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Motivation: Mars Entry-Descent-Landing

Gale Crater (4.49S, 137.42E)

Figure 3. Relevant test and flight experience of supersonic
Disk-Gap-Band parachutes in the region of MSL parachute
deployment (shaded region).

algorithm. To minimize the parachute deploy footprint, the
parachute was to be deployed on a command from the en-
try guidance when the estimated range-to-go to the target
was minimized [7]. As an additional safety measure, the
Smart Chute algorithm also included navigated velocity lim-
its. These limits were used in order to protect the parachute
against either excessively high dynamic pressures or exces-
sively low deployment altitudes [2]. Above the high veloc-
ity set-point, parachute deploy was inhibited. Below the low
velocity limit, parachute deploy was triggered, regardless of
range-to-go.

Eventually, the Smart Chute range trigger was dropped from
the MSL baseline in-favor of a velocity trigger. The rationale
for this decision was to maximize the altitude performance
of the system, which was being strained at that time by rapid
mass growth of the rover and a very challenging altitude re-
quirement for demonstrating the capability to land as high as
+2.0 km above the MOLA reference areoid. It was argued
at the time, that due the monotonically decreasing altitude
and velocity just prior to parachute deploy, the upper velocity
limit of the Smart Chute represented the earliest, and there-
fore highest, deployment condition that was considered safe.
Replacing the Smart Chute trigger with a pure velocity trig-
ger, operated at the same set-point as the upper velocity limit,
would maximize the parachute deploy altitude, while main-
taining the same level of risk to the parachute.

Study Motivation

As stated, the switch from a range trigger to a velocity trigger
had been argued for the maximization of parachute deploy
altitude. Though the project would eventually receive some
relief from the +2.0 km altitude requirement, a premium on
altitude performance existed for quite some time. Concur-
rently, however, the project had initiated a series of Landing
Site Workshops, open to the scientific community, for the pur-

Table 1. MSL Candidate Landing Sites

Site Lat. Lon. Elevation

Name (deg) (deg) (km)

Mawrth Valis 24.01oN 341.03oE -2.25

Gale Crater 4.49oS 137.42oE -4.45

Eberswalde Crater 23.86oS 326.73oE -1.45

Holden Crater 26.37oS 325.10oE -1.94

pose of proposing and selecting possible landing sites. While
many sites were initially proposed at the first of these work-
shops, the outcome of the 4th Landing Site Workshop in 2008
was a list of four candidate sites, listed in Table 1. Of the
four final sites, Eberswalde Crater has the highest elevation
at -1.45 km MOLA, which is significantly below the altitude
capability of the system (estimated to be somewhere around
0 km MOLA). These lower site altitudes have improved EDL
timeline margins significantly compared to the time when the
parachute deploy trigger was changed. In light of this reduced
premium on altitude, this study sought to re-evaluate the mer-
its of a range trigger relative to the baseline velocity trigger.

2. MONTE CARLO RESULTS

A side-by-side comparison of a range trigger and velocity
trigger was conducted for MSL. The purpose of this com-
parison was to evaluate the relative performance of the range
trigger relative to the baseline velocity trigger. A single hy-
brid velocity-range trigger was developed that is capable of
emulating either velocity or range triggers by appropriate
choice of parameters. This trigger works by specifying a lin-
ear switching curve in velocity-range space. The algorithm
triggers parachute deploy when the velocity drops below the
switching curve for the given range to target. A horizontal
switching curve, therefore, produces a pure velocity trigger,
while a vertical switching curve, on the other hand, produces
a pure range trigger.

For each trigger a 6-DoF Monte Carlo analysis was per-
formed using the 08-GAL-06 MSL POST2 end-to-end EDL
performance simulation. The two triggers were each indepen-
dently tuned to produce the same nominal parachute deploy at
Mach 2.0, as was the standard project procedure for running
Monte Carlos. It was expected that the results would show
a smaller parachute deploy footprint for the range trigger at
the expense of reduced altitude performance and increased
deploy Mach number.

Figure 4 shows the expected reduction in the 99.5%-tile foot-
print ellipse. In this case, the ellipse was reduced from 16.7
by 7.5 km for the velocity trigger to 7.7 by 4.1 km for the
range trigger, a 75% reduction in area. However, the expected
altitude loss and Mach increase were not observed.

