Optimal Transport

Abhishek Halder

Department of Aerospace Engineering, Iowa State University Department of Applied Mathematics, University of California Santa Cruz

> Lawrence Livermore National Lab March 03, 2025

What is Transport

Random variable with given PDF: $X \sim \xi(x)$

New random variable: Y = f(X) for given nonlinear map f

Find new PDF: $Y \sim \eta(y)$

Many names: change of variable, pushforward of probability measure, **transport**

Solution for scalar transport:
$$\eta(y) = \sum_{i=1}^{m} \frac{\xi(f^{-1}(y))}{|f'(f^{-1}(y))|}$$

m is # of inverses of *f*

What is Transport: Example

Transport vs Optimal Transport

Transport = Forward Problem: Given ξ , *f*, compute η

Solution for vector transport:
$$\eta(\boldsymbol{y}) = \sum_{i=1}^{m} \frac{\xi(\boldsymbol{f}^{-1}(\boldsymbol{y}))}{|\nabla_{\boldsymbol{x}} \boldsymbol{f}(\boldsymbol{f}^{-1}(\boldsymbol{y}))|}$$

Nothing to optimize

Notation: $\eta = f_{\sharp}\xi$

Transport vs Optimal Transport (OT)

Transport = Forward Problem: Given ξ , *f*, compute η

Solution for vector transport: $\eta(\boldsymbol{y}) = \sum_{i=1}^{m} \frac{\xi(\boldsymbol{f}^{-1}(\boldsymbol{y}))}{|\nabla_{\boldsymbol{x}} \boldsymbol{f}(\boldsymbol{f}^{-1}(\boldsymbol{y}))|}$ Notation: $\boldsymbol{n} = \boldsymbol{f}_{\boldsymbol{x}} \boldsymbol{\xi}$

Notation: $\eta = f_{\sharp}\xi$

Optimal transport = Inverse problem: Given ξ , η , compute "best" f

$$egin{argmin} & \mathbb{E}_{m{x}}\left[c(m{x},m{f}(m{x}))
ight] \ & ext{Measurable }m{f}:\mathcal{X}\mapsto\mathcal{Y} \ & ext{ subject to } & \eta=m{f}_{\sharp}\xi \ \end{array}$$

 $c(\cdot, \cdot)$ is called ground cost

OT Take #1: Monge Formulation

Pushforward constraint is nonlinear and nonconvex in f:

$$\left|\det
abla_{\boldsymbol{x}} \boldsymbol{f} \right| \ \left(\eta \circ \boldsymbol{f}
ight) \left(\boldsymbol{x}
ight) = \xi \left(\boldsymbol{x}
ight)$$

Monge considered EMD ground cost: $c(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} - \boldsymbol{y}\|_1$

OT Take #1: Monge Formulation

Brenier's Polar Factorization Thm. (1991)

 $oldsymbol{f}_{\mathrm{opt}} = (
abla_{oldsymbol{x}} \psi) \circ$

convex

 ψ is called **static potential**

For *c* squared Euclidean, σ is identity

Special cases:

Polar factorization in linear algebra: $M = \mathcal{P} \mathcal{Q}$

 $\in \overset{\bullet}{\mathrm{GL}}(n) \quad \in \overset{\bullet}{\mathbb{S}^n_{++}} \overset{\bullet}{\in} \overset{\bullet}{\mathrm{O}}(n)$

Helmholtz decomposition of vector field:

measure preserving

Yann Brenier 1991

OT Take #1: Monge Formulation

Why not use Polar Factorization Thm. to compute ψ ?

For *c* squared Euclidean ($\boldsymbol{\sigma}$ is identity)

Substituting $\boldsymbol{f}_{\text{opt}} = \nabla_{\boldsymbol{x}} \psi$ in the pushforward constraint gives:

$$\left|\det \operatorname{Hess}_{\boldsymbol{x}} \psi \right| \eta \left(\nabla_{\boldsymbol{x}} \psi \right) = \xi \left(\boldsymbol{x} \right)$$

This is Monge-Ampère PDE to be solved for unknown **convex** ψ

This is 2nd order nonlinear degenerate elliptic PDE ... difficult to solve by finite difference, finite volume etc.

