Optimal Mass Transport over the Euler Equation

Presenter: Johan Karlsson

KTH Royal Institute of Technology, Sweden

Authors: Charlie Yan (University of California Santa Cruz), Iman Nodozi (University of California Santa Cruz), Abhishek Halder (Iowa State University)

FrA22.6, CDC 2023, Marina Bay Sands, Singapore, December 15, 2023

Motivation

Steer stochastic spin subject to controlled dynamics + deadline constraints

Controlled dynamics: Euler equation (EE)

Rewrite as:

$$\dot{oldsymbol{x}}^{oldsymbol{u}} = oldsymbol{lpha} \odot oldsymbol{f}(oldsymbol{x}^{oldsymbol{u}}) + oldsymbol{eta} \odot oldsymbol{\dot{u}}, i \in \llbracket 3
rbracket := \{1,2,3\}$$

where

$$oldsymbol{f}(oldsymbol{z}):=(z_2z_3,z_3z_1,z_1z_2)^ op$$
 for $oldsymbol{z}\in\mathbb{R}^3$

$$\alpha_i := (J_{i+1 \mod 3} - J_{i+2 \mod 3})/J_i, \ \beta_i := 1/J_i, \ i \in [3]$$

Optimal steering of stochastic spin

Deterministic OMT-EE

strictly convex and superlinear

subject to

$$egin{aligned} &\inf_{oldsymbol{u}\in\mathcal{U}}\int_0^T \mathbb{E}_{\mu^{oldsymbol{u}}}[q(oldsymbol{x}^{oldsymbol{u}})+r(oldsymbol{u})]\mathrm{d}t\ &oldsymbol{\dot{x}}^{oldsymbol{u}}=oldsymbol{lpha}\odotoldsymbol{f}(oldsymbol{x}^{oldsymbol{u}})+oldsymbol{eta}\odotoldsymbol{u}, \quad i\in\{1,2,3\},\ &\mu^{oldsymbol{u}}(oldsymbol{x}^{oldsymbol{u}},t=0)=\mu_0 \ (ext{given}), \quad \mu^{oldsymbol{u}}(oldsymbol{x}^{oldsymbol{u}},t=T)=\mu_T \ (ext{given}) \end{aligned}$$

$$\textbf{Set of feasible policies} \quad \mathcal{U} := \left\{ \boldsymbol{u}: \mathbb{R}^3 \times [0,T] \mapsto \mathbb{R}^3 \mid \int_0^T \mathbb{E}_{\mu^u}[r(\boldsymbol{u})] \mathrm{d}t < \infty \right\}$$

Classical dynamic OMT: $q\equiv 0, \quad r(\cdot)\equiv rac{1}{2}\|\cdot\|_2^2, \quad oldsymbol{f}=oldsymbol{0}, \quad oldsymbol{eta}=oldsymbol{1}$

Optimal steering of stochastic spin (contd.)

Deterministic OMT-EE

$$egin{aligned} & \inf_{oldsymbol{u}\in\mathcal{U}}\int_0^T\mathbb{E}_{\mu^{oldsymbol{u}}}[q(oldsymbol{x}^{oldsymbol{u}})+r(oldsymbol{u})]\mathrm{d}t \ & \mathrm{subject \ to} \quad oldsymbol{\dot{x}}^{oldsymbol{u}}&=oldsymbol{lpha}\odotoldsymbol{f}(oldsymbol{x}^{oldsymbol{u}})+oldsymbol{eta}\odotoldsymbol{u}, \quad i\in\{1,2,3\}, \ & \mu^{oldsymbol{u}}(oldsymbol{x}^{oldsymbol{u}},t=0)=\mu_0\ (\mathrm{given}), \quad \mu^{oldsymbol{u}}(oldsymbol{x}^{oldsymbol{u}},t=T)=\mu_T\ (\mathrm{given}) \end{aligned}$$

Stochastic OMT-EE --> generalized Schrödinger bridge problem

$$egin{aligned} & \inf_{oldsymbol{u}\in\mathcal{U}}\int_0^T\mathbb{E}_{\mu^u}[q(oldsymbol{x}^oldsymbol{u})+r(oldsymbol{u})]\mathrm{d}t \ & \mathrm{subject \ to} \quad \mathrm{d}oldsymbol{x}^oldsymbol{u}=(oldsymbol{lpha}\odotoldsymbol{f}(oldsymbol{x}^oldsymbol{u})+oldsymbol{eta}\odotoldsymbol{u})\,\mathrm{d}t+\sqrt{2\delta}\,\mathrm{d}oldsymbol{w}, \quad i\in\{1,2,3\}\ & \mu^oldsymbol{u}(oldsymbol{x}^oldsymbol{u},t=0)=\mu_0\ (\mathrm{given}), \quad \mu^oldsymbol{u}(oldsymbol{x}^oldsymbol{u},t=T)=\mu_T\ (\mathrm{given}). \end{aligned}$$

