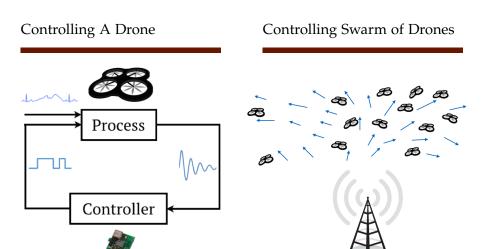
Control of Large Scale Cyberphysical Systems

Abhishek Halder

Department of Electrical and Computer Engineering Texas A&M University College Station, TX 77843

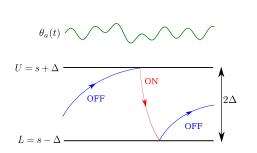
Motivation: Drone Traffic Management

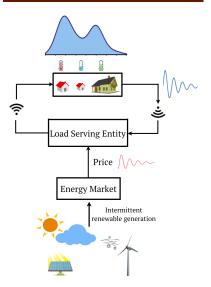


Motivation: Smart Grid Demand Response

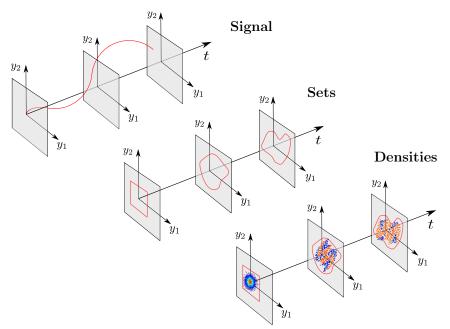
Controlling An AC

Controlling Population of ACs





What to Control

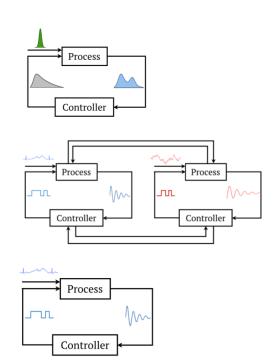


Outlook

Continuum of systems

Finitely many systems

One system



Outline of Today's Talk

Part I: An Application

Controlling Air Conditioners

Part II: A Theory

Controlling Density

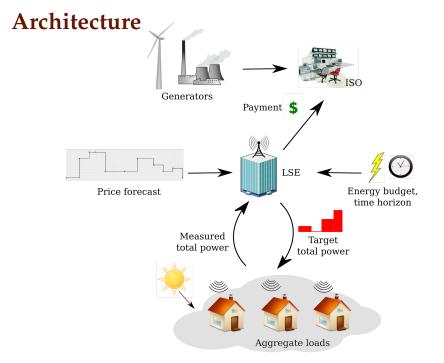
Part III: Ongoing and Future Research Unmanned Aerial Systems Traffic Management

Part I. An Application

Controlling Air Conditioners

Direct Control for Demand Response

Joint work with X. Geng, F.A.C.C. Fontes, P.R. Kumar, and L. Xie



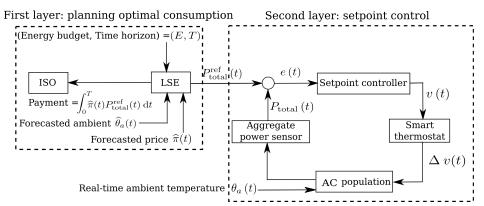
Research Scope

Objective: A theory of operation for the LSE

Challenges:

- 1. How to design the target consumption as a function of price?
- 2. How to control so as to preserve **privacy** of the loads' states?
- 3. How to respect loads' **contractual obligations** (e.g. comfort range width Δ)?

Two Layer Block Diagram



First Layer: Planning Optimal Consumption

$$\underset{\{u_1(t),\dots,u_N(t)\}\in\{0,1\}^N}{\text{minimize}} \int_0^T \frac{P}{\eta} \quad \boxed{\widehat{\pi}(t)} \quad (u_1(t)+u_2(t)+\dots+u_N(t)) \, dt$$

subject to

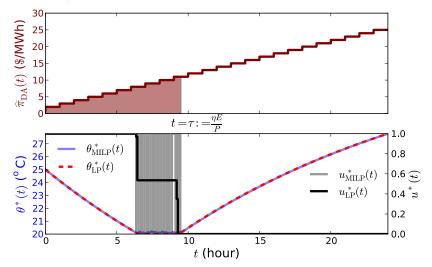
$$(1) \quad \dot{\theta}_i = -\alpha_i \left(\theta_i(t) - \widehat{\theta}_a(t) \right) - \beta_i P u_i(t) \qquad \forall i = 1, \dots, N,$$