Table 2 contains a summary of Monte Carlo results for the
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Figure 2. Mars Science Laboratory DGB parachute under-
going full-scale wind-tunnel testing.

deliver such a large and capable rover safely to a scientifi-
cally compelling site, which is rich in minerals likely to trap
and preserve biomarkers, presents a myriad of engineering
challenges. Not only is the payload mass significantly larger
than all previous Mars missions, the delivery accuracy and
terrain requirements are also more stringent. In August of
2012, MSL will enter the Martian atmosphere with the largest
aeroshell ever flown to Mars, fly the first guided lifting entry
at Mars, generate a higher hypersonic lift-to-drag ratio than
any previous Mars mission, and decelerate behind the largest
supersonic parachute ever deployed at Mars. The MSL EDL
system will also, for the first time ever, softly land Curiosity
directly on her wheels, ready to explore the planet’s surface.

Parachute Decelerators for Mars

Since the first Viking landing in 1976, the super-sonic deploy-
ment of a parachute has been a critical event in all Mars EDL
systems. This is because at Mars, due to the planet’s thin
atmosphere, only entry systems with ballistic coefficients be-
low about 50 kg/m2 have the ability to deliver payloads to
subsonic terminal velocities [1]. For MSL, a blunt aeroshell,
with a ballistic coefficient of approximately 140 kg/m2, is
first used to slow the vehicle from hypersonic entry veloci-
ties as high as 6 km/s down to low super-sonic speeds, near
400 m/s. At that point, the 21.5 m diameter Disk-Gap-Band
Parachute Decelerator System (PDS), shown in Figure 2, is
then used to reduce the ballistic coefficient to approximately
15 kg/m2. The parachute continues slowing the vehicle be-
low Mach 1 to a sub-sonic terminal velocity of approximately
100 m/s.

Because of the importance of the parachute deployment
event, parachute failure is a key risk considered in Mars EDL
system design. Higher Mach numbers and dynamic pres-
sure during parachute inflation put the parachute at a higher
risk of failure due to three factors: (1) higher dynamic pres-
sures result in higher structural loads on the parachute; (2)

higher Mach numbers result in increased aerothermal heating
of parachute structure, which can reduce material strength;
and (3) at Mach numbers above Mach 1.5, DGB parachutes
exhibit an instability, known as areal oscillations, which re-
sult in multiple partial collapses and violent re-inflations.
The chief concern with high Mach number deployments, for
parachute deployments in regions where the heating is not a
driving factor, is therefore, the increased exposure to areal
oscillations.

The Viking parachute system was qualified to deploy between
Mach 1.4 and 2.1, and a dynamic pressure between 250 and
700 Pa [1]. However, Mach 2.1 is not a hard limit for suc-
cessfully operating DBG parachutes at Mars and there is very
little flight test data above Mach 2.1 with which to quantify
the amount of increased EDL system risk. Figure 3 shows
the relevant flight tests and flight experience in the region of
the planned MSL parachute deploy. While parachute experts
agree that higher Mach numbers result in a higher probabil-
ity of failure, they have different opinions on where the limit
should be placed. For example, Gillis [5] has proposed an up-
per bound of Mach 2 for parachute aerodynamic decelerators
at Mars. However, Cruz [3] places the upper Mach number
range somewhere between two and three.

This presents a challenge for EDL system designers, who
must then weigh the system performance gains and risks as-
sociated with deploying the parachute earlier, at both higher
altitudes and Mach numbers, against a very real, but not well
quantified, probability of parachute failure. It is clear that
deploying a DGB at Mach 2.5 or 3.0 represents a significant
increase in risk over an inflation at Mach 2.0. However, it is
not clear how much additional risk is encumbered by deploy-
ing the parachute at 2.25 instead of 2.05. This is especially
true for Mars EDL in light of the extremely large uncertainties
in the flight environment, especially atmospheric density and
winds, that result in very large uncertainties in Mach number.