Static version of the OMT-EE

Deterministic: $\argmin_{\pi \in \Pi_2(\mu_0,\mu_T)} \int_{\mathbb{R}^3 \times \mathbb{R}^3} c({m x},{m y}) \mathrm{d}\pi({m x},{m y})$

Stochastic:

$$rginf_{\pi\in\Pi_2(\mu_0,\mu_T)}\int_{\mathbb{R}^3 imes\mathbb{R}^3}\left\{c(oldsymbol{x},oldsymbol{y})+\delta\log\pi(oldsymbol{x},oldsymbol{y})
ight\}\mathrm{d}\pi(oldsymbol{x},oldsymbol{y}),\quad \delta>0$$

entropic regularization

where

$$c(oldsymbol{x},oldsymbol{y}) = \inf_{\gamma(\cdot)\in\Gamma_{oldsymbol{x}y}} \int_{0}^{T} L(t,\gamma(t),\dot{\gamma}(t)) \mathrm{d}t$$

with Lagrangian

$$L(t, \boldsymbol{\gamma}, \dot{\boldsymbol{\gamma}}) \equiv q(\boldsymbol{\gamma}) + r((\dot{\boldsymbol{\gamma}} - \boldsymbol{\alpha} \odot \boldsymbol{f}) \oslash \boldsymbol{\beta})$$

and

 $\Gamma_{\boldsymbol{xy}} := \{ \boldsymbol{\gamma} : [0,T] \mapsto \mathbb{R}^n \mid \, \boldsymbol{\gamma}(\cdot) \text{ absolutely continuous}, \boldsymbol{\gamma}(0) = \boldsymbol{x}, \boldsymbol{\gamma}(T) = \boldsymbol{y} \}$

Use of identified Lagrangian

Theorem: (informal)

Assume μ_0 , μ_T are absolutely continuous with finite second moments.

Guaranteed existence-uniqueness of minimizer (ρ^{opt} , u^{opt}) for dynamic OMT-EE

Proof strategy: Show that the Lagrangian *L* is of weak Tonelli type

Then use Figalli's theorem [2007] on OMT costs derived from action functionals

Necessary conditions of optimality for OMT-EE

Stochastic:

Hamilton-Jacobi-
Bellman PDE
$$\frac{\partial \phi}{\partial t} + \frac{1}{2} \| \boldsymbol{\beta} \odot \nabla_{\boldsymbol{x}^{u}} \boldsymbol{\phi} \|_{2}^{2} + \langle \nabla_{\boldsymbol{x}^{u}} \boldsymbol{\phi}, \boldsymbol{\alpha} \odot \boldsymbol{f}(\boldsymbol{x}^{u}) \rangle = -\delta \Delta_{\boldsymbol{x}^{u}} \boldsymbol{\phi},$$
Fokker-Planck-
Kolmogorov PDE $\frac{\partial \rho^{\text{opt}}}{\partial t} + \nabla_{\boldsymbol{x}^{u}} \cdot \left(\rho^{\text{opt}} (\boldsymbol{\alpha} \odot \boldsymbol{f}(\boldsymbol{x}^{u}) + \boldsymbol{\beta}^{2} \odot \nabla_{\boldsymbol{x}^{u}} \boldsymbol{\phi}) \right) = \delta \Delta_{\boldsymbol{x}^{u}} \rho^{\text{opt}},$ Endpoint constraints $\rho^{\text{opt}}(\boldsymbol{x}^{u}, t = 0) = \rho_{0}, \quad \rho^{\text{opt}}(\boldsymbol{x}^{u}, t = T) = \rho_{T},$ Optimal control $\boldsymbol{u}^{\text{opt}} = \boldsymbol{\beta} \odot \nabla_{\boldsymbol{x}^{u}} \boldsymbol{\phi}$
value function