Yann Brenier 1991

OT Take #2: Kantorovich Formulation OT plan $\rho_{\text{opt}} = \underset{\rho>0}{\operatorname{arg\,min}} \int_{\mathcal{X}\times\mathcal{V}} c(\boldsymbol{x}, \boldsymbol{y}) \rho(\boldsymbol{x}, \boldsymbol{y}) \mathrm{d}\boldsymbol{x} \mathrm{d}\boldsymbol{y}$

$$egin{aligned} & &
ho \geq 0 \quad J \, \mathcal{X} imes \mathcal{Y} \ & ext{subject to} \quad & \int_{\mathcal{Y}}
ho(oldsymbol{x},oldsymbol{y}) \mathrm{d}oldsymbol{y} = oldsymbol{\xi}\left(oldsymbol{x}
ight) \ & \int_{\mathcal{X}}
ho(oldsymbol{x},oldsymbol{y}) \mathrm{d}oldsymbol{x} = \eta\left(oldsymbol{y}
ight) \end{aligned}$$

Leonid Kantorovich 1941

Linear program!!

1975 Nobel prize in Economics for this work

Difficulty: high computational complexity for large *m*, *n*

Regularized discrete version: embrace nonlinearity

Entropy regularization: Strictly convex program (NeurIPS 2013)

$$egin{aligned} m{P}_{ ext{opt}}(arepsilon) &= rgmin_{m{P} \in \mathbb{R}^{m imes n}} \langle m{C} + arepsilon \log m{P}, m{P}
angle \ ext{subject to} &m{P} m{1} &= m{\xi} \ m{P}^{ op} m{1} &= m{\eta} \ m{P} \geq m{0} & ext{elementwise} \end{aligned}$$

Fixed regularizer $\varepsilon > 0$

Turns out this is the **static** Schrödinger bridge

Exploit strong duality

Since subtracting a constant ε in the objective cannot change argmin, so consider the Lagrangian

$$L(\boldsymbol{P}, \boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2) = \langle \boldsymbol{C} + \varepsilon \log \boldsymbol{P}, \boldsymbol{P} \rangle - \underbrace{\varepsilon}_{=\varepsilon \mathbf{1}^\top \boldsymbol{P} \mathbf{1}} + \langle \boldsymbol{\lambda}_1, \boldsymbol{P} \mathbf{1} - \boldsymbol{\xi} \rangle + \langle \boldsymbol{\lambda}_2, \boldsymbol{P}^\top \mathbf{1} - \boldsymbol{\eta} \rangle$$

$$Lagrange multipliers$$

Apply KKT conditions:

$$\left. \frac{\partial L}{\partial P_{ij}} \right|_{\text{opt}} = 0 \Rightarrow \left(P_{\text{opt}}(\varepsilon) \right)_{ij} = \underbrace{\exp\left(-C_{ij}/\varepsilon \right)}_{=:K_{ij}} \underbrace{\exp\left(-(\lambda_1)_j \right)}_{=:u_j} \underbrace{\exp\left(-(\lambda_2)_i \right)}_{=:v_i}$$

Therefore, the regularized argmin solves matrix scaling problem

$$oldsymbol{P}_{ ext{opt}}(arepsilon) = (ext{diag} \, oldsymbol{v})oldsymbol{K}(ext{diag} \, oldsymbol{u})$$

Algorithm: Sinkhorn recursion/IPFP/raking/contingency table

$$oldsymbol{u}^{(k+1)} = oldsymbol{\xi} \oslash \left(oldsymbol{K}oldsymbol{v}^{(k)}
ight)
onumber \ oldsymbol{v}^{(k+1)} = oldsymbol{\eta} \oslash \left(oldsymbol{K}^ opoldsymbol{u}^{(k+1)}
ight)$$

A RELATIONSHIP BETWEEN ARBITRARY POSITIVE MATRICES AND DOUBLY STOCHASTIC MATRICES

BY RICHARD SINKHORN

University of Houston

Annals of Mathematical Statistics 1964

Cone preserving nonlinear recursion: nonlinear Perron-Frobenius

Guaranteed linear convergence: contraction w.r.t. Hilbert metric

The $\boldsymbol{u}_{\mathrm{opt}}(\varepsilon), \boldsymbol{v}_{\mathrm{opt}}(\varepsilon)$ are called the Schrödinger potentials