Parachute Deployment Algorithms

Previous missions have utilized various methods for trigger-
ing parachute deployment. Though the parachute qualifica-
tion has been stated in terms of Mach number and dynamic
pressure, no previous mission has had the ability to directly
measure either of these quantities. Therefore, all missions
have had to rely on proxy measurements of other states in or-
der to infer whether or not conditions were safe for deploying
the parachute. Viking used a radar altimeter measurement to
trigger this critical event [6]. Mars Pathfinder [8] and MER
[4] both used triggers based on sensed-acceleration measure-
ments, provided by the on-board Inertial Measurement Unit
(IMU), to proxy dynamic pressure, though their algorithms
differed. Mars Phoenix Lander, on the other hand, used a
navigated velocity trigger to proxy Mach number.

When originally proposed, MSL (known then as Mars Smart
Lander) featured a range trigger as part of the Apollo-heritage
entry guidance system, often referred to as the Smart Chute
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Gradient Descent in Finite Dimensions

Problem: minimize
x∈Rn

φ(x)

Algorithm: xk = xk−1 − h∇φ(xk−1)

Advantage:
- is a descent method: φ(xk) ≤ φ(xk−1)

- convergence under very few assumptions

- simple first order method

- can account constraints (projected gradient
descent)
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Why does gradient descent work?

−∇φ(x) is the max-rate descending direction (why?)



Rate of Convergence for Gradient Descent

If then

φ is (1
h)-smooth O( 1

kh)

(⇔ ∇φ is 1
h Lipschitz)

φ is (1
h)-smooth O(1

h exp
(
−hσ

2 k
)
)

AND σ-strongly convex



Gradient Descent! Gradient Flow

- GD is Euler discretization of GF

dx
dt

= −∇φ(x), x ∈ Rn

- Rate matching:

GD rate O( 1
kh) when φ is (1

h)-smooth

GF rate O(1
t ) when φ is convex



Gradient Descent! Proximal Operator

xk = xk−1− h∇φ(xk−1)
m

xk = proximal‖·‖hφ (xk−1)

:= argmin
x∈Rn

{1
2‖x− xk−1‖2 + hφ(x)}

This is nice because

- argmin of φ ≡ fixed point of prox. operator

- prox. is smooth even when φ is not

-
reveals metric structure of gradient descent
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Gradient Descent in Infinite Dimensions

D

Proximal recursion: ρk = arginf
ρ∈D

{ 1
2 d2(ρ, ρk−1)+ hΦ(ρ)}



Gradient Descent Summary

Finite dimensions

dx
dt

= −∇φ(x), x ∈ Rn

xk(h) = xk−1 − h∇φ(xk−1)

= argmin
x
{ 1

2‖x− xk−1‖2 +hφ(x)}

= proximal‖·‖hφ (xk−1)

xk(h)→ x(t=kh), as h ↓ 0

Infinite dimensions

∂ρ

∂t
=L(x, ρ), x∈Rn, ρ∈D

ρk(x, h)

= argmin
ρ
{ 1

2 d(ρ, ρk−1)
2 + hΦ(ρ)}

= proximald(·,·)
hΦ (ρk−1)

ρk(x, h)⇀ρ(x, t=kh), as h↓0



Related Work

Transport PDE ∂ρ
∂t = L(x, ρ) Gradient descent scheme

L(x, ρ) 1
2 d2(ρ, ρk−1) Φ(ρ)

4ρ 1
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L2(Rn)
1
2
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Heat equation (1822) Squared L2 norm of difference Dirichlet energy, CFL (1928)

∇ · (∇U(x)ρ) + β−14ρ 1
2 W2(ρ, ρk−1) Eρ

[
U(x) + β−1 log ρ

]

Fokker-Planck-Kolmogorov PDE (1914,’17,’31) Optimal transport cost Free energy, JKO (1998)

((
h−Eρ[h]

)>R−1(dz−Eρ[h]dt
))

ρ DKL(ρ||ρk−1)
1
2 Eρ

[
(yk−h)>R−1(yk−h)

]

Kushner-Stratonovich SPDE (1964,’59) Kullback-Leibler divergence Quadratic surprise, LMMR (2015)
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Process dynamics is stochastic gradient flow:

dx(t) = −∇U(x) dt +
√

2β−1dw(t), ρ∞(x) ∝

Gibbs density

e−βU(x)
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No process dynamics, only measurement update:

dx(t) = 0, dz(t) = h(x, t) dt + dv(t), dv(t) ∼ N (0, Rdt)



