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Motivation
HW resource in CPS are time-varying, stochastic and dynamically correlated

e.g., last-level shared cache (LLC), memory bandwidth, processor availability 
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Different resource usage for the same control SW for different runs on same HW 

HW-level stochasticity more pronounced for compute-intensive control SW such as 
MPC (than say PID)

Motivation
HW resource in CPS are time-varying, stochastic and dynamically correlated

e.g., last-level shared cache (LLC), memory bandwidth, processor availability 
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Learn probabilistic model of HW resource from control SW execution profile

Challenge
Want to predict HW joint stochastic state

Difficult to get first principle physics based prior           data-driven learning    

⇝ can be used for adaptive scheduling, switching among a bag of controllers 

Idea

But profile data come as scattered …. want to avoid gridding

Need guarantee            “most likely HW state consistent with observed snapshots”

⇝

⇝

Need parsimony            nonparametric learning

⇝

Need benign computational complexity for learning



Proposed Workflow
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Step 1. Implement a control SW case study

Step 2. Profile control SW for different CPS “contexts” 

Step 3. Formulate and solve multimarginal Schrödinger bridge problem (MSBP) 
for the measured profile scattered data snapshots 

Step 4. Validate predictions w.r.t. “hold out” data 



Step 1: Implement Control SW Case Study
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Kinematic bicycle path tracking with NMPC and PID

Implemented in C (needed for Step 2)



Step 2: Profile Control SW | CPS Contexts

Context vector 

In our numerical case study:

ncontext = 5 × 12 = 60

5 combinations of LLC partitions 
and memory bandwidth allocated 
in blocks of 2 MB using Intel CAT 
and Memguard
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Step 2: Profile Control SW | CPS Contexts

HW resource state Profiled every 10 ms 

Think of  as  valued stochastic process in continuous time ξ(τ) ℝd τ ∈ [0,t]

Record snapshot data at

Snapshot index set 

Snapshot observations                  , i.e., 

Empirical measures where                   is scattered data

Want to predict most likely statistics 
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Step 2: Profile Control SW | CPS Contexts

Care needed to account for asynchrony across profiles

In our experiment  snapshotss := 1 + nc (sint + 1) = 1 + 5(4 + 1) = 26

where  is the sampled mean end time for the th control cycleτσ(sint+1)+1 σ

For each fixed context sample, generate  profiles, i.e., total 30k profiles 
sampled every 10 ms using Linux perf tool v4.9.3

n = 500

Simulated  “control cycles” nc = 5
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Step 3: Formulate and Solve MSBP
Classical (bi-marginal) SBP

Large deviation principle on path measure
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Step 3: Formulate and Solve MSBP

Multi-marginal version: MSBP formulation

denote manifold of prob. measures on

Ground cost

Let

MSBP:
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Step 3: LDP Interpretation of MSBP

Multimarginal Gibbs kernel

Then MSBP is the same as

Set of all path measures on                      whose time  marginal is   τσ μσ ∀σ
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Step 3: Discrete Formulation of MSBP

Ground cost is order  tensor                       with componentss

Ditto for the discrete mass tensor

Discrete MSBP on scattered data:

Define (marginalized) projection from nonneg tensor to nonneg vector: 

Strictly convex program in       decision variables 
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Step 3: Sequential Information Structure 

Snapshot observation is a path tree: . . . . . .

Ground cost admits path structure:

KKT:

where  solves multi marginal Sinkhorn contractive fixed point recursions:uσ

But computing                 requires  operations 𝒪 (ns)
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Step 3: From Exponential to Linear Complexity
Thm.

Only  matrix-vector multiplications: complexity s − 1 𝒪 ((s − 1)n2)

Recursions become
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Numerical Case Study: Convergence
  solving for ~  decision variables in ~ 10 s in MATLABn = 500, s = 26 : 1.49 × 1070

Linear convergence of multimarginal Sinkhorn iterates in Hilbert’s projective metric 
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Numerical Case Study: Predicted vs Measured
Blue: predicted, red: measured, black: measured at control cycle boundaries
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Summary

A data-driven offline learning method to predict most-likely joint HW 
stochastic state

Computation scales linearly with both dimension and number of snapshots

Ongoing work: multi-core profiles (DAGs that are not paths), adaptive scheduling

Details: arXiv:2310.00604
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