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Topic of this talk

Model dynamics of “chiplet population”: large ensemble of micro/nano

sized particles immersed in dielectric fluid

Motivating applications

th oooooo
efficiency cell ||

Xerographic micro-assembly for printer systems ﬁ ﬁ ﬁ —«

Manufacturing of photovoltaic solar cells \“’i\ .
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Actuation and control

Electric potential generated by very large array of small electrodes
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Spatio-temporally non-uniform dielectrophoretic forces on the chiplets



Typical experimental setup
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Existing state-of-the-art
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Several works on modeling the finite population:

[Lu et. al., Appl. Phys. Lett., 2014]
|[Edward and Bevan, Langmuir, 2014]
[Matei et. al., CDC, 2020]

[Matei et. al., CDC, 2021]

[Lefevre et. al., IEEE/ASME Trans. on Mechatronics, 2022]
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How to steer the large finite population toward desired pattern:

Vectorize the positions of all chiplets, then apply MPC [Matei et. al., US Patent 17121411]

Computation does not scale ... need new ideas



Main idea
What we want to control is population-valued trajectory ... not a finite dim signal
Derive continuum model and design optimal control in that limit

Then apply that optimal control to large but finite population

This work: only the first step: derive controlled dynamics in the limit both
# electrodes and # chiplets — oo
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Technical challenge: two types of Coulomb interactions

1. Chiplet-to-chiplet interaction
2. Chiplet-to-electrode interactions

Both interactions are nonlinear in state + non-affine in control input
- J
!




Derived model

2D position of an individual chiplet: @(t) € R?

Causal deterministic control policy: u : R? x [O, oo) —> [Umin, ’u,max] C R

( (

Electric voltage Typically [-400, 400] Volt

At low Reynold’s number in dielectric fluid (ignoring small mass of chiplet):

X = [ + noise
~—— ~—~—
viscous drag force  controlled interaction force

At time 7, normalized chiplet population density function (PDE): p(x,t) € P2(R?)

The vector field: f* : R? x [0, 00) x U x Pr(R?) — R?
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Derived model: nonlocal 1to SDE

W.l.o.g. viscous coefficient © = 1 (else re-scale vector field)

[td SDE for the 2 th chiplet:

dx; =f”(xl-, t, u, pn) dr + 2,3_1 dw;(?) with i.i.d. @®g; ~ pg € Ps (RQ) Vie [[n]],

AN

pro= L3 8y Standard Wiener process

Non-local vector field:

f”(xtup)——v(/¢ z, Y, 1) ) ,0*¢

AR T

Controlled interaction potential Comma ... not minus Generalized convolution



Derived model: controlled interaction potential ¢"

Non-local vector field:

Fiee o =—v ( [, 0@ 00(w 0 )

\

Controlled interaction potential = ¢¢.(X,y, ) + ¢ (x,y, 1)

O (x,y, D) = Cec(|x —yl2) @@, t) — ulx, £))*/2,
Ly, 0 = Cee(llx —yl2) @y, ) — i(x, )% /2,

\

Capacitances (in practice, from COMSOL electrostatic simulation)

[z Cee (I — yll2)u(y, 1oy, £)dy
Jr2 Cee(lx = yll2)p(y, )dy

ulx,t) =

10



Consistency guarantee for the mean field limit

Thm. (informal)

The random empirical measure ,On — P as. inthelimit n T o0

where P solves the nonlinear McKean-Vlasov-Fokker-Planck-Kolmogorov IVP

3
a_/; = -V (of*) + B ' Ap

=V (pV(px¢"+ 711 +10gp))).

o(- 1 =0) = pp € P(Rz) (given).
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Chiplet mean field dynamics as Wass. grad flow

Thm. (informal)

Define “energy functional” ®(p) =K, [,0 x " + B -1 log p]

Then

q 9P

= -V"®(p).
Y (0)

(ii) ®(-) is a Lyapunov functional for the mean field dynamics.
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Wasserstein proximal recursion
Thm. (informal)

Let

P

(0, 01-1) = Ey[0r-1 % ¢" + B log o], 0, 011 € P2(R*) Vk € N

Then the proximal recursion o = prox:%(gk_l)

. 1 =
= arginf {5 WZ(Q, Ok—1) + T P(o, Qk—l)}
QEPz(]Rz)

approximates the transient solutions of the mean field nonlinear PDE IVP
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Can be used for forward simulation
(instead of finite difference etc.)
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Summary of contributions

Derived a controlled mean field model for chiplet population dynamics

Recast it as Wasserstein gradient flow, and Wasserstein proximal recursion

Ongoing efforts
Optimal control synthesis

subject to the mean field dynamics + endpoint constraints
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