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What is Transport

Random variable with given PDF: X ∼ ξ(x)

New random variable:  for given nonlinear map Y = f(X) f

Find new PDF: Y ∼ η(y)

Many names: change of variable, pushforward of probability 
measure, transport

Solution for scalar transport:

 is # of inverses of  m f
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What is Transport: Example

Pushforward map:
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Transport vs Optimal Transport

Transport = Forward Problem: Given compute ξ, f, η

Solution for vector transport:

Nothing to optimize
Notation:
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Transport vs Optimal Transport (OT)

Transport = Forward Problem: Given compute ξ, f, η

Optimal transport = Inverse problem: Given compute “best”  ξ, η, f

Solution for vector transport:

Nothing to optimize
Notation:

 is called ground costc( ⋅ , ⋅ )
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OT Take #1: Monge Formulation
OT map

Gaspard Monge
1781

Pushforward constraint is nonlinear and nonconvex in  :f

Monge considered EMD ground cost: 
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OT Take #1: Monge Formulation

Yann Brenier
1991

Brenier’s Polar Factorization Thm. (1991)

Special cases:
Polar factorization in linear algebra:

Helmholtz decomposition of vector field:

For  squared Euclidean,  is identityc σ

 is called static potentialψ
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OT Take #1: Monge Formulation

Yann Brenier
1991

Why not use Polar Factorization Thm. to compute  ?ψ

For  squared Euclidean (  is identity)c σ

Substituting                            in the pushforward constraint gives:

This is Monge-Ampère PDE to be solved for unknown convex 

This is 2nd order nonlinear degenerate elliptic PDE …
difficult to solve by finite difference, finite volume etc.
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OT Take #2: Kantorovich Formulation

Leonid Kantorovich
1941

OT plan

Linear program!! 

1975 Nobel prize in Economics for this work
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OT Take #2: Kantorovich Formulation

Discrete version

Difficulty: high computational complexity for large m, n
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OT Take #2: Kantorovich Formulation
Regularized discrete version: embrace nonlinearity 

Entropy regularization: Strictly convex program (NeurIPS 2013)

Fixed regularizer ε > 0

Turns out this is the static Schrödinger bridge
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OT Take #2: Kantorovich Formulation
Exploit strong duality

Since subtracting a constant   in the objective cannot change 
argmin, so consider the Lagrangian

ε

Lagrange multipliers

Apply KKT conditions:
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OT Take #2: Kantorovich Formulation
Therefore, the regularized argmin solves matrix scaling problem

Algorithm: Sinkhorn recursion/IPFP/raking/contingency table

Annals of Mathematical Statistics
1964

Guaranteed linear convergence: contraction w.r.t. Hilbert metric

Cone preserving nonlinear recursion: nonlinear Perron-Frobenius

The                               are called the Schrödinger potentials
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OT Take #2: Kantorovich Formulation
Duality for unregularized OT
Primal LP

Dual LP

Kantorovich 
potentials
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OT Take #2: Kantorovich Formulation
Strong duality for unregularized OT

Thm.

If           are polish spaces, and the ground cost 

is lsc, then strong duality holds.

Furthermore,

•                                                          for           a.e.            

•                                   are -conjugates of each other c
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OT Take #3: Brenier-Benamou Formulation

Y. Brenier J-D. Benamou
1999

Stochastic control problem

Thm.

where              solves the Hamilton-Jacobi-Bellman PDE     

The  is called dynamic potentialϕ
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How are these 3 OT formulations related?

When ground cost  = 1/2 squared Euclidean distance,c

optimal value of Take #1 = that of Take #2 = that of Take #3

This optimal value is the 1/2 squared Wasserstein distance metric

Wasserstein geodesic:
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Connections between Take #1 and Take #2

The OT plan           is supported on

the graph of the OT map 

under mild assumptions on problem data

Image credit: L. Chizat
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Connections between Take #1 and Take #3

Nonlinear (displacement) interpolation between  and :ξ η

where
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Connections between Take #1 and Take #3

Nonlinear (displacement) interpolation between  and :ξ η

where

Relation between static potential  and dynamic potential :ψ ϕ

In Take #1: 

In Take #3: 

Hopf-Lax representation formula:

where

Infimal convolution
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Analytically Solvable OT Problems

Problem OT value OT map

1D OT with
CDFs: 

Multivariate 
normals: where
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Wasserstein Gradient Flows
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Wasserstein Gradient Flows
PDE solution as gradient descent on the metric space
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Wasserstein Gradient Flows



Wasserstein Gradient Flows
PDE Free energy Specific instances

McKean-Vlasov-
Fokker-Planck-
Kolmogorov 
PDEs with 
gradient/mixed 
conservative-
dissipative drift

Fokker-Planck-
Kolmogorov PDE

Mean field 
dynamics: crowd, 
overparameterized 
neural networks

Nonlinear 
diffusion PDEs

Vlasov-Poisson-
Fokker-Planck
 PDEs

Power law diffusion 
with

Plasma dynamics
Astrophysics
Bacterial chemotaxis

Potential energy

Internal energy

Nonlocal interaction energy
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Caveat Emptor

Potentials galore:

- static (Monge) OT potential

- dynamic (Brenier-Benamou) OT potential

- static Kantorovich (dual) potentials

- static Schrödinger (regularized dual) potentials  
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OT References



Thank You
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