Gradient Flows in Uncertainty Propagation and Filtering

Abhishek Halder

Department of Applied Mathematics University of California, Santa Cruz Santa Cruz, CA 95064

Joint work with Kenneth F. Caluya (UC Santa Cruz) and Tryphon T. Georgiou (UC Irvine)

Motivation: Mars Entry-Descent-Landing

Motivation: Mars Entry-Descent-Landing

Large number of uncertain scenarios ~> Probability density

Motivation: Mars Entry-Descent-Landing

Supersonic parachute

Gale Crater (4.49S, 137.42E)

Problem: Uncertainty Propagation

Problem: Uncertainty Propagation

Trajectory flow:

 $d\mathbf{X}(t) = \mathbf{f}(\mathbf{X}, t) dt + \mathbf{g}(\mathbf{X}, t) d\mathbf{w}(t), \quad d\mathbf{w}(t) \sim \mathcal{N}(0, \mathbf{Q} dt)$

Problem: Uncertainty Propagation

Trajectory flow: $d\mathbf{x}(t) = \mathbf{f}(\mathbf{x}, t) dt + \mathbf{g}(\mathbf{x}, t) d\mathbf{w}(t), \quad d\mathbf{w}(t) \sim \mathcal{N}(0, \mathbf{Q} dt)$ Density flow: $\frac{\partial \rho}{\partial t} = \mathcal{L}_{\text{FP}}(\rho) := -\nabla \cdot (\rho \mathbf{f}) + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^2}{\partial x_i \partial x_j} \left(\left(\mathbf{g} \mathbf{Q} \mathbf{g}^{\mathsf{T}} \right)_{ij} \rho \right)$

Problem: Filtering

Problem: Filtering

Trajectory flow:

 $\begin{aligned} \mathbf{d}\mathbf{X}(t) &= \mathbf{f}(\mathbf{X},t) \, \mathbf{d}t + \mathbf{g}(\mathbf{X},t) \, \mathbf{d}\mathbf{w}(t), \quad \mathbf{d}\mathbf{w}(t) \sim \mathcal{N}(0,\mathbf{Q}\mathbf{d}t) \\ \mathbf{d}\mathbf{Z}(t) &= \mathbf{h}(\mathbf{X},t) \, \mathbf{d}t + \mathbf{d}\mathbf{v}(t), \qquad \mathbf{d}\mathbf{v}(t) \sim \mathcal{N}(0,\mathbf{R}\mathbf{d}t) \end{aligned}$

Problem: Filtering

Trajectory flow:

$$\begin{aligned} \mathbf{d}\mathbf{X}(t) &= \mathbf{f}(\mathbf{X},t) \, \mathrm{d}t + \mathbf{g}(\mathbf{X},t) \, \mathrm{d}\mathbf{w}(t), \quad \mathbf{d}\mathbf{w}(t) \sim \mathcal{N}(0,\mathbf{Q}\mathrm{d}t) \\ \mathbf{d}\mathbf{Z}(t) &= \mathbf{h}(\mathbf{X},t) \, \mathrm{d}t + \mathbf{d}\mathbf{v}(t), \qquad \mathbf{d}\mathbf{v}(t) \sim \mathcal{N}(0,\mathbf{R}\mathrm{d}t) \end{aligned}$$

Density flow:

$$d\rho^{+} = \left[\mathcal{L}_{FP} dt + (\mathbf{h}(\mathbf{x}, t) - \mathbb{E}_{\rho^{+}} \{\mathbf{h}(\mathbf{x}, t)\}^{\mathsf{T}} \mathbf{R}^{-1} (d\mathbf{z}(t) - \mathbb{E}_{\rho^{+}} \{\mathbf{h}(\mathbf{x}, t)\} dt) \right] \rho^{+}$$

Research Scope

Density flow ~> gradient descent in infinite dimensions

Gradient Descent in Finite Dimensions

Gradient Descent in Finite Dimensions

Advantage:

- is a descent method: $\phi(\mathbf{x}_k) \leq \phi(\mathbf{x}_{k-1})$
- convergence under very few assumptions
- simple first order method
- can account constraints (projected gradient descent)

Why does gradient descent work?