(2)
$$\int_0^T (u_1(t) + u_2(t) + \dots + u_N(t)) dt = \tau = \frac{\eta E}{NP} (< T, given)$$

$$(3) \quad L_{i0} < \theta_i(t) < U_{i0} \qquad \forall i = 1, \dots, N.$$

Optimal consumption:
$$P_{\text{ref}}^{*}(t) = \frac{P}{\eta} \sum_{i=1}^{N} u_{i}^{*}(t)$$

First Layer: "discretize-then-optimize"



Numerical challenges for MILP and LP

Solution: continuous time \rightsquigarrow PMP w. state inequality constraints

Second Layer: Real-time Setpoint Control

$$\begin{array}{c} \text{optimal} \\ \text{reference} \\ \mid \\ P_{\text{ref}}^*(t) = \frac{P}{\eta} \sum_{i=1}^N u_i^*(t), \rightsquigarrow \begin{array}{c} \text{error} \\ \mid \\ e(t) \end{array} = P_{\text{ref}}^*(t) - \begin{array}{c} \text{measured} \\ \mid \\ P_{\text{total}}(t) \end{array},$$

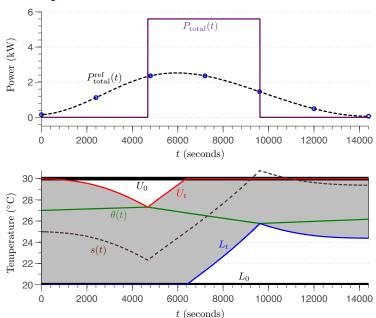
$$PDE \text{ based velocity control} \qquad \text{gain} \quad \text{broadcast} \end{array}$$

Moving lower boundary
$$L_{it} = U_{i0} \wedge [L_{i0} \vee (s_i(t) - \Delta_i)]$$
, Moving upper boundary

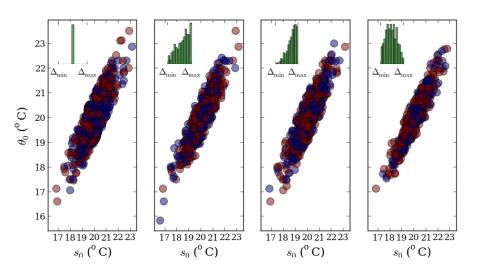
 $U_{it} = L_{i0} \vee [U_{i0} \wedge (s_i(t) + \Delta_i)].$

 $v(t) = \gamma_{\text{tracking}}(e(t))$,

Boundary Control: Deadband \rightarrow Liveband



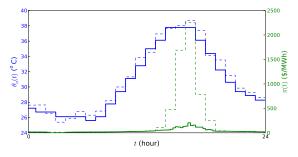
Initial Condition and Δ Distribution for 500 Homes

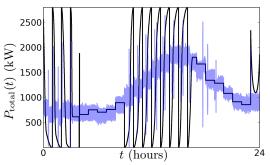


Houston Temperature + Market Price

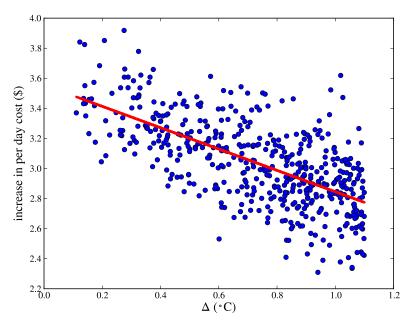
- •• forecasted ambient
- actual ambient
- -- forecasted price
- actual price

- target consumption
- actual consumption





How Can the LSE Price A Contract



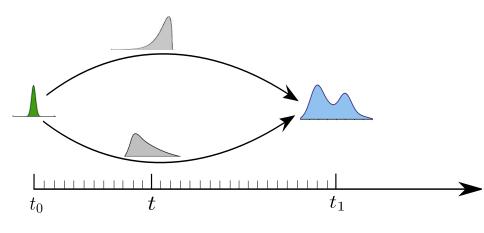
Part II. A Theory

Controlling Density

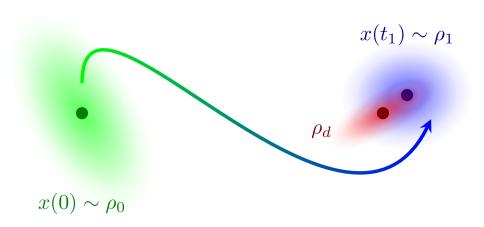
Finite Horizon LQG Density Regulator

Joint work with E.D.B. Wendel (Draper Laboratory)

