^n}{\prod_{j
eq i} (\lambda_i - \lambda_j)} e^{\lambda_i (s- au)}, \quad 0 \leq au \leq s$$

Example:
$$n=3,\lambda_1=1,\lambda_{2,3}=\pm\mathrm{i}$$

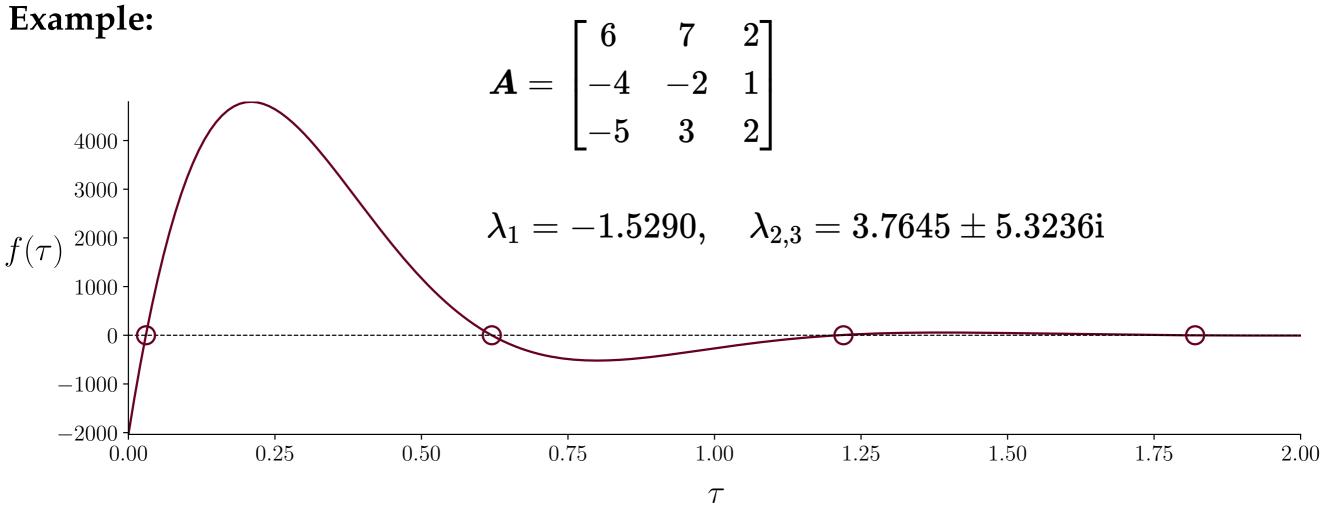
$$f(au)=-rac{1}{2}ig(e^{s- au}+\cos(s- au)-\sin(s- au)ig), 0\leq au\leq s$$



Step 1.1: Determining $\left[u_{\min}(s), u_{\max}(s)\right] \forall s \in [0, t]$

Theorem:

$$egin{aligned} &I_{\min}(s) = v_{\min} - v_{\min} \int_{ au \in ext{zero sublevel set of}} f(au) \mathrm{d} au - v_{\max} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au - v_{\max} \int_{ au \in ext{zero sublevel set of}} f(au) \mathrm{d} au - v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au - v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au - v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au - v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au - v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au - v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au - v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au + v_{\min} \int_{ au \in ext{strict zero superlevel set of}} f(au) \mathrm{d} au +$$



9

Step 1.2: Parametric Boundary $\partial X_t(\boldsymbol{x}_0)$

Theorem: [Generalizes Haddad and Halder, TAC 68(11), 2023, 6680-6695]

Define parameter vector

$$\sigma \in \mathcal{W}_t := \{ \sigma \in \mathbb{R}^{n-1} \mid 0 \le \sigma_1 \le \sigma_2 \le \ldots \le \sigma_{n-1} \le t \}$$

Weyl chamber

and for $0 \le s \le t$,

$$egin{aligned} \mu(s) &:= (u_{ ext{max}}(s) - u_{ ext{min}}(s))/2, &
u(s) &:= (u_{ ext{max}}(s) + u_{ ext{min}}(s))/2, \ oldsymbol{\xi}(s) &:= \left(rac{s^{n-1}}{(n-1)!}, rac{s^{n-2}}{(n-2)!}, \dots, s, 1
ight)^ op. \end{aligned}$$

Then $\boldsymbol{x}^{\mathrm{bdy}} \in \partial \mathcal{X}_t(\boldsymbol{x}_0)$ has $\boldsymbol{\sigma}$ parameterization

$$oldsymbol{x}^{ ext{bdy}}(oldsymbol{\sigma}) = oldsymbol{\chi}(t,oldsymbol{x}_0) + \int_0^t
u(s)oldsymbol{\xi}(t-s) \mathrm{d}s \pm \int_0^{\sigma_1} \mu(s)oldsymbol{\xi}(t-s) \mathrm{d}s \mp \int_{\sigma_1}^{\sigma_2} \mu(s)oldsymbol{\xi}(t-s) \mathrm{d}s \pm \ldots \pm (-1)^n \int_{\sigma_{n-1}}^t \mu(s)oldsymbol{\xi}(t-s) \mathrm{d}s$$
 $oldsymbol{\chi}_k := \sum_{\ell=1}^n \mathbf{1}_{k \leq \ell} rac{t^{\ell-k}}{(\ell-k)!} oldsymbol{x}_{\ell 0} \ orall k \in [n]$

Consequences

Corollary: $\partial \mathcal{X}_t(\boldsymbol{x}_0) = \partial \mathcal{X}_t^{\mathrm{upper}}(\boldsymbol{x}_0) \cup \partial \mathcal{X}_t^{\mathrm{lower}}(\boldsymbol{x}_0)$