Rate of Convergence for Gradient Descent

If	then
ϕ is $(\frac{1}{h})$ -smooth	$O(\frac{1}{kh})$
($\Leftrightarrow \nabla \phi$ is $\frac{1}{h}$ Lipschitz)	
ϕ is $(\frac{1}{h})$ -smooth	$O(\frac{1}{h}\exp\left(-\frac{h\sigma}{2}k\right))$
AND σ -strongly convex	

Gradient Descent *web* **Gradient Flow**

- GD is **Euler discretization** of GF

$$rac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = -
abla \phi(\mathbf{x}), \, \mathbf{x} \in \mathbb{R}^n$$

- Rate matching:

GD rate $O(\frac{1}{kh})$ when ϕ is $(\frac{1}{h})$ -smooth GF rate $O(\frac{1}{t})$ when ϕ is convex

Gradient Descent Arrow Proximal Operator

$$\begin{split} \mathbf{x}_{k} &= \mathbf{x}_{k-1} - h \nabla \phi(\mathbf{x}_{k-1}) \\ & \updownarrow \\ \mathbf{x}_{k} &= \operatorname{proximal}_{h\phi}^{\|\cdot\|} (\mathbf{x}_{k-1}) \\ & \coloneqq \operatorname*{argmin}_{\mathbf{x} \in \mathbb{R}^{n}} \left\{ \frac{1}{2} \|\mathbf{x} - \mathbf{x}_{k-1}\|^{2} + h \phi(\mathbf{x}) \right\} \end{split}$$

Gradient Descent Arrow Proximal Operator

$$\begin{aligned} \mathbf{x}_{k} &= \mathbf{x}_{k-1} - h \nabla \phi(\mathbf{x}_{k-1}) \\ & \updownarrow \end{aligned}$$
$$\mathbf{x}_{k} &= \operatorname{proximal}_{h\phi}^{\|\cdot\|} (\mathbf{x}_{k-1}) \\ & := \operatorname*{argmin}_{\mathbf{x} \in \mathbb{R}^{n}} \left\{ \frac{1}{2} \| \mathbf{x} - \mathbf{x}_{k-1} \|^{2} + h \phi(\mathbf{x}) \right\}$$

This is nice because

- argmin of $\phi \equiv$ fixed point of prox. operator
- prox. is smooth even when ϕ is not

reveals metric structure of gradient descent

Gradient Descent in Infinite Dimensions

Gradient Descent Summary

Finite dimensions

 $\boxed{\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = -\nabla\phi(\mathbf{x}), \ \mathbf{x} \in \mathbb{R}^n}$

$$\mathbf{x}_k(h) = \mathbf{x}_{k-1} - h\nabla\phi(\mathbf{x}_{k-1})$$

$$= \underset{\mathbf{x}}{\operatorname{argmin}} \{ \frac{1}{2} \| \mathbf{x} - \mathbf{x}_{k-1} \|^2 + h\phi(\mathbf{x}) \}$$

 $= \operatorname{proximal}_{h\phi}^{\|\cdot\|}(\mathbf{x}_{k-1})$

 $\mathbf{x}_k(h) \rightarrow \mathbf{x}(t = kh)$, as $h \downarrow 0$

Infinite dimensions

$$\left[\frac{\partial\rho}{\partial t} = \mathcal{L}(\mathbf{x},\rho), \ \mathbf{x} \in \mathbb{R}^n, \ \rho \in \mathscr{D}\right]$$

 $\rho_k(\mathbf{x},h)$

 $= \underset{\rho}{\operatorname{argmin}} \{ \frac{1}{2} d(\rho, \rho_{k-1})^2 + h \Phi(\rho) \}$

 $= \operatorname{proximal}_{h\Phi}^{d(\cdot,\cdot)}(\rho_{k-1})$

$$\rho_k(\mathbf{x},h) \rightarrow \rho(\mathbf{x},t=kh)$$
, as $h \downarrow 0$

Related Work

Transport PDE $\frac{\partial \rho}{\partial t} = \mathcal{L}(\mathbf{x}, \rho)$	Gradient descent scheme	
$\mathcal{L}(\mathbf{x}, ho)$	$\frac{1}{2}d^2(ho, ho_{k-1})$	$\Phi(ho)$
riangle ho	$\frac{1}{2} \parallel \rho - \rho_{k-1} \parallel^2_{L_2(\mathbb{R}^n)}$	$rac{1}{2}\int_{\mathbb{R}^n} \parallel abla ho \parallel^2$
Heat equation (1822)	Squared L ₂ norm of difference	Dirichlet energy, CFL (1928)
$ abla \cdot (abla U(\mathbf{x}) ho) + \beta^{-1} riangle ho$	$\frac{1}{2}W^2(\rho,\rho_{k-1})$	$\mathbb{E}_{\rho}\left[U(\mathbf{x}) + \beta^{-1}\log\rho\right]$
Fokker-Planck-Kolmogorov PDE (1914,/17,/31)	Optimal transport cost	Free energy, JKO (1998)
$\left(\left(\mathbf{h} - \mathbb{E}_{\rho}[\mathbf{h}]\right)^{T} \mathbf{R}^{-1} \left(d\mathbf{z} - \mathbb{E}_{\rho}[\mathbf{h}]dt\right)\right) \rho$	$D_{KL}(ho ho_{k-1})$	$\frac{1}{2}\mathbb{E}_{\rho}[(\mathbf{y}_k - \mathbf{h})^{\top}\mathbf{R}^{-1}(\mathbf{y}_k - \mathbf{h})]$
Kushner-Stratonovich SPDE (1964,'59)	Kullback-Leibler divergence	Quadratic surprise, LMMR (2015)