Deterministic: Solve above system of coupled PDE boundary value problem

Then pass to the limit $\delta \downarrow 0$

Case study: $q \equiv 0$, $r(\cdot) \equiv \frac{1}{2} \|\cdot\|_2^2$

Numerically solve the coupled PDE boundary value problem

using modified physics informed neural network (PINN)

Network input: $\boldsymbol{\xi} := (\omega_1, \omega_2, \omega_3, t)$

Network output: $\boldsymbol{\eta} := (\phi, \rho^{\text{opt}})$

Train network parameters $\theta \in \mathbb{R}^D$ such that $\eta(\boldsymbol{\xi}) \approx \mathcal{N}_{\text{Schrödinger Bridge}}(\boldsymbol{\xi}; \boldsymbol{\theta})$

Compare the optimally controlled vs. uncontrolled PDF evolution

Modified PINN architecture

HJB PDE loss: \mathcal{L}_{ϕ}

FPK PDE loss: $\mathcal{L}_{
ho^{\mathrm{opt}}}$

$$\text{Sinkhorn loss: } W^2_{\varepsilon}(\mu_0,\mu_1) := \inf_{\pi \in \Pi_2(\mu_0,\mu_T)} \int_{\mathbb{R}^n \times \mathbb{R}^n} \big\{ \| \boldsymbol{x} - \boldsymbol{y} \|_2^2 + \varepsilon \log \pi(\boldsymbol{x},\boldsymbol{y}) \big\} \mathrm{d}\pi(\boldsymbol{x},\boldsymbol{y})$$

Sinkhorn losses for boundary conditions: $\mathcal{L}_{\rho_i} := W_{\varepsilon}^2 \Big(\rho_i, \rho_i^{\text{epoch index}}(\boldsymbol{\theta}) \Big)$

Implementation friendly: $\texttt{Autodiff}_{\theta} W^2_{\varepsilon} \Big(\rho_i, \rho^{\text{epoch index}}_i(\theta) \Big) \quad \forall i \in \{0, T\}$

Uncontrolled PDF evolution for Euler equation

Uncontrolled (unc) Liouville PDE IVP:

0

$$rac{\partial
ho}{\partial t} +
abla_{oldsymbol{x}} \cdot (
ho oldsymbol{lpha} \odot oldsymbol{f}(oldsymbol{x})) = 0\,, \;
ho(oldsymbol{x},t=0) =
ho_0 \; (ext{given})$$

Because f is divergence-free, IVP solution: $\rho^{\text{unc}}(\boldsymbol{x}, t) = \rho_0(\boldsymbol{x}_0(\boldsymbol{x}, t))$

For axisymmetric rigid body $(J_1 = J_2 \neq J_3)$

$$ho^{ ext{unc}}(x_1,x_2,x_3,t) =
ho_0 \left(\left(rac{x_1^2 + x_2^2}{1 + \gamma^2}
ight)^rac{1}{2}, \gamma \left(rac{x_1^2 + x_2^2}{1 + \gamma^2}
ight)^rac{1}{2}, x_3
ight)$$

$$\gamma:=rac{x_2-x_1 an(lpha_2x_3t)}{x_1+x_2 an(lpha_2x_3t)}$$

Non-axisymmetric case in terms of Jacobi elliptic functions

Numerical simulation

 $ho_0 = \mathcal{N}((2,2,2), 0.5 I_3), \qquad
ho_T = \mathcal{N}((0,0,0), 0.5 I_3)$

3 hidden layers, 70 neurons in each, tanh activation, ADAM

80k epochs, 100k domain samples (mini-batched 35k of every 40k epoch) + 1250 boundary condition samples

Sinkhorn loss regularizer $\varepsilon = 0.1$

Principal moments of inertia: $J_1 = 0.45, J_2 = 0.50, J_3 = 0.55$

Final time T = 4

PINN space-time collocation domain: $[-5,5]^3 \times [0,4]$

Univariate marginals of optimally controlled joint

- Four snapshots
- Uncontrolled (--) vs controlled () for $\omega_1, \omega_2, \omega_3$

50 optimal closed-loop state sample paths

Euler-Maruyama integration with noise strength 0.1

Summary of contributions

OMT-EE: formulation, existence-uniqueness of solution, conditions for optimality

Modified PINN for numerical solution of the coupled PDE system

Ongoing work

Stochastic steering of attitude-spin over tangent bundle $\mathcal{T}SO(3) \simeq SO(3) \times \mathbb{R}^3$

Thank You

Acknowledgment:

