
Optimal Transport Algorithms for Stochastic
Uncertainty Propagation in Power Systems

Abhishek Halder
Department of Applied Mathematics
University of California, Santa Cruz

Santa Cruz, CA 95064

Gradient Flows for Prediction
and Control of Densities

Abhishek Halder

Department of Applied Mathematics
University of California, Santa Cruz

Santa Cruz, CA 95064

Joint work with Kenneth F. Caluya (UC Santa Cruz)
and Tryphon T. Georgiou (UC Irvine)

Wasserstein Gradient Flow for Stochastic
Prediction, Filtering and Control:

Theory and Algorithms

Acknowledgement: NSF Award 1923278

Process
model

Initial
conditions

Parameters

Process noise

State density

Motivation: Uncertainty Propagation

Dynamics

Initial
conditions

Parameters

Process noise

State density

r(x(t), t)

Need to compute evolution of density r(x(t), t)

Process
model

Initial
conditions

Parameters

Process noise

State density

Motivation: Uncertainty Propagation

Dynamics

Initial
conditions

Parameters

Process noise

State density

r(x(t), t)

Need to compute evolution of density r(x(t), t)

Process
model

Initial
conditions

Parameters

Process noise

State density

Motivation: Uncertainty Propagation

Dynamics

Initial
conditions

Parameters

Process noise

State density

r(x(t), t)

Need to compute evolution of density r(x(t), t)

Process
model

Initial
conditions

Parameters

Process noise

State density

Motivation: Uncertainty Propagation

Dynamics

Initial
conditions

Parameters

Process noise

State density

r(x(t), t)

Need to compute evolution of density r(x(t), t)

Process
model

Initial
conditions

Parameters

Process noise

State density

Motivation: Uncertainty Propagation

Dynamics

Initial
conditions

Parameters

Process noise

State density

r(x(t), t)

Need to compute evolution of density r(x(t), t)

Process
model

Initial
conditions

Parameters

Process noise

State density

Motivation: Uncertainty Propagation

Dynamics

Initial
conditions

Parameters

Process noise

State density

r(x(t), t)

Need to compute evolution of density r(x(t), t)

Process
model

Initial
conditions

Parameters

Process noise

State density

Motivation: Uncertainty Propagation

Dynamics

Initial
conditions

Parameters

Process noise

State density

r(x(t), t)

Need to compute evolution of density r(x(t), t)

Process
model

Initial
conditions

Parameters

Process noise

State density

Motivation: Uncertainty Propagation

Dynamics

Initial
conditions

Parameters

Process noise

State density

r(x(t), t)

Need to compute evolution of density r(x(t), t)

Process
model

Initial
conditions

Parameters

Process noise

State density

Motivation: Uncertainty Propagation

Dynamics

Initial
conditions

Parameters

Process noise

State density

r(x(t), t)

Need to compute evolution of density r(x(t), t)

Process
model

Initial
conditions

Parameters

Process noise

State density

Motivation: Uncertainty Propagation

Dynamics

Initial
conditions

Parameters

Process noise

State density

r(x(t), t)

Need to compute evolution of density r(x(t), t)

Process
model

Initial
conditions

Parameters

Process noise

State density

Motivation: Uncertainty Propagation

Dynamics

Initial
conditions

Parameters

Process noise

State density

r(x(t), t)

Need to compute evolution of density r(x(t), t)

Process
model

Initial
conditions

Parameters

Process noise

State density

Motivation: Uncertainty Propagation

Dynamics

Initial
conditions

Parameters

Process noise

State density

r(x(t), t)

Need to compute evolution of density r(x(t), t)

Process
model

Initial
conditions

Parameters

Process noise

State density

Motivation: Uncertainty Propagation

Dynamics

Initial
conditions

Parameters

Process noise

State density

r(x(t), t)

Need to compute evolution of density r(x(t), t)

Process
model

Initial
conditions

Parameters

Process noise

State density

Motivation: Uncertainty Propagation

Dynamics

Initial
conditions

Parameters

Process noise

State density

r(x(t), t)

Need to compute evolution of density r(x(t), t)