Corollary: X_t, Z_t are zonoids but not semialgebraic in general

Consequences

 $\textbf{Corollary:} \ \partial \mathcal{X}_t(\boldsymbol{x}_0) = \partial \mathcal{X}_t^{\text{upper}}(\boldsymbol{x}_0) \cup \partial \mathcal{X}_t^{\text{lower}}(\boldsymbol{x}_0)$

Corollary: X_t, Z_t are zonoids but not semialgebraic in general

Theorem: (Volume)

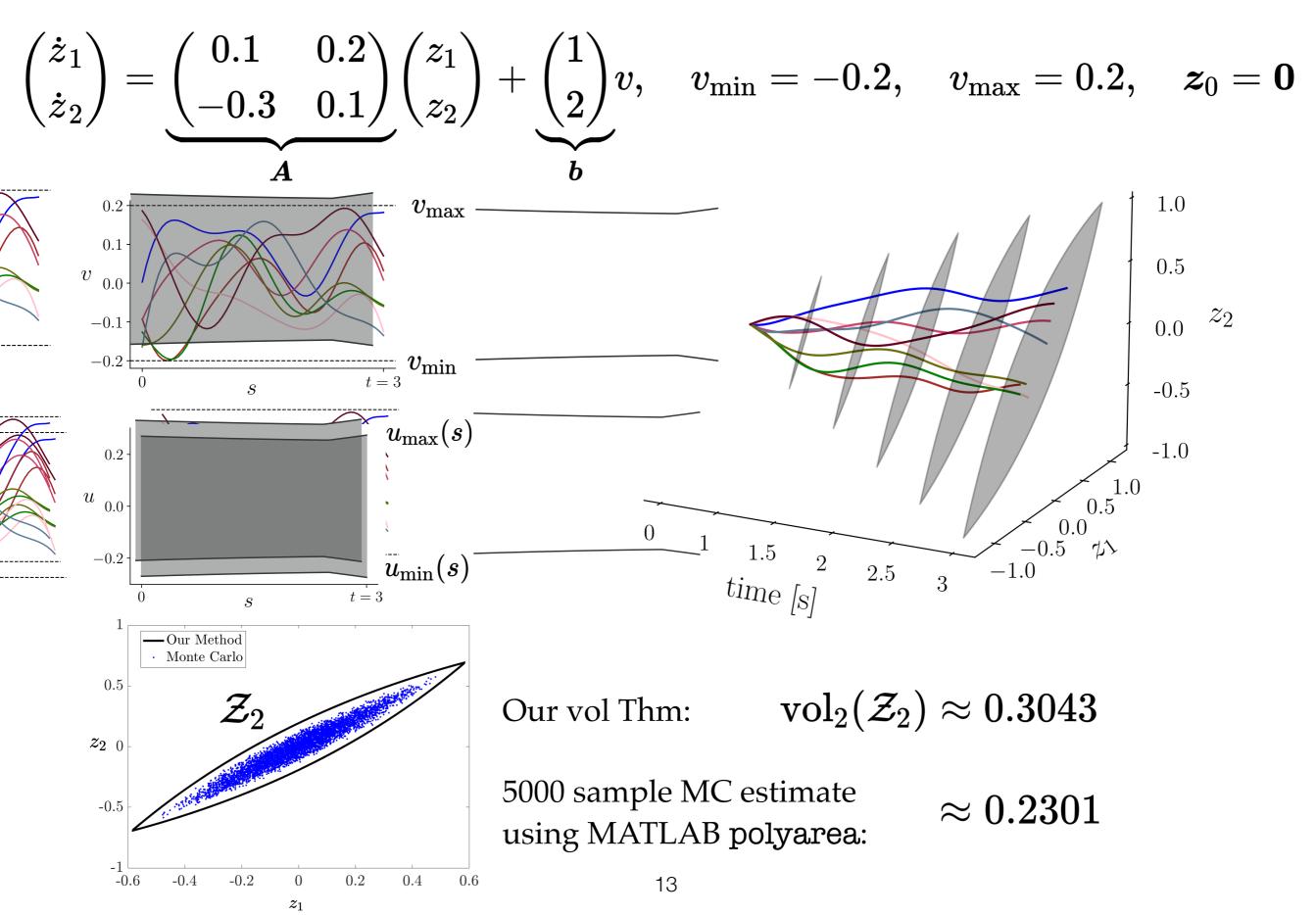
$$ext{vol}_n(\mathcal{Z}_t(oldsymbol{z}_0)) = rac{1}{ ext{det}(oldsymbol{M})} \int_0^1 \int_{\mathcal{W}_t} |\det(ext{D}\pi)| ext{d} oldsymbol{\sigma} ext{d} \lambda
onumber \ | \quad (t-\sigma_1)^{n-1} \quad (t-\sigma_{n-1})^{n-1} \quad (t-\sigma_{n-1})^{n-1}$$

where

$$|\det(\mathrm{D}\pi)| = \mu(\sigma_1) \dots \mu(\sigma_{n-1})|(4\lambda - 2)^{n-1}| \det egin{pmatrix} rac{\langle v - 1
angle}{(n-1)!} & \cdots & rac{\langle v - 1
angle}{(n-1)!} & \zeta_1(\sigma) \ dots & dots & dots & dots & dots & dots \ (t - \sigma_1) & \cdots & (t - \sigma_{n-1}) & \zeta_{n-1}(\sigma) \ 1 & \cdots & 1 & \zeta_n(\sigma) \end{pmatrix} |$$

and $\boldsymbol{\zeta}(\boldsymbol{\sigma}) := \boldsymbol{x}^{\mathrm{upper}}(\boldsymbol{\sigma}) - \boldsymbol{x}^{\mathrm{lower}}(\boldsymbol{\sigma})$

Example



Thank You