Duality for unregularized OT

Primal LP

$$egin{aligned} &
ho_{ ext{opt}} = & rgmin_{
ho\geq 0} \int_{\mathcal{X} imes \mathcal{Y}} c(oldsymbol{x},oldsymbol{y})
ho(oldsymbol{x},oldsymbol{y}) \mathrm{d}oldsymbol{x} \mathrm{d}oldsymbol{y} \ & ext{subject to} \quad \int_{\mathcal{Y}}
ho(oldsymbol{x},oldsymbol{y}) \mathrm{d}oldsymbol{y} = oldsymbol{\xi}\left(oldsymbol{x}
ight) \ & ext{\int}_{\mathcal{X}}
ho(oldsymbol{x},oldsymbol{y}) \mathrm{d}oldsymbol{x} = \eta\left(oldsymbol{y}
ight) \end{aligned}$$

Dual LP

$$egin{aligned} & (lpha_{ ext{opt}}(m{x}),eta_{ ext{opt}}(m{y})) = rgmax & \int_{\mathcal{X}} lpha(m{x}) \xi(m{x}) \mathrm{d}m{x} + \int_{\mathcal{Y}} eta(m{y}) \eta(m{y}) \mathrm{d}m{y} \ & \mathrm{Subject to} & lpha(m{x}) + eta(m{y}) \leq c(m{x},m{y}) \end{aligned}$$

Strong duality for unregularized OT

Thm.

If \mathcal{X}, \mathcal{Y} are polish spaces, and the ground cost $c : \mathcal{X} \times \mathcal{Y} \mapsto \overline{\mathbb{R}}$ is lsc, then strong duality holds.

Furthermore,

•
$$\alpha_{\mathrm{opt}}(\boldsymbol{x}) + \beta_{\mathrm{opt}}(\boldsymbol{y}) = c(\boldsymbol{x}, \boldsymbol{y})$$
 for ho_{opt} a.e. $(\boldsymbol{x}, \boldsymbol{y})$

• $\alpha_{\rm opt}(\boldsymbol{x}), \beta_{\rm opt}(\boldsymbol{y})$ are *c*-conjugates of each other

$$eta_{ ext{opt}}(oldsymbol{y}) = lpha_{ ext{opt}}^c(oldsymbol{y}) := \inf_{oldsymbol{x} \in \mathcal{X}} igg\{ c(oldsymbol{x},oldsymbol{y}) - lpha_{ ext{opt}}(oldsymbol{x}) igg\}$$

OT Take #3: Brenier-Benamou Formulation

Stochastic control problem

$$\min_{(
ho, oldsymbol{u}) \in \mathcal{P} imes \mathcal{U}} \int_0^1 \int_{\mathcal{X}} rac{1}{2} \|oldsymbol{u}\|_2^2 \,
ho(t, oldsymbol{x}) \, \mathrm{d}oldsymbol{x} \, \mathrm{d}t$$

Y. Brenier J-D. Benamou 1999

$$\begin{array}{ll} \text{subject to} & \dot{\boldsymbol{x}} = \boldsymbol{u} \ \Leftrightarrow \ \frac{\partial \rho}{\partial t} + \nabla_{\boldsymbol{x}} \cdot (\rho \boldsymbol{u}) = 0 \\ & \rho(t = 0, \cdot) = \xi(\cdot), \quad \rho(t = 1, \cdot) = \eta(\cdot) \end{array} \end{array}$$

ລຸ

Thm.

$$oldsymbol{u}_{ ext{opt}}(t,oldsymbol{x}) =
abla_{oldsymbol{x}}\phi(t,oldsymbol{x})$$

where $\phi(t, \boldsymbol{x})$ solves the Hamilton-Jacobi-Bellman PDE

$$rac{\partial \phi}{\partial t} + rac{1}{2} \|
abla_{oldsymbol{x}} \phi \|_2^2 = 0$$

The ϕ is called **dynamic potential**

How are these 3 OT formulations related?