Uncertainty Propagation in Power Systems

Propagating Joint Probability Density Function

Process
model

Initial
conditions

Parameters

Process noise

State density

Motivation: Uncertainty Propagation

Dynamics

Initial
conditions

Parameters

Process noise

State density

r(x(t), t)

Need to compute evolution of density r(x(t), t)

Prediction Problem

Problem: Uncertainty Propagation

Process
model

Initial
conditions

Parameters

Process noise

State density

Motivation: Uncertainty Propagation

Dynamics

Initial
conditions

Parameters

Process noise

State density

r(x(t), t)

Need to compute evolution of density r(x(t), t)

Trajectory flow:

dx(t) = f(x, t) dt + g(x, t) dw(t), dw(t) ∼ N (0, Qdt)

Density flow:

∂ρ

∂t
= LFP(ρ) := −∇ · (ρf) +

1
2

n

∑
i,j=1

∂2

∂xi∂xj

!"
gQg⊤

#

ij
ρ

$

Compute
joint state PDF

Process
model

Initial
conditions

Parameters

Process noise

State density

Motivation: Uncertainty Propagation

Dynamics

Initial
conditions

Parameters

Process noise

State density

r(x(t), t)

Need to compute evolution of density r(x(t), t)

Prediction Problem

Problem: Uncertainty Propagation

Process
model

Initial
conditions

Parameters

Process noise

State density

Motivation: Uncertainty Propagation

Dynamics

Initial
conditions

Parameters

Process noise

State density

r(x(t), t)

Need to compute evolution of density r(x(t), t)

Trajectory flow:

dx(t) = f(x, t) dt + g(x, t) dw(t), dw(t) ∼ N (0, Qdt)

Density flow:

∂ρ

∂t
= LFP(ρ) := −∇ · (ρf) +

1
2

n

∑
i,j=1

∂2

∂xi∂xj

!"
gQg⊤

#

ij
ρ

$

Compute
joint state PDF

What’s New?What’s New?

Main idea: Solve
What’s new?

Main Idea: Solve
@⇢

@t
= L⇢, ⇢(x , 0) = ⇢0 as gradient flow in P2(Rn

)

Proximal Operator: ⇢k = proxW 2

h� (⇢k�1) := arg inf
⇢2P2(Rn)

⇢
1
2
W 2(⇢, ⇢k�1) + h �(⇢)

�

Optimal Transport Cost: W 2(⇢, ⇢k�1) := inf
⇡2⇧(⇢,⇢k�1)

Z

Rn⇥Rn
c(x , y)d⇡(x , y)

Free Energy Functional: �(⇢) :=

Z

Rn
 ⇢ dx + ��1

Z

Rn
⇢ log ⇢ dx

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Infinite dimensional variational recursion:

Proximal operator:

Optimal transport cost:

Free energy functional:

Geometric Meaning of Gradient Flow
Gradient Flow

Gradient Flow in Rn

dx
dt

= �r'(x), x(0) = x0

Recursion:

xk = xk�1 � hr'(xk)

= arg min
x2Rn

⇢
1

2
kx � xk�1k22 + h'(x)

�

=: proxk·k2

h' (xk�1)

Convergence:

xk ! x(t = kh) as h # 0

Gradient Flow in P2(Rn
)

@⇢

@t
= �rW

�(⇢), ⇢(x , 0) = ⇢0

Recursion:

⇢k = ⇢(·, t = kh)

= arg min
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h�(⇢)

�

=: proxW 2

h� (⇢k�1)

Convergence:

⇢k ! ⇢(·, t = kh) as h # 0

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Geometric Meaning of Gradient Flow

 as Lyapunov function: as Lyapunov functional:

Geometric Meaning of Gradient Flow
Gradient Flow

Gradient Flow in Rn

dx
dt

= �r'(x), x(0) = x0

Recursion:

xk = xk�1 � hr'(xk)

= arg min
x2Rn

⇢
1

2
kx � xk�1k22 + h'(x)

�

=: proxk·k2

h' (xk�1)

Convergence:

xk ! x(t = kh) as h # 0

Gradient Flow in P2(Rn
)

@⇢

@t
= �rW

�(⇢), ⇢(x , 0) = ⇢0

Recursion:

⇢k = ⇢(·, t = kh)

= arg min
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h�(⇢)

�

=: proxW 2

h� (⇢k�1)

Convergence:

⇢k ! ⇢(·, t = kh) as h # 0

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

D

Geometric Meaning of Gradient Flow

Algorithm: Gradient Ascent on the Dual SpaceAlgorithm: Gradient Ascent on the Dual SpaceOur Contribution: Algorithm

Uncertainty propagation via point clouds

No spatial discretization or function approximation

Algorithm: Gradient Ascent on the Dual SpaceAlgorithm: Gradient Ascent on the Dual Space
Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual SpaceAlgorithm: Gradient Ascent on the Dual Space
Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual Space
Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual SpaceAlgorithm: Gradient Ascent on the Dual Space
Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual Space
Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual Space
Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual SpaceAlgorithm: Gradient Ascent on the Dual Space
Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual Space
Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual Space
Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithm: Gradient Ascent on the Dual Space
Algorithm: Gradient Ascent on the Dual Space

@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Recursion on the ConeFixed Point Recursion

Theorem: Consider the recursion on the cone Rn
�0

⇥ Rn
�0

y � (�kz) = %k�1, z �
⇣
�k

>y
⌘
= ⇠k�1 � z� �✏

h ,

Then the solution (y⇤, z⇤
) gives the proximal update %k = z⇤ � (�k

>y⇤
)

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Fixed Point Recursion
Fixed Point Recursion

Theorem: Consider the recursion on the cone Rn
�0

⇥ Rn
�0

y � (�kz) = %k�1, z �
⇣
�k

>y
⌘
= ⇠k�1 � z� �✏

h ,

Then the solution (y⇤, z⇤
) gives the proximal update %k = z⇤ � (�k

>y⇤
)

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithmic Setup

Algorithmic Setup

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithmic Setup
Algorithmic Setup

D2. Then, the idea is to design the metric d(·, ·) and the
functional �(·) in (3) such that %k(x) ! ⇢(x, t = kh) as
h # 0, i.e., in the small time-step limit, the solution of the
variational recursion (3) converges (in strong L

1 sense) to
that of (1). The main result in [17] was to show that for FPK
operators of the form (2) with f being a gradient vector field
and g being a scalar multiple of identity matrix, the distance
d(·, ·) can be taken as the Wasserstein-2 metric with �(·) as
the free energy functional. We will make these ideas precise
in Section II and III. The resulting variational recursion (3)
has since been known as the Jordan-Kinderlehrer-Otto (JKO)
scheme [18], and we will refer the FPK operator with such
assumptions on f and g to be in “JKO canonical form”.
Similar gradient descent schemes have been derived for many
other PDEs; see e.g., [19] for a recent survey.

To motivate gradient descent in infinite dimensional
spaces, we appeal to a more familiar setting, i.e., gradient
descent in Rn associated with the flow

dx

dt
= �r' (x) x(0) = x0, (4)

where x,x0 2 Rn and ' : Rn ! R�0, and is continuously
differentiable. The Euler discretization for (4) is given by

xk � xk�1 = �hr'(xk�1), (5)

which can be rewritten as a variational recursion

xk = arg min
x

1

2
k x � xk�1 k2 +h '(x) + o(h). (6)

In the optimization literature, the mapping xk�1 7! xk,
given by

proxk·k
h'(xk�1) := arg min

x

1

2
k x � xk�1 k2 +h '(x), (7)

is called the “proximal operator” [20, p. 142]. The sequence
{xk} generated by the proximal recursion

xk = proxk·k
h'(xk�1), k = 0, 1, 2, . . . (8)

converges to the flow of the ODE (4), i.e., the sequence
satisfies xk ! x(t = kh) as the step-size h # 0. Using the
finite dimensional viewpoint (7), we define

proxd2

h�(%k�1) := arg inf
%2D2

1

2
d
2 (%, %k�1) + h �(%), (9)

as an infinite dimensional proximal operator. As mentioned
above, the sequence {%k} generated by the proximal re-
cursion (3) converges to the flow of the PDE (4), i.e., the
sequence satisfies %k(x) ! ⇢(x, t = kh) as the step-size
h # 0. We also note that in the finite dimensional case,

d

dt
' = hr',�r'i = � k r' k2< 0 (10)

which implies ' decays along the flow of (4). As we will see
next, the appeal of using (3) to solve the FPK PDE comes
from the fact that the Euclidean gradient descent can be
generalized to the manifold D2 by appropriately choosing
the metric d(·, ·) and the functional �(·) in (3), in parallel
with the quantities k · k and '(·) in (8), respectively.