How to Go from One Density to Another



or Close to Another



Formulation: LQG Density Regulator

$$\begin{aligned} \varphi(\rho_1, \rho_d) \\ \min_{u \in \mathcal{U}} & \inf_{y \sim \rho \in \mathcal{P}_2(\rho_1, \rho_d)} \mathbb{E}_y \left[(x_1 - x_d)^\top M(x_1 - x_d) \right] \\ & + \mathbb{E}_x \left[\int_0^{t_1} (x^\top Q x + u^\top R u) \, \mathrm{d}t \right] \\ \mathrm{d}x(t) &= Ax(t) \, \mathrm{d}t + Bu(t) \, \mathrm{d}t + F \, \mathrm{d}w(t), \\ x(0) &\sim \rho_0 = \mathcal{N} \left(\mu_0, S_0 \right), \quad x_d \sim \rho_d = \mathcal{N} \left(\mu_d, S_d \right), \\ t_1 \text{ fixed,} \quad \mathcal{U} &= \left\{ u : u(x, t) = K(t) x + v(t) \right\} \end{aligned}$$

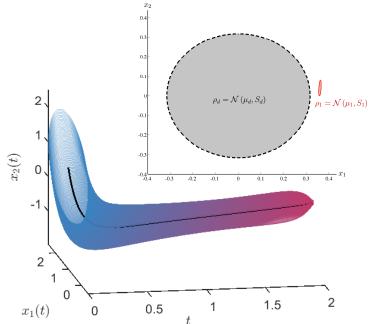
Main Results

Optimal LQG Density regulator is linear

 Unlike classical LQG, Riccati and Lyapunov matrix ODEs are nonlinearly coupled through boundary conditions

Recovers LQG as a special case

Controlled State Covariance



Application: Active Control for Mars EDL

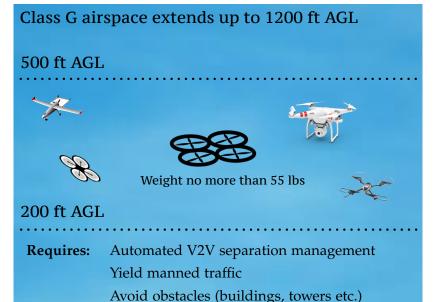


Part III. Ongoing and Future Research

UTM

Unmanned Aerial Systems Traffic Management

Vision for UAS Traffic Management (UTM)



Technical Challenges

Dynamic Geofencing

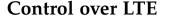
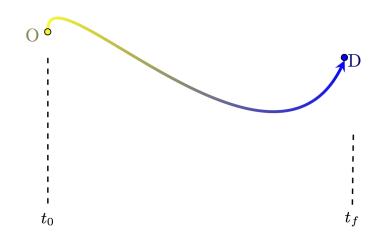


Image credit: NASA Ames Research Center

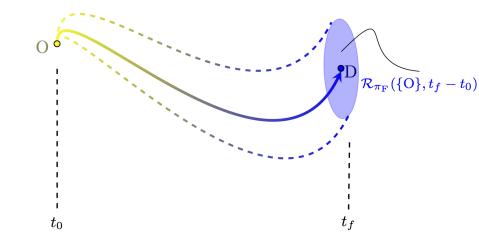
Wind Uncertainty

Provable Safety

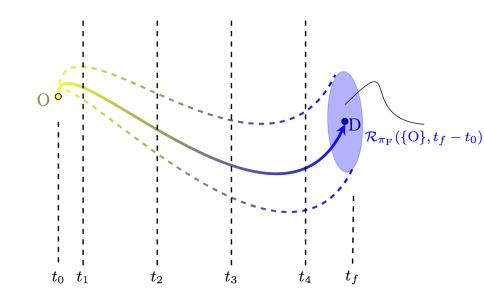
Input: Approved Flight Path



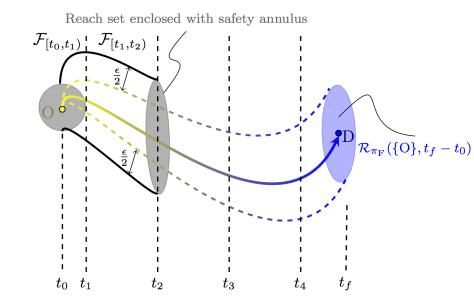
Reach Set Evolution due to Wind Uncertainty