When ground cost c = 1/2 squared Euclidean distance,

optimal value of Take #1 = that of Take #2 = that of Take #3

This optimal value is the 1/2 **squared Wasserstein distance metric**

$$\frac{1}{2}W^{2}\left(\xi,\eta\right)$$

Wasserstein geodesic:

$$egin{aligned} &
ho_{ ext{opt}}(t,oldsymbol{x}) = rgmin_{
ho \geq 0} & \min_{
ho \geq 0, \int
ho = 1} \left\{ (1-t) W^2 \left(
ho, \xi
ight) + t W^2 \left(
ho, \eta
ight)
ight\}, & 0 \leq t \leq 1 \end{aligned}$$

Connections between Take #1 and Take #2

The OT plan $ho_{
m opt}$ is supported on the graph of the OT map $m{f}_{
m opt}$ under mild assumptions on problem data

Connections between Take #1 and Take #3

Nonlinear (displacement) interpolation between ξ and η : $ho_{
m opt}(t, oldsymbol{x}) = (oldsymbol{f}_t)_{\sharp} \, \xi, \quad 0 \leq t \leq 1$

where $f_t = (1 - t) \text{ Id} + t f_{\text{opt}}, \quad 0 \le t \le 1$

Connections between Take #1 and Take #3

Nonlinear (displacement) interpolation between ξ and η : $ho_{
m opt}(t, \boldsymbol{x}) = (\boldsymbol{f}_t)_{\sharp} \xi, \quad 0 \leq t \leq 1$

where
$$\boldsymbol{f}_t = (1-t) \operatorname{Id} + t \, \boldsymbol{f}_{\operatorname{opt}}, \quad 0 \leq t \leq 1$$

Relation between static potential ψ and dynamic potential ϕ : In Take #1: $\boldsymbol{f}_{\mathrm{opt}} = \nabla_{\boldsymbol{x}} \psi(\boldsymbol{x})$ In Take #3: $\boldsymbol{u}_{\mathrm{opt}}(t, \boldsymbol{x}) = \nabla_{\boldsymbol{x}} \phi(t, \boldsymbol{x})$

Hopf-Lax representation formula:

$$\begin{aligned}
\phi(t, \boldsymbol{x}) &= \min_{\boldsymbol{y}} \left\{ \phi_0(\boldsymbol{x}) + \frac{1}{2t} \|\boldsymbol{x} - \boldsymbol{y}\|_2^2 \right\}, \ 0 \leq t \leq 1 \\
\text{where } \phi_0(\boldsymbol{x}) &:= \psi(\boldsymbol{x}) - \frac{1}{2} \|\boldsymbol{x}\|_2^2 _{20}
\end{aligned}$$

Analytically Solvable OT Problems

Problem	OT value W^2	OT map $oldsymbol{f}_{ ext{opt}}$
1D OT with CDFs: F(x), G(y)	$\int_0^1 \left(F^{-1}(u) - G^{-1}(u) \right)^2 \mathrm{d} u$	$G\circ F^{-1}(oldsymbol{x})$
Multivariate normals: $\xi = \mathcal{N} (\boldsymbol{\mu}_x, \boldsymbol{\Sigma}_x)$ $\eta = \mathcal{N} (\boldsymbol{\mu}_y, \boldsymbol{\Sigma}_y)$	$egin{aligned} &\ oldsymbol{\mu}_x-oldsymbol{\mu}_y\ _2^2\ &+ ext{tr}\left(oldsymbol{\Sigma}_x+oldsymbol{\Sigma}_y-2ig(oldsymbol{\Sigma}_y^{rac{1}{2}}oldsymbol{\Sigma}_xoldsymbol{\Sigma}_y^{rac{1}{2}}ig)^{\!rac{1}{2}}ig) \end{aligned}$	$egin{aligned} oldsymbol{A}oldsymbol{x}+oldsymbol{b} \ ext{where} \ oldsymbol{A} &= oldsymbol{\Sigma}_y^{rac{1}{2}} \left(oldsymbol{\Sigma}_y^{rac{1}{2}} oldsymbol{\Sigma}_x oldsymbol{\Sigma}_y^{rac{1}{2}} ight)^{-rac{1}{2}} oldsymbol{\Sigma}_y^{rac{1}{2}} \ oldsymbol{b} &= oldsymbol{\mu}_y - oldsymbol{\mu}_x \end{aligned}$

$$\begin{aligned} \frac{\partial \mu}{\partial t} &= -\nabla^{W_2} F(\mu) := \nabla \cdot \left(\mu \nabla \frac{\delta F}{\delta \mu} \right) \\ & (\star) \end{aligned}$$
Wasserstein gradient