Fig. 1: The JKO scheme can be described by successive evaluation
of proximal operators to recursively update PDFs from time t =
(k � 1)h to t = kh for k = 1, 2, . . ., and time-step h > 0.

In this paper, we will develop an algorithm to solve the
FPK PDE via proximal recursion of the form (3) without
making any spatial discretization. A schematic is shown in
Fig. 1. The resulting recursion is proved to be contractive and
enjoy fast numerical implementation. Numerical simulation
results show the efficacy of the proposed formulation.

II. PRELIMINARIES

In the following, we provide the definitions of the
Kullback-Leibler divergence, and the 2-Waserstein metric,
which will be useful in the sequel. We also point out some
notations used throughout this paper.

Definition 1: The Kullback-Leibler divergence between
two probability measures d⇡i(x) = ⇢i(x)dx, i = {1, 2},
is given by

DKL (d⇡1 k d⇡2) :=

Z
⇢1(x) log

⇢1(x)

⇢2(x)
dx, (11)

which is non-negative, and vanishes if and only if ⇢1 = ⇢2.
However, (11) is not a metric since it is neither symmetric,
nor does it satisfy the triangle inequality.

Definition 2: The 2-Wasserstein metric between two prob-
ability measures d⇡1(x) = ⇢1(x)dx and d⇡2(y) = ⇢2(y)dy
supported respectively on X ,Y ✓ Rn, is denoted as
W (⇡1,⇡2) (equivalently, W (⇢1, ⇢2) whenever ⇡1,⇡2 are
absolutely continuous so that the PDFs ⇢1, ⇢2 exist, and
arises in the theory of optimal mass transport [16]; it is
defined as

W (⇡1,⇡2) :=
✓

inf
d⇡2⇧(⇡1,⇡2)

Z

X⇥Y
k x � y k22 d⇡ (x,y)

◆ 1
2

, (12)

where ⇧ (⇡1,⇡2) denotes the collection of all probability
measures on the product space X ⇥ Y having finite second
moments, with marginals ⇡1 and ⇡2, respectively. Its square,
W

2(⇡1,⇡2) equals [21] the minimum amount of work re-
quired to transport ⇡1 to ⇡2 (or equivalently, ⇢1 to ⇢2). It is
well-known [16, Ch. 7] that W (⇡1,⇡2) defines a metric on
the manifold D2.

Notations: Throughout the paper, we will use bold-faced
capital letters for matrices and bold-faced lower-case letters
for column vectors. We use the symbol h·, ·i to denote the Eu-
clidean inner product. In particular, hA,Bi := trace(A>B)

D2. Then, the idea is to design the metric d(·, ·) and the
functional �(·) in (3) such that %k(x) ! ⇢(x, t = kh) as
h # 0, i.e., in the small time-step limit, the solution of the
variational recursion (3) converges (in strong L

1 sense) to
that of (1). The main result in [17] was to show that for FPK
operators of the form (2) with f being a gradient vector field
and g being a scalar multiple of identity matrix, the distance
d(·, ·) can be taken as the Wasserstein-2 metric with �(·) as
the free energy functional. We will make these ideas precise
in Section II and III. The resulting variational recursion (3)
has since been known as the Jordan-Kinderlehrer-Otto (JKO)
scheme [18], and we will refer the FPK operator with such
assumptions on f and g to be in “JKO canonical form”.
Similar gradient descent schemes have been derived for many
other PDEs; see e.g., [19] for a recent survey.