Related Work

Transport PDE $\frac{\partial \rho}{\partial t} = \mathcal{L}(\mathbf{x}, \rho)$	Gradient descent scheme	
$\mathcal{L}(\mathbf{x}, ho)$	$\frac{1}{2}d^2(ho, ho_{k-1})$	$\Phi(ho)$
riangle ho	$\frac{1}{2} \parallel \rho - \rho_{k-1} \parallel^2_{L_2(\mathbb{R}^n)}$	$rac{1}{2}\int_{\mathbb{R}^n}\parallel abla ho\parallel^2$
Heat equation (1822)	Squared L ₂ norm of difference	Dirichlet energy, CFL (1928)
$ abla \cdot (abla U(\mathbf{x}) ho) + eta^{-1} riangle ho$	$\frac{1}{2}W^2(\rho,\rho_{k-1})$	$\mathbb{E}_{\rho}\left[U(\mathbf{x}) + \beta^{-1}\log\rho \right]$
Fokker-Planck-Kolmogorov PDE (1914,/17,/31)	Optimal transport cost	Free energy, JKO (1998)
$\left(\left(\mathbf{h} - \mathbb{E}_{\rho}[\mathbf{h}] \right)^{T} \mathbf{R}^{-1} \left(d\mathbf{z} - \mathbb{E}_{\rho}[\mathbf{h}] dt \right) \right) \rho$	$\mathrm{D}_{KL}(ho ho_{k-1})$	$\frac{1}{2}\mathbb{E}_{\rho}[(\mathbf{y}_{k}-\mathbf{h})^{\top}\mathbf{R}^{-1}(\mathbf{y}_{k}-\mathbf{h})]$
Kushner-Stratonovich SPDE (1964,'59)	Kullback-Leibler divergence	Quadratic surprise, LMMR (2015)

Process dynamics is stochastic gradient flow:

 $d\mathbf{x}(t) = -\nabla U(\mathbf{x}) dt + \sqrt{2\beta^{-1}} d\mathbf{w}(t), \qquad \rho_{\infty}(\mathbf{x}) \propto \frac{e^{-\beta U}}{2\beta^{-1}} d\mathbf{w}(t)$

Gibbs density

$$|_{x} = -\beta U(x)$$

Related Work

Transport PDE $\frac{\partial \rho}{\partial t} = \mathcal{L}(\mathbf{x}, \rho)$	Gradient descent scheme	
$\mathcal{L}(\mathbf{x}, ho)$	$\frac{1}{2}d^2(ho, ho_{k-1})$	$\Phi(ho)$
riangle ho	$\frac{\frac{1}{2} \parallel \rho - \rho_{k-1} \parallel^2_{L_2(\mathbb{R}^n)}}{}$	$rac{1}{2}\int_{\mathbb{R}^n} \parallel abla ho \parallel^2$
Heat equation (1822)	Squared <i>L</i> ₂ norm of difference	Dirichlet energy, CFL (1928)
$ abla \cdot (abla U(\mathbf{x}) ho) + eta^{-1} riangle ho$	$\frac{1}{2}W^2(\rho,\rho_{k-1})$	$\mathbb{E}_{\rho}\left[U(\mathbf{x}) + \beta^{-1}\log\rho\right]$
Fokker-Planck-Kolmogorov PDE (1914,/17,/31)	Optimal transport cost	Free energy, JKO (1998)
$\left(\left(\mathbf{h} - \mathbb{E}_{\rho}[\mathbf{h}] \right)^{T} \mathbf{R}^{-1} \left(d\mathbf{z} - \mathbb{E}_{\rho}[\mathbf{h}] dt \right) \right) \rho$	$D_{KL}(ho ho_{k-1})$	$\frac{1}{2}\mathbb{E}_{\rho}[(\mathbf{y}_k-\mathbf{h})^{\top}\mathbf{R}^{-1}(\mathbf{y}_k-\mathbf{h})]$
Kushner-Stratonovich SPDE (1964,'59)	Kullback-Leibler divergence	Quadratic surprise, LMMR (2015)