Our Contribution: Theory

Transport description Gradient descent scheme

PDE/SDE/ODE 1
2 d2(ρ, ρk−1) Φ(ρ)

Mean ODE, Lyapunov ODE 1
2 W2(ρ, ρk−1) Eρ

[
U(x, t)+ tr(P∞)

n log ρ
]

Linear Gaussian uncertainty propagation Optimal transport cost Generalized free energy

Conditional mean SDE, Riccati ODE DKL(ρ||ρk−1)
1
2 Eρ

[
(yk−h)>R−1(yk−h)

]

Kalman-Bucy filter Kullback-Leibler divergence Quadratic surprise

ditto 1
2 d2

FR(ρ, ρk−1) ditto

Fisher-Rao metric

Kushner-Stratonovich SPDE ditto ditto

Nonlinear filter Fisher-Rao metric



The Case for Linear Gaussian Systems

Model:
dx(t) = Ax(t)dt + Bdw(t), dw(t) ∼ N (0, Qdt)

dz(t) = Cx(t)dt + dv(t), dv(t) ∼ N (0, Rdt)

Given x(0)∼N (µ0, P0), want to recover:

For uncertainty propagation:

µ̇ = Aµ, µ(0) = µ0; Ṗ = AP + PA> + BQB>, P(0) = P0.

For filtering:

dµ+(t) = Aµ+(t)dt+

P+CR−1

K(t) (dz(t)−Cµ+(t)dt),

Ṗ+(t)=AP+(t) + P+(t)A> + BQB> −K(t)RK(t)>.



The Case for Linear Gaussian Systems

Challenge 1:

How to actually perform the infinite di-
mensional optimization over D2?

Challenge 2:

If and how one can apply the variational
schemes for generic linear system with
Hurwitz A and controllable (A, B)?



Addressing Challenge 1: How to Compute

Two Step Optimization Strategy

– Notice that the objective is a sum:

arginf
ρ∈D2

{

first
functional

1
2

d(ρ, ρk−1)
2 +

second
functional

hΦ(ρ) }

– Choose a parametrized subspace of D2 such that
the individual minimizers over that subspace match

– Then optimize over parameters

– Dµ,P ⊂ D2 works!



Addressing Challenge 2: Generic (A,
√

2B)

Two Successive Coordinate Transformations

#1. Equipartition of energy:

– Define thermodynamic temperature θ := 1
n tr(P∞),

and inverse temperature β := θ−1

– State vector: x 7→ xep :=
√

θP−
1
2

∞ x
– System matrices:

A,
√

2B 7→

Aep

P−
1
2

∞ AP
1
2
∞ ,
√

2θ

Bep

P−
1
2

∞ B
– Stationary covariance:

P∞ 7→ θI



Addressing Challenge 2: Generic (A,
√

2B)

Two Successive Coordinate Transformations

#2. Symmetrization:

– State vector: xep 7→ xsym := e−Askew
ep txep

– System matrices:

Aep,
√

2θBep 7→

F(t)

e−Askew
ep tAsym

ep eAskew
ep t ,
√

2θ

G(t)

e−Askew
ep tBep

– Stationary covariance:
θI 7→ θI

– Potential: U(xsym, t) := −1
2x>symF(t)xsym ≥ 0



Our Contribution: Algorithm

Uncertainty propagation via point clouds

No spatial discretization or function approximation



Proximal Propagation: 1D Linear Gaussian



Proximal Propagation: 2D Linear Gaussian



Proximal Propagation: Nonlinear non-Gaussian



Computational Time: Nonlinear non-Gaussian
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Physical time tk = kh (seconds)
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Non-trivial Discrete Optimization Problem

ρk = argmin
ρ

{
min

M∈Π(ρk−1,ρ)

1
2〈Ck, M〉+ h 〈Uk−1 +

β−1 log ρ, ρ〉
}

Drift potential vector: Uk−1 := U
(
xi

k−1

)
, i = 1, ..., N,

Euclidean distance matrix: Ck :=‖ xi
k − xj

k−1 ‖2
2

M ∈ Π(ρk−1, ρ) ⇔ M ≥ 0, M1 = ρk−1, M>1 = ρ



Regularize-then-dualize

ρk = argmin
ρ

{
min

M∈Π(ρk−1,ρ)

1
2〈Ck, M〉+ ε〈M, log M〉 +

h 〈Uk−1 + β−1 log ρ, ρ〉
}

Theorem: Consider the following recur-
sion on the cone Rn

>0×Rn
>0 :

y� (Γkz) = ρk−1,
z�

(
Γ>k y

)
= ξk−1� z−

βε
h .