To motivate gradient descent in infinite dimensional
spaces, we appeal to a more familiar setting, i.e., gradient
descent in Rn associated with the flow

dx

dt
= �r' (x) x(0) = x0, (4)

where x,x0 2 Rn and ' : Rn ! R�0, and is continuously
differentiable. The Euler discretization for (4) is given by

xk � xk�1 = �hr'(xk�1), (5)

which can be rewritten as a variational recursion

xk = arg min
x

1

2
k x � xk�1 k2 +h '(x) + o(h). (6)

In the optimization literature, the mapping xk�1 7! xk,
given by

proxk·k
h'(xk�1) := arg min

x

1

2
k x � xk�1 k2 +h '(x), (7)

is called the “proximal operator” [20, p. 142]. The sequence
{xk} generated by the proximal recursion

xk = proxk·k
h'(xk�1), k = 0, 1, 2, . . . (8)

converges to the flow of the ODE (4), i.e., the sequence
satisfies xk ! x(t = kh) as the step-size h # 0. Using the
finite dimensional viewpoint (7), we define

proxd2

h�(%k�1) := arg inf
%2D2

1

2
d
2 (%, %k�1) + h �(%), (9)

as an infinite dimensional proximal operator. As mentioned
above, the sequence {%k} generated by the proximal re-
cursion (3) converges to the flow of the PDE (4), i.e., the
sequence satisfies %k(x) ! ⇢(x, t = kh) as the step-size
h # 0. We also note that in the finite dimensional case,

d

dt
' = hr',�r'i = � k r' k2< 0 (10)

which implies ' decays along the flow of (4). As we will see
next, the appeal of using (3) to solve the FPK PDE comes
from the fact that the Euclidean gradient descent can be
generalized to the manifold D2 by appropriately choosing
the metric d(·, ·) and the functional �(·) in (3), in parallel
with the quantities k · k and '(·) in (8), respectively.

Fig. 1: The JKO scheme can be described by successive evaluation
of proximal operators to recursively update PDFs from time t =
(k � 1)h to t = kh for k = 1, 2, . . ., and time-step h > 0.

In this paper, we will develop an algorithm to solve the
FPK PDE via proximal recursion of the form (3) without
making any spatial discretization. A schematic is shown in
Fig. 1. The resulting recursion is proved to be contractive and
enjoy fast numerical implementation. Numerical simulation
results show the efficacy of the proposed formulation.

II. PRELIMINARIES

In the following, we provide the definitions of the
Kullback-Leibler divergence, and the 2-Waserstein metric,
which will be useful in the sequel. We also point out some
notations used throughout this paper.

Definition 1: The Kullback-Leibler divergence between
two probability measures d⇡i(x) = ⇢i(x)dx, i = {1, 2},
is given by

DKL (d⇡1 k d⇡2) :=

Z
⇢1(x) log

⇢1(x)

⇢2(x)
dx, (11)

which is non-negative, and vanishes if and only if ⇢1 = ⇢2.
However, (11) is not a metric since it is neither symmetric,
nor does it satisfy the triangle inequality.

Definition 2: The 2-Wasserstein metric between two prob-
ability measures d⇡1(x) = ⇢1(x)dx and d⇡2(y) = ⇢2(y)dy
supported respectively on X ,Y ✓ Rn, is denoted as
W (⇡1,⇡2) (equivalently, W (⇢1, ⇢2) whenever ⇡1,⇡2 are
absolutely continuous so that the PDFs ⇢1, ⇢2 exist, and
arises in the theory of optimal mass transport [16]; it is
defined as

W (⇡1,⇡2) :=
✓

inf
d⇡2⇧(⇡1,⇡2)

Z

X⇥Y
k x � y k22 d⇡ (x,y)

◆ 1
2

, (12)

where ⇧ (⇡1,⇡2) denotes the collection of all probability
measures on the product space X ⇥ Y having finite second
moments, with marginals ⇡1 and ⇡2, respectively. Its square,
W

2(⇡1,⇡2) equals [21] the minimum amount of work re-
quired to transport ⇡1 to ⇡2 (or equivalently, ⇢1 to ⇢2). It is
well-known [16, Ch. 7] that W (⇡1,⇡2) defines a metric on
the manifold D2.

Notations: Throughout the paper, we will use bold-faced
capital letters for matrices and bold-faced lower-case letters
for column vectors. We use the symbol h·, ·i to denote the Eu-
clidean inner product. In particular, hA,Bi := trace(A>B)

Theorem: Block co-ordinate iteration of (y, z) recur-
sion is contractive on Rn

>0 × Rn
>0.