No process dynamics, only measurement update:

 $d\mathbf{x}(t) = 0$, $d\mathbf{z}(t) = \mathbf{h}(\mathbf{x}, t) dt + d\mathbf{v}(t)$, $d\mathbf{v}(t) \sim \mathcal{N}(0, \mathbf{R} dt)$

Our Contribution: Theory

Transport description	Gradient descent scheme	
PDE/SDE/ODE	$\frac{1}{2}d^2(\rho,\rho_{k-1})$	$\Phi(ho)$
Mean ODE, Lyapunov ODE	$\frac{1}{2}W^2(\rho,\rho_{k-1})$	$\mathbb{E}_{\rho}\left[U(\mathbf{x},t) + \frac{\operatorname{tr}(\mathbf{P}_{\infty})}{n}\log\rho\right]$
Linear Gaussian uncertainty propagation	Optimal transport cost	Generalized free energy
Conditional mean SDE, Riccati ODE	$D_{KL}(ho ho_{k-1})$	$\frac{1}{2}\mathbb{E}_{\rho}[(\mathbf{y}_k-\mathbf{h})^{T}\mathbf{R}^{-1}(\mathbf{y}_k-\mathbf{h})]$
Kalman-Bucy filter	Kullback-Leibler divergence	Quadratic surprise
ditto	$\frac{1}{2}d_{\mathrm{FR}}^2(\rho,\rho_{k-1})$	ditto
	Fisher-Rao metric	
Kushner-Stratonovich SPDE	ditto	ditto
Nonlinear filter	Fisher-Rao metric	

The Case for Linear Gaussian Systems Model:

$$d\mathbf{x}(t) = \mathbf{A}\mathbf{x}(t)dt + \mathbf{B}d\mathbf{w}(t), \quad d\mathbf{w}(t) \sim \mathcal{N}(0, \mathbf{Q}dt)$$

 $d\mathbf{z}(t) = \mathbf{C}\mathbf{x}(t)dt + d\mathbf{v}(t), \qquad d\mathbf{v}(t) \sim \mathcal{N}(0, \mathbf{R}dt)$

Given $\mathbf{x}(0) \sim \mathcal{N}(\mu_0, \mathbf{P}_0)$, want to recover:

For uncertainty propagation:

$$\begin{split} \dot{\mu} &= \mathbf{A}\mu, \ \mu(0) = \mu_0; \quad \dot{\mathbf{P}} = \mathbf{A}\mathbf{P} + \mathbf{P}\mathbf{A}^\top + \mathbf{B}\mathbf{Q}\mathbf{B}^\top, \ \mathbf{P}(0) = \mathbf{P}_0. \end{split}$$
For filtering:

$$\begin{aligned} \mathbf{P}^+ \mathbf{C}\mathbf{R}^{-1} \\ &\downarrow \\ \mathbf{d}\mu^+(t) = \mathbf{A}\mu^+(t)\mathbf{d}t + \quad \mathbf{K}(t) \quad (\mathbf{d}\mathbf{z}(t) - \mathbf{C}\mu^+(t)\mathbf{d}t), \\ \dot{\mathbf{P}}^+(t) = \mathbf{A}\mathbf{P}^+(t) + \mathbf{P}^+(t)\mathbf{A}^\top + \mathbf{B}\mathbf{Q}\mathbf{B}^\top - \mathbf{K}(t)\mathbf{R}\mathbf{K}(t)^\top. \end{split}$$

The Case for Linear Gaussian Systems

```
Challenge 1:
```

How to actually perform the infinite dimensional optimization over \mathcal{D}_2 ?

Challenge 2:

If and how one can apply the variational schemes for generic linear system with Hurwitz **A** and controllable (\mathbf{A}, \mathbf{B}) ?

Addressing Challenge 1: How to Compute

Two Step Optimization Strategy

- Choose a parametrized subspace of \mathscr{D}_2 such that the individual minimizers over that subspace match
- Then optimize over parameters

-
$$\mathscr{D}_{\mu,\mathbf{P}} \subset \mathscr{D}_2$$
 works!