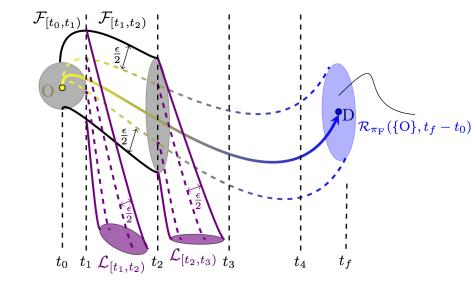
Discrete Decision Making Instances



4D Flight Tubes $\mathcal{F}_{[t_j,t_{j+1})}$

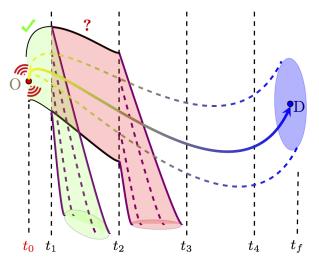


4D Flight + Landing Tubes $\{\mathcal{F}_{[t_j,t_{j+1})},\mathcal{L}_{[t_{j+1},t_{j+2})}\}$



Motion Protocol: $t = t_0$

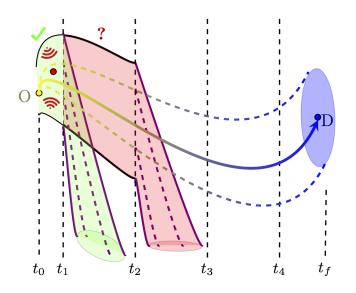
 $\textbf{IF: Have all} + \text{ACKs for } \{\mathcal{F}_{[t_0,t_1)},\mathcal{L}_{[t_1,t_2)}\} \textbf{ AND } \text{D} \in \mathcal{R}_{\pi_{\text{F}}} \left(\{\text{O}\},t_f-t_0\right)$



THEN: Take-off **AND** broadcast req. for $\{\mathcal{F}_{[t_1,t_2)},\mathcal{L}_{[t_2,t_3)}\}$

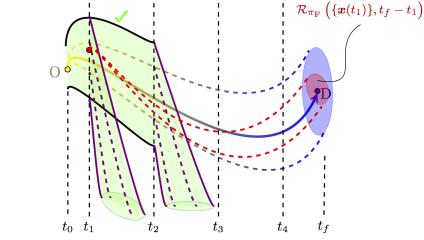
Motion Protocol: $t \in [t_0, t_1)$

Listening for \pm ACKs, $\boldsymbol{x}(t) \in \mathcal{F}_{[t_0,t_1)}$



Motion Protocol: $t = t_1$

IF: All + ACKs AND D $\in \mathcal{R}_{\pi_F} (\{x(t_1)\}, t_f - t_1)$

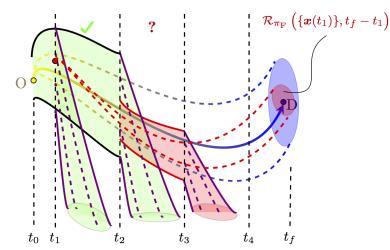


THEN: Continue in $\mathcal{F}_{[t_1,t_2)}$ **AND** broadcast req. for $\{\mathcal{F}_{[t_2,t_3)},\mathcal{L}_{[t_3,t_4)}\}$

ELSE: Abort mission via $\mathcal{L}_{[t_1,t_2)}$

Motion Protocol: $t = t_1$

IF: All + ACKs AND D $\in \mathcal{R}_{\pi_{\mathrm{F}}}\left(\{\boldsymbol{x}(t_1)\}, t_f - t_1\right)$

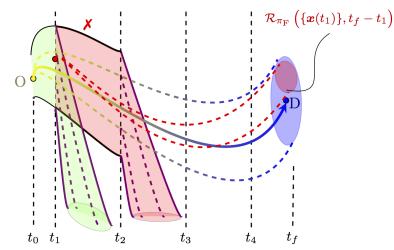


THEN: Continue in $\mathcal{F}_{[t_1,t_2)}$ **AND** broadcast req. for $\{\mathcal{F}_{[t_2,t_3)},\mathcal{L}_{[t_3,t_4)}\}$