Algorithmic Setup

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Algorithmic Setup
Algorithmic Setup

D2. Then, the idea is to design the metric d(·, ·) and the
functional �(·) in (3) such that %k(x) ! ⇢(x, t = kh) as
h # 0, i.e., in the small time-step limit, the solution of the
variational recursion (3) converges (in strong L

1 sense) to
that of (1). The main result in [17] was to show that for FPK
operators of the form (2) with f being a gradient vector field
and g being a scalar multiple of identity matrix, the distance
d(·, ·) can be taken as the Wasserstein-2 metric with �(·) as
the free energy functional. We will make these ideas precise
in Section II and III. The resulting variational recursion (3)
has since been known as the Jordan-Kinderlehrer-Otto (JKO)
scheme [18], and we will refer the FPK operator with such
assumptions on f and g to be in “JKO canonical form”.
Similar gradient descent schemes have been derived for many
other PDEs; see e.g., [19] for a recent survey.

To motivate gradient descent in infinite dimensional
spaces, we appeal to a more familiar setting, i.e., gradient
descent in Rn associated with the flow

dx

dt
= �r' (x) x(0) = x0, (4)

where x,x0 2 Rn and ' : Rn ! R�0, and is continuously
differentiable. The Euler discretization for (4) is given by

xk � xk�1 = �hr'(xk�1), (5)

which can be rewritten as a variational recursion

xk = arg min
x

1

2
k x � xk�1 k2 +h '(x) + o(h). (6)

In the optimization literature, the mapping xk�1 7! xk,
given by

proxk·k
h'(xk�1) := arg min

x

1

2
k x � xk�1 k2 +h '(x), (7)

is called the “proximal operator” [20, p. 142]. The sequence
{xk} generated by the proximal recursion

xk = proxk·k
h'(xk�1), k = 0, 1, 2, . . . (8)

converges to the flow of the ODE (4), i.e., the sequence
satisfies xk ! x(t = kh) as the step-size h # 0. Using the
finite dimensional viewpoint (7), we define

proxd2

h�(%k�1) := arg inf
%2D2

1

2
d
2 (%, %k�1) + h �(%), (9)

as an infinite dimensional proximal operator. As mentioned
above, the sequence {%k} generated by the proximal re-
cursion (3) converges to the flow of the PDE (4), i.e., the
sequence satisfies %k(x) ! ⇢(x, t = kh) as the step-size
h # 0. We also note that in the finite dimensional case,

d

dt
' = hr',�r'i = � k r' k2< 0 (10)

which implies ' decays along the flow of (4). As we will see
next, the appeal of using (3) to solve the FPK PDE comes
from the fact that the Euclidean gradient descent can be
generalized to the manifold D2 by appropriately choosing
the metric d(·, ·) and the functional �(·) in (3), in parallel
with the quantities k · k and '(·) in (8), respectively.

Fig. 1: The JKO scheme can be described by successive evaluation
of proximal operators to recursively update PDFs from time t =
(k � 1)h to t = kh for k = 1, 2, . . ., and time-step h > 0.

In this paper, we will develop an algorithm to solve the
FPK PDE via proximal recursion of the form (3) without
making any spatial discretization. A schematic is shown in
Fig. 1. The resulting recursion is proved to be contractive and
enjoy fast numerical implementation. Numerical simulation
results show the efficacy of the proposed formulation.

II. PRELIMINARIES

In the following, we provide the definitions of the
Kullback-Leibler divergence, and the 2-Waserstein metric,
which will be useful in the sequel. We also point out some
notations used throughout this paper.

Definition 1: The Kullback-Leibler divergence between
two probability measures d⇡i(x) = ⇢i(x)dx, i = {1, 2},
is given by

DKL (d⇡1 k d⇡2) :=

Z
⇢1(x) log

⇢1(x)

⇢2(x)
dx, (11)

which is non-negative, and vanishes if and only if ⇢1 = ⇢2.
However, (11) is not a metric since it is neither symmetric,
nor does it satisfy the triangle inequality.