Addressing Challenge 2: Generic $(A, \sqrt{2}B)$

Two Successive Coordinate Transformations

#1. Equipartition of energy:

- Define thermodynamic temperature $\theta := \frac{1}{n} \operatorname{tr}(\mathbf{P}_{\infty})$, and inverse temperature $\beta := \theta^{-1}$

- State vector:
$$\mathbf{x} \mapsto \mathbf{x}_{\mathrm{ep}} := \sqrt{\theta} \mathbf{P}_{\infty}^{-\frac{1}{2}} \mathbf{x}$$

- System matrices:

$$\begin{array}{ccc} \mathbf{A}_{ep} & \mathbf{B}_{ep} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{A}, \sqrt{2}\mathbf{B} \mapsto \mathbf{P}_{\infty}^{-\frac{1}{2}}\mathbf{A}\mathbf{P}_{\infty}^{\frac{1}{2}}, \sqrt{2\theta} & \mathbf{P}_{\infty}^{-\frac{1}{2}}\mathbf{E} \\ - \text{ Stationary covariance:} \\ \mathbf{P}_{\infty} \mapsto \theta \mathbf{I} \end{array}$$

Addressing Challenge 2: Generic $(A, \sqrt{2}B)$

Two Successive Coordinate Transformations

Our Contribution: Algorithm

Uncertainty propagation via point clouds

No spatial discretization or function approximation

Proximal Propagation: 1D Linear Gaussian

Proximal Propagation: 2D Linear Gaussian

Proximal Propagation: Nonlinear non-Gaussian

Computational Time: Nonlinear non-Gaussian

Non-trivial Discrete Optimization Problem

$$ho_k = \operatorname*{argmin}_{
ho} \left\{ \operatorname*{min}_{\mathbf{M} \in \Pi(
ho_{k-1},
ho)^{rac{1}{2}} \langle \mathbf{C}_k, \mathbf{M}
angle + h \left\langle \mathbf{U}_{k-1} + eta^{-1} \log
ho,
ho
angle
ight\}$$

Drift potential vector: $\mathbf{U}_{k-1} := U(\mathbf{x}_{k-1}^i), i = 1, ..., N$,

Euclidean distance matrix: $\mathbf{C}_k := \parallel \mathbf{x}_k^i - \mathbf{x}_{k-1}^j \parallel_2^2$

 $\mathbf{M} \in \Pi(\rho_{k-1}, \rho) \Leftrightarrow \mathbf{M} \ge 0, \ \mathbf{M}\mathbf{1} = \rho_{k-1}, \ \mathbf{M}^{\top}\mathbf{1} = \rho$

Regularize-then-dualize

$$\rho_{k} = \underset{\rho}{\operatorname{argmin}} \left\{ \underset{\mathbf{M}\in\Pi(\rho_{k-1},\rho)}{\min} \frac{1}{2} \langle \mathbf{C}_{k}, \mathbf{M} \rangle + \epsilon \langle \mathbf{M}, \log \mathbf{M} \rangle + h \langle \mathbf{U}_{k-1} + \beta^{-1} \log \rho, \rho \rangle \right\}$$

Theorem: Consider the following recursion on the cone $\mathbb{R}^n_{>0} \times \mathbb{R}^n_{>0}$: $\mathbf{y} \odot (\Gamma_k \mathbf{z}) = \rho_{k-1},$ $\mathbf{z} \odot (\Gamma_k^\top \mathbf{y}) = \xi_{k-1} \odot \mathbf{z}^{-\frac{\beta\epsilon}{h}}.$ Its solution $(\mathbf{y}^{\text{opt}}, \mathbf{z}^{\text{opt}})$ gives the proximal update $\rho_k = \mathbf{z}^{\text{opt}} \odot (\Gamma_k^\top \mathbf{y}^{\text{opt}}).$

Algorithmic Setup

Theorem: Block co-ordinate iteration of (\mathbf{y}, \mathbf{z}) recursion is contractive on $\mathbb{R}^n_{>0} \times \mathbb{R}^n_{>0}$.

Extensions: interacting particles

PDF dependent sample path dynamics: $d\mathbf{x} = -\left(\nabla U\left(\mathbf{x}\right) + \nabla \rho * V\right) dt + \sqrt{2\beta^{-1}} d\mathbf{w}$

Mckean-Vlasov-Fokker-Planck-
Kolmogorov integro PDE:
$$\frac{\partial \rho}{\partial t} = \nabla \cdot (\rho \nabla (U + \rho * V)) + \beta^{-1} \Delta \rho$$

Free energy: $F(\rho) := \mathbb{E}_{\rho} \left[U + \beta^{-1} \rho \log \rho + \rho * V \right]$

Extensions: interacting particles (contd.)

$$U(\cdot) = V(\cdot) = \|\cdot\|_2^2$$

Extensions: multiplicative noise

Cox-Ingersoll-Ross: $dx = a(\theta - x) dt + b\sqrt{x} dw$, $2a > b^2$, $\theta > 0$

Thank You

Backup Slides

Gradient Descent with Constraints