Transient solution of (\star) \checkmark Discrete time-stepping realizinggrad. descent of $\underset{\mu \in \mathcal{P}_2(\mathbb{R}^d)}{\operatorname{arg inf } F(\mu)}$

Wasserstein proximal recursion à la Jordan-Kinderlehrer-Otto (JKO) scheme

PDE solution as gradient descent on the metric space $(\mathcal{P}_2(\mathcal{X}), W)$

Gradient Flow in ${\mathcal X}$	Gradient Flow in $\mathcal{P}_2(\mathcal{X})$
$rac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = -\nabla \varphi(\boldsymbol{x}), \boldsymbol{x}(0) = \boldsymbol{x}_0$	$rac{\partial ho}{\partial t} = - abla^W \Phi(ho), ho(oldsymbol{x}, 0) = ho_0$
Recursion:	Recursion:
$oldsymbol{x}_k = oldsymbol{x}_{k-1} - h abla arphi(oldsymbol{x}_k)$	$ \rho_k = \rho(\cdot, t = kh) $
$= \underset{\boldsymbol{x} \in \mathcal{X}}{\arg\min} \left\{ \frac{1}{2} \ \boldsymbol{x} - \boldsymbol{x}_{k-1} \ _{2}^{2} + h\varphi(\boldsymbol{x}) \right\}$	$= \operatorname*{argmin}_{\rho \in \mathcal{P}_2(\mathcal{X})} \left\{ \frac{1}{2} W^2(\rho, \rho_{k-1}) + h \Phi(\rho) \right\}$
$=: \operatorname{prox}_{h\varphi}^{\ \cdot\ _2}(\boldsymbol{x}_{k-1})$	$=: \operatorname{prox}_{h\Phi}^{W^2}(\rho_{k-1})$
Convergence:	Convergence:
$\boldsymbol{x}_k ightarrow \boldsymbol{x}(t=kh)$ as $h\downarrow 0$	$ ho_k ightarrow ho(\cdot,t=kh) { m as} h\downarrow 0$
arphi as Lyapunov function:	Φ as Lyapunov functional:
$rac{\mathrm{d}}{\mathrm{d}t}arphi = - \parallel abla arphi \parallel_2^2 ~\leq ~ 0$	$rac{\mathrm{d}}{\mathrm{d}t}\Phi = -\mathbb{E}_{ ho}igg[\left\ abla rac{\delta \Phi}{\delta ho} ight\ _2^2 igg] \ \leq \ 0$

PDE	Free energy Φ	Specific instances
McKean-Vlasov- Fokker-Planck- Kolmogorov PDEs with gradient/mixed conservative- dissipative drift	$\mathbb{E}_{\rho} \begin{bmatrix} V + \beta^{-1} \log \rho + U * \rho \end{bmatrix}$ Potential energy Internal energy Nonlocal interaction energy	Fokker-Planck- Kolmogorov PDE Mean field dynamics: crowd, overparameterized neural networks
Nonlinear diffusion PDEs	$\mathbb{E}_{ ho}\left[rac{eta^{-1}}{m-1} ho^{m-1} ight]$	Power law diffusion with $\Delta ho^m,\ m>1$
Vlasov-Poisson- Fokker-Planck PDEs	$egin{aligned} \mathbb{E}_{ ho}\left[rac{\ v\ _2^2}{2} + U_0(x) + eta^{-1}\log ho ight] \ + rac{1}{2\lambda}\int\ E(t,x)\ _2^2\mathrm{d}x \end{aligned}$	Plasma dynamics Astrophysics Bacterial chemotaxis

Caveat Emptor

Potentials galore:

- static (Monge) OT potential $\psi(\boldsymbol{x})$
- dynamic (Brenier-Benamou) OT potential $\phi(t, \boldsymbol{x})$
- static Kantorovich (dual) potentials $\alpha_{\text{opt}}(\boldsymbol{x}), \beta_{\text{opt}}(\boldsymbol{y})$
- static Schrödinger (regularized dual) potentials $m{u}_{
 m opt}(arepsilon),m{v}_{
 m opt}(arepsilon)$

OT References

Filippo Santambrogio Optimal Transport for Applied Mathematicians

Calculus of Variations, PDEs, and Modeling

🕅 Birkhäuser

Thank You