Definition 2: The 2-Wasserstein metric between two prob-
ability measures d⇡1(x) = ⇢1(x)dx and d⇡2(y) = ⇢2(y)dy
supported respectively on X ,Y ✓ Rn, is denoted as
W (⇡1,⇡2) (equivalently, W (⇢1, ⇢2) whenever ⇡1,⇡2 are
absolutely continuous so that the PDFs ⇢1, ⇢2 exist, and
arises in the theory of optimal mass transport [16]; it is
defined as

W (⇡1,⇡2) :=
✓

inf
d⇡2⇧(⇡1,⇡2)

Z

X⇥Y
k x � y k22 d⇡ (x,y)

◆ 1
2

, (12)

where ⇧ (⇡1,⇡2) denotes the collection of all probability
measures on the product space X ⇥ Y having finite second
moments, with marginals ⇡1 and ⇡2, respectively. Its square,
W

2(⇡1,⇡2) equals [21] the minimum amount of work re-
quired to transport ⇡1 to ⇡2 (or equivalently, ⇢1 to ⇢2). It is
well-known [16, Ch. 7] that W (⇡1,⇡2) defines a metric on
the manifold D2.

Notations: Throughout the paper, we will use bold-faced
capital letters for matrices and bold-faced lower-case letters
for column vectors. We use the symbol h·, ·i to denote the Eu-
clidean inner product. In particular, hA,Bi := trace(A>B)

D2. Then, the idea is to design the metric d(·, ·) and the
functional �(·) in (3) such that %k(x) ! ⇢(x, t = kh) as
h # 0, i.e., in the small time-step limit, the solution of the
variational recursion (3) converges (in strong L

1 sense) to
that of (1). The main result in [17] was to show that for FPK
operators of the form (2) with f being a gradient vector field
and g being a scalar multiple of identity matrix, the distance
d(·, ·) can be taken as the Wasserstein-2 metric with �(·) as
the free energy functional. We will make these ideas precise
in Section II and III. The resulting variational recursion (3)
has since been known as the Jordan-Kinderlehrer-Otto (JKO)
scheme [18], and we will refer the FPK operator with such
assumptions on f and g to be in “JKO canonical form”.
Similar gradient descent schemes have been derived for many
other PDEs; see e.g., [19] for a recent survey.

To motivate gradient descent in infinite dimensional
spaces, we appeal to a more familiar setting, i.e., gradient
descent in Rn associated with the flow

dx

dt
= �r' (x) x(0) = x0, (4)

where x,x0 2 Rn and ' : Rn ! R�0, and is continuously
differentiable. The Euler discretization for (4) is given by

xk � xk�1 = �hr'(xk�1), (5)

which can be rewritten as a variational recursion

xk = arg min
x

1

2
k x � xk�1 k2 +h '(x) + o(h). (6)

In the optimization literature, the mapping xk�1 7! xk,
given by

proxk·k
h'(xk�1) := arg min

x

1

2
k x � xk�1 k2 +h '(x), (7)

is called the “proximal operator” [20, p. 142]. The sequence
{xk} generated by the proximal recursion

xk = proxk·k
h'(xk�1), k = 0, 1, 2, . . . (8)

converges to the flow of the ODE (4), i.e., the sequence
satisfies xk ! x(t = kh) as the step-size h # 0. Using the
finite dimensional viewpoint (7), we define

proxd2

h�(%k�1) := arg inf
%2D2

1

2
d
2 (%, %k�1) + h �(%), (9)

as an infinite dimensional proximal operator. As mentioned
above, the sequence {%k} generated by the proximal re-
cursion (3) converges to the flow of the PDE (4), i.e., the
sequence satisfies %k(x) ! ⇢(x, t = kh) as the step-size
h # 0. We also note that in the finite dimensional case,

d

dt
' = hr',�r'i = � k r' k2< 0 (10)

which implies ' decays along the flow of (4). As we will see
next, the appeal of using (3) to solve the FPK PDE comes
from the fact that the Euclidean gradient descent can be
generalized to the manifold D2 by appropriately choosing
the metric d(·, ·) and the functional �(·) in (3), in parallel
with the quantities k · k and '(·) in (8), respectively.