Its solution (yopt, zopt) gives the proximal
update ρk = zopt�

(
Γ>k yopt

)
.



Algorithmic Setup

D2. Then, the idea is to design the metric d(·, ·) and the
functional �(·) in (3) such that %k(x) ! ⇢(x, t = kh) as
h # 0, i.e., in the small time-step limit, the solution of the
variational recursion (3) converges (in strong L1 sense) to
that of (1). The main result in [17] was to show that for FPK
operators of the form (2) with f being a gradient vector field
and g being a scalar multiple of identity matrix, the distance
d(·, ·) can be taken as the Wasserstein-2 metric with �(·) as
the free energy functional. We will make these ideas precise
in Section II and III. The resulting variational recursion (3)
has since been known as the Jordan-Kinderlehrer-Otto (JKO)
scheme [18], and we will refer the FPK operator with such
assumptions on f and g to be in “JKO canonical form”.
Similar gradient descent schemes have been derived for many
other PDEs; see e.g., [19] for a recent survey.

To motivate gradient descent in infinite dimensional
spaces, we appeal to a more familiar setting, i.e., gradient
descent in Rn associated with the flow

dx

dt
= �r' (x) x(0) = x0, (4)

where x, x0 2 Rn and ' : Rn ! R�0, and is continuously
differentiable. The Euler discretization for (4) is given by

xk � xk�1 = �hr'(xk�1), (5)

which can be rewritten as a variational recursion

xk = arg min
x

1

2
k x� xk�1 k2 +h '(x) + o(h). (6)

In the optimization literature, the mapping xk�1 7! xk,
given by

prox
k·k
h'(xk�1) := arg min

x

1

2
k x� xk�1 k2 +h '(x), (7)

is called the “proximal operator” [20, p. 142]. The sequence
{xk} generated by the proximal recursion

xk = prox
k·k
h'(xk�1), k = 0, 1, 2, . . . (8)

converges to the flow of the ODE (4), i.e., the sequence
satisfies xk ! x(t = kh) as the step-size h # 0. Using the
finite dimensional viewpoint (7), we define

proxd2

h�(%k�1) := arg inf
%2D2

1

2
d2 (%, %k�1) + h �(%), (9)

as an infinite dimensional proximal operator. As mentioned
above, the sequence {%k} generated by the proximal re-
cursion (3) converges to the flow of the PDE (4), i.e., the
sequence satisfies %k(x) ! ⇢(x, t = kh) as the step-size
h # 0. We also note that in the finite dimensional case,

d

dt
' = hr',�r'i = � k r' k2< 0 (10)

which implies ' decays along the flow of (4). As we will see
next, the appeal of using (3) to solve the FPK PDE comes
from the fact that the Euclidean gradient descent can be
generalized to the manifold D2 by appropriately choosing
the metric d(·, ·) and the functional �(·) in (3), in parallel
with the quantities k · k and '(·) in (8), respectively.

Fig. 1: The JKO scheme can be described by successive evaluation
of proximal operators to recursively update PDFs from time t =
(k � 1)h to t = kh for k = 1, 2, . . ., and time-step h > 0.

In this paper, we will develop an algorithm to solve the
FPK PDE via proximal recursion of the form (3) without
making any spatial discretization. A schematic is shown in
Fig. 1. The resulting recursion is proved to be contractive and
enjoy fast numerical implementation. Numerical simulation
results show the efficacy of the proposed formulation.

II. PRELIMINARIES

In the following, we provide the definitions of the
Kullback-Leibler divergence, and the 2-Waserstein metric,
which will be useful in the sequel. We also point out some
notations used throughout this paper.

