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Motivation

Steer stochastic spin subject to controlled dynamics + deadline constraints
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Controlled dynamics: Euler equation (EE)
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Optimal steering of stochastic spin

Deterministic OMT-EE

Set of feasible policies

strictly convex and superlinear

Classical dynamic OMT:
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Deterministic OMT-EE

Stochastic OMT-EE  generalized Schrödinger bridge problem⇝

Optimal steering of stochastic spin (contd.)
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Static version of the OMT-EE

Deterministic:

Stochastic:

where

with Lagrangian

and

entropic regularization
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Use of identified Lagrangian

Theorem: (informal)

Assume   are absolutely continuous with finite second moments.μ0, μT

Guaranteed existence-uniqueness of minimizer  for dynamic OMT-EE  (ρopt, uopt)

Proof strategy: Show that the Lagrangian  is of weak Tonelli typeL

Then use Figalli’s theorem [2007] on OMT costs derived 
from action functionals
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Necessary conditions of optimality for OMT-EE
Stochastic:

Hamilton-Jacobi-
Bellman PDE

Fokker-Planck-
Kolmogorov PDE

Endpoint constraints

Optimal control

Deterministic: Solve above system of coupled PDE boundary value problem 

Then pass to the limit  δ ↓ 0

value function
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Case study: q ≡ 0, r( ⋅ ) ≡
1
2

∥ ⋅ ∥2
2

Numerically solve the coupled PDE boundary value problem 

using modified physics informed neural network (PINN) 

Compare the optimally controlled vs. uncontrolled PDF evolution

Network input:

Network output: 

Train network parameters    such thatθ ∈ ℝD
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Modified PINN architecture

…

Losses

Sinkhorn loss:

Sinkhorn losses for boundary conditions:

Implementation friendly:

HJB PDE loss:

FPK PDE loss:
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Uncontrolled PDF evolution for Euler equation
Uncontrolled (unc) Liouville PDE IVP:

Because     is divergence-free, IVP solution:

inverse flow map 
For axisymmetric rigid body 

Non-axisymmetric case in terms of Jacobi elliptic functions
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Numerical simulation

3 hidden layers, 70 neurons in each, tanh activation, ADAM 

80k epochs, 100k domain samples (mini-batched 35k of every 40k epoch) 
+ 1250 boundary condition samples

Sinkhorn loss regularizer 

Principal moments of inertia: 

Final time 

PINN space-time collocation domain: 

ε = 0.1

J1 = 0.45, J2 = 0.50, J3 = 0.55

T = 4

[−5,5]3 × [0,4]
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Univariate marginals of optimally controlled joint 



50 optimal closed-loop state sample paths

Euler-Maruyama integration with noise strength 0.1
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Summary of contributions

OMT-EE: formulation, existence-uniqueness of solution, conditions for optimality

Modified PINN for numerical solution of the coupled PDE system

Ongoing work

Stochastic steering of attitude-spin over tangent bundle
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