Fig. 1: The JKO scheme can be described by successive evaluation
of proximal operators to recursively update PDFs from time t =
(k � 1)h to t = kh for k = 1, 2, . . ., and time-step h > 0.

In this paper, we will develop an algorithm to solve the
FPK PDE via proximal recursion of the form (3) without
making any spatial discretization. A schematic is shown in
Fig. 1. The resulting recursion is proved to be contractive and
enjoy fast numerical implementation. Numerical simulation
results show the efficacy of the proposed formulation.

II. PRELIMINARIES

In the following, we provide the definitions of the
Kullback-Leibler divergence, and the 2-Waserstein metric,
which will be useful in the sequel. We also point out some
notations used throughout this paper.

Definition 1: The Kullback-Leibler divergence between
two probability measures d⇡i(x) = ⇢i(x)dx, i = {1, 2},
is given by

DKL (d⇡1 k d⇡2) :=

Z
⇢1(x) log

⇢1(x)

⇢2(x)
dx, (11)

which is non-negative, and vanishes if and only if ⇢1 = ⇢2.
However, (11) is not a metric since it is neither symmetric,
nor does it satisfy the triangle inequality.

Definition 2: The 2-Wasserstein metric between two prob-
ability measures d⇡1(x) = ⇢1(x)dx and d⇡2(y) = ⇢2(y)dy
supported respectively on X ,Y ✓ Rn, is denoted as
W (⇡1,⇡2) (equivalently, W (⇢1, ⇢2) whenever ⇡1,⇡2 are
absolutely continuous so that the PDFs ⇢1, ⇢2 exist, and
arises in the theory of optimal mass transport [16]; it is
defined as

W (⇡1,⇡2) :=
✓

inf
d⇡2⇧(⇡1,⇡2)

Z

X⇥Y
k x � y k22 d⇡ (x,y)

◆ 1
2

, (12)

where ⇧ (⇡1,⇡2) denotes the collection of all probability
measures on the product space X ⇥ Y having finite second
moments, with marginals ⇡1 and ⇡2, respectively. Its square,
W

2(⇡1,⇡2) equals [21] the minimum amount of work re-
quired to transport ⇡1 to ⇡2 (or equivalently, ⇢1 to ⇢2). It is
well-known [16, Ch. 7] that W (⇡1,⇡2) defines a metric on
the manifold D2.

Notations: Throughout the paper, we will use bold-faced
capital letters for matrices and bold-faced lower-case letters
for column vectors. We use the symbol h·, ·i to denote the Eu-
clidean inner product. In particular, hA,Bi := trace(A>B)

Theorem: Block co-ordinate iteration of (y, z) recur-
sion is contractive on Rn

>0 × Rn
>0.

Proximal Prediction: 1D Linear Gaussian
1D Linear Gaussian

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Proximal Prediction: 1D Linear Gaussian

Proximal Prediction: 2D Linear GaussianProximal Prediction: 2D Linear GaussianProximal Propagation: 2D Linear Gaussian

Proximal Prediction: Nonlinear Non-GaussianProximal Prediction: 2D Nonlinear Non-GaussianProximal Propagation: Nonlinear non-Gaussian

Computational Time: Nonlinear Non-GaussianComputational Time: 2D Nonlinear Non-Gaussian

1 2 3 4
Physical time tk = kh (seconds)

10°6

C
om

pu
ta

ti
on

al
ti

m
e

(s
ec

on
ds

)

Network Reduced Power System Model

Mixed Conservative-Dissipative SDE over state variables

Potential function

Noisy Kuramoto (a.k.a. structure preserving power network) model

Proximal Recursion for Power System Model
Consider simple case: homogeneous generators with

Lyapunov functional:

However, the FPK PDE is NOT a gradient descent of w.r.t.

Instead, do:

where

Proximal Prediction: Power System with n = 2
Projection of the joint PDF on

Projection of the joint PDF on

Computational Time: Power System with n = 2

Summary

Fast proximal recursions for PDF propagation in power systems

Ongoing

Large scale implementation: ~1000 generators in ~seconds

Address Stochastic Differential Algebraic Equations (SDAEs)

Thank You