Definition 1: The Kullback-Leibler divergence between
two probability measures d⇡i(x) = ⇢i(x)dx, i = {1, 2},
is given by

DKL (d⇡1 k d⇡2) :=

Z
⇢1(x) log

⇢1(x)

⇢2(x)
dx, (11)

which is non-negative, and vanishes if and only if ⇢1 = ⇢2.
However, (11) is not a metric since it is neither symmetric,
nor does it satisfy the triangle inequality.

Definition 2: The 2-Wasserstein metric between two prob-
ability measures d⇡1(x) = ⇢1(x)dx and d⇡2(y) = ⇢2(y)dy
supported respectively on X , Y ✓ Rn, is denoted as
W (⇡1,⇡2) (equivalently, W (⇢1, ⇢2) whenever ⇡1,⇡2 are
absolutely continuous so that the PDFs ⇢1, ⇢2 exist, and
arises in the theory of optimal mass transport [16]; it is
defined as

W (⇡1,⇡2) :=
✓

inf
d⇡2⇧(⇡1,⇡2)

Z

X⇥Y
k x� y k22 d⇡ (x, y)

◆ 1
2

, (12)

where ⇧ (⇡1,⇡2) denotes the collection of all probability
measures on the product space X ⇥ Y having finite second
moments, with marginals ⇡1 and ⇡2, respectively. Its square,
W 2(⇡1,⇡2) equals [21] the minimum amount of work re-
quired to transport ⇡1 to ⇡2 (or equivalently, ⇢1 to ⇢2). It is
well-known [16, Ch. 7] that W (⇡1,⇡2) defines a metric on
the manifold D2.

Notations: Throughout the paper, we will use bold-faced
capital letters for matrices and bold-faced lower-case letters
for column vectors. We use the symbol h·, ·i to denote the Eu-
clidean inner product. In particular, hA, Bi := trace(A>B)

D2. Then, the idea is to design the metric d(·, ·) and the
functional �(·) in (3) such that %k(x) ! ⇢(x, t = kh) as
h # 0, i.e., in the small time-step limit, the solution of the
variational recursion (3) converges (in strong L1 sense) to
that of (1). The main result in [17] was to show that for FPK
operators of the form (2) with f being a gradient vector field
and g being a scalar multiple of identity matrix, the distance
d(·, ·) can be taken as the Wasserstein-2 metric with �(·) as
the free energy functional. We will make these ideas precise
in Section II and III. The resulting variational recursion (3)
has since been known as the Jordan-Kinderlehrer-Otto (JKO)
scheme [18], and we will refer the FPK operator with such
assumptions on f and g to be in “JKO canonical form”.
Similar gradient descent schemes have been derived for many
other PDEs; see e.g., [19] for a recent survey.

To motivate gradient descent in infinite dimensional
spaces, we appeal to a more familiar setting, i.e., gradient
descent in Rn associated with the flow

dx

dt
= �r' (x) x(0) = x0, (4)

where x, x0 2 Rn and ' : Rn ! R�0, and is continuously
differentiable. The Euler discretization for (4) is given by

xk � xk�1 = �hr'(xk�1), (5)

which can be rewritten as a variational recursion

xk = arg min
x

1

2
k x� xk�1 k2 +h '(x) + o(h). (6)

In the optimization literature, the mapping xk�1 7! xk,
given by

prox
k·k
h'(xk�1) := arg min

x

1

2
k x� xk�1 k2 +h '(x), (7)

is called the “proximal operator” [20, p. 142]. The sequence
{xk} generated by the proximal recursion

xk = prox
k·k
h'(xk�1), k = 0, 1, 2, . . . (8)

converges to the flow of the ODE (4), i.e., the sequence
satisfies xk ! x(t = kh) as the step-size h # 0. Using the
finite dimensional viewpoint (7), we define

proxd2

h�(%k�1) := arg inf
%2D2

1

2
d2 (%, %k�1) + h �(%), (9)

as an infinite dimensional proximal operator. As mentioned
above, the sequence {%k} generated by the proximal re-
cursion (3) converges to the flow of the PDE (4), i.e., the
sequence satisfies %k(x) ! ⇢(x, t = kh) as the step-size
h # 0. We also note that in the finite dimensional case,

d

dt
' = hr',�r'i = � k r' k2< 0 (10)

which implies ' decays along the flow of (4). As we will see
next, the appeal of using (3) to solve the FPK PDE comes
from the fact that the Euclidean gradient descent can be
generalized to the manifold D2 by appropriately choosing
the metric d(·, ·) and the functional �(·) in (3), in parallel
with the quantities k · k and '(·) in (8), respectively.

Fig. 1: The JKO scheme can be described by successive evaluation
of proximal operators to recursively update PDFs from time t =
(k � 1)h to t = kh for k = 1, 2, . . ., and time-step h > 0.

In this paper, we will develop an algorithm to solve the
FPK PDE via proximal recursion of the form (3) without
making any spatial discretization. A schematic is shown in
Fig. 1. The resulting recursion is proved to be contractive and
enjoy fast numerical implementation. Numerical simulation
results show the efficacy of the proposed formulation.

II. PRELIMINARIES

In the following, we provide the definitions of the
Kullback-Leibler divergence, and the 2-Waserstein metric,
which will be useful in the sequel. We also point out some
notations used throughout this paper.

Definition 1: The Kullback-Leibler divergence between
two probability measures d⇡i(x) = ⇢i(x)dx, i = {1, 2},
is given by

DKL (d⇡1 k d⇡2) :=

Z
⇢1(x) log

⇢1(x)

⇢2(x)
dx, (11)

which is non-negative, and vanishes if and only if ⇢1 = ⇢2.
However, (11) is not a metric since it is neither symmetric,
nor does it satisfy the triangle inequality.

Definition 2: The 2-Wasserstein metric between two prob-
ability measures d⇡1(x) = ⇢1(x)dx and d⇡2(y) = ⇢2(y)dy
supported respectively on X , Y ✓ Rn, is denoted as
W (⇡1,⇡2) (equivalently, W (⇢1, ⇢2) whenever ⇡1,⇡2 are
absolutely continuous so that the PDFs ⇢1, ⇢2 exist, and
arises in the theory of optimal mass transport [16]; it is
defined as

W (⇡1,⇡2) :=
✓

inf
d⇡2⇧(⇡1,⇡2)

Z

X⇥Y
k x� y k22 d⇡ (x, y)

◆ 1
2

, (12)

where ⇧ (⇡1,⇡2) denotes the collection of all probability
measures on the product space X ⇥ Y having finite second
moments, with marginals ⇡1 and ⇡2, respectively. Its square,
W 2(⇡1,⇡2) equals [21] the minimum amount of work re-
quired to transport ⇡1 to ⇡2 (or equivalently, ⇢1 to ⇢2). It is
well-known [16, Ch. 7] that W (⇡1,⇡2) defines a metric on
the manifold D2.

Notations: Throughout the paper, we will use bold-faced
capital letters for matrices and bold-faced lower-case letters
for column vectors. We use the symbol h·, ·i to denote the Eu-
clidean inner product. In particular, hA, Bi := trace(A>B)

Theorem: Block co-ordinate iteration of (y, z) recur-
sion is contractive on Rn

>0 ×Rn
>0.



Extensions: interacting particles

PDF dependent sample path dynamics:
dx = − (∇U (x) +∇ρ ∗V)dt +

√
2β−1 dw

Mckean-Vlasov-Fokker-Planck-
Kolmogorov integro PDE:
∂ρ

∂t
= ∇ · (ρ∇ (U + ρ ∗V)) + β−1∆ρ

Free energy:
F(ρ) := Eρ

[
U + β−1ρ log ρ + ρ ∗V

]



Extensions: interacting particles (contd.)
U(·) = V(·) =‖ · ‖2
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Extensions: multiplicative noise
Cox-Ingersoll-Ross: dx = a (θ − x) dt + b

√
x dw, 2a>b2, θ>0
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Gradient Descent with Constraints

minimize
x∈C

φ(x)

m
xk = projC (xk−1− h∇φ(xk−1))

m

xk = proximal‖·‖hφ (xk−1)

:= argmin
x∈C

{1
2‖x− xk−1‖2 + hφ(x)}