ELSE: Abort mission via $\mathcal{L}_{[t_1,t_2)}$

Motion Protocol: $t = t_1$

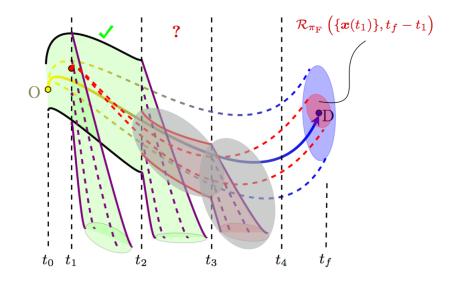
IF: All + ACKs AND D $\notin \mathcal{R}_{\pi_F} (\{x(t_1)\}, t_f - t_1)$



THEN: Continue in $\mathcal{F}_{[t_1,t_2)}$ **AND** broadcast req. for $\{\mathcal{F}_{[t_2,t_3)},\mathcal{L}_{[t_3,t_4)}\}$

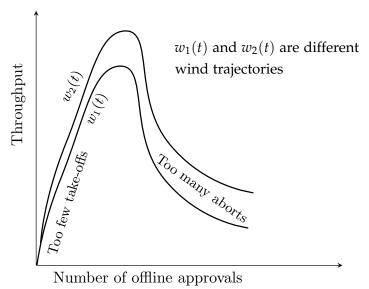
ELSE: Abort mission via $\mathcal{L}_{[t_1,t_2)}$

Algorithms for Motion Protocol



Compute minimum volume outer ellipsoids: SDP

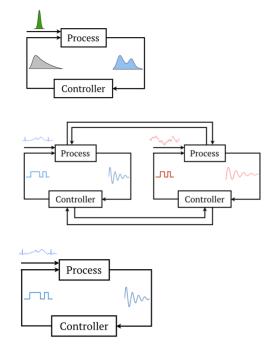
Proposed Architecture: Performance



Continuum of systems

Finitely many systems

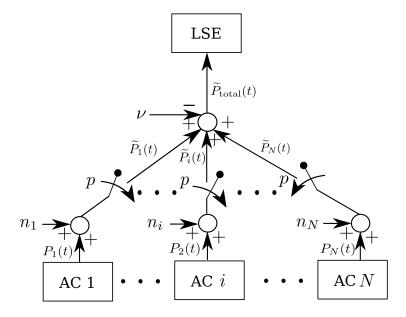
One system



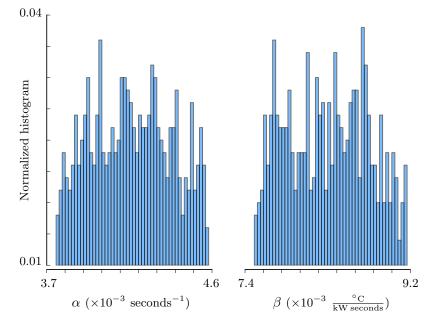
Thank You

Backup Slides for Part I

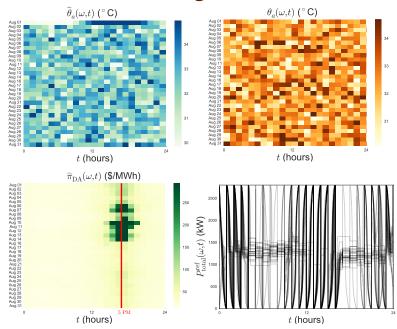
Differential Privacy Preserving Sensing



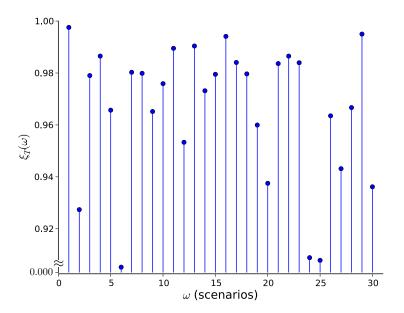
Distribution of Parameters α **and** β



Houston Data for August 2015



Limits of Control Performance



Backup Slides for Part II

LQG State Regulator

$$\min_{u \in \mathcal{U}} \phi(x_1, x_d) + \mathbb{E}_x \left[\int_0^{t_1} (x^\top Q x + u^\top R u) dt \right]$$

$$dx(t) = Ax(t) dt + Bu(t) dt + F dw(t),$$

$$x(0) = x_0$$
 given, x_d given, t_1 fixed,

Typical terminal cost: MSE

$$\phi(x_1, x_d) = \mathbb{E}_{x_1} [(x_1 - x_d)^{\top} M(x_1 - x_d)]$$

LQG Density Regulator

$$\min_{u \in \mathcal{U}} \varphi\left(\rho_1, \rho_d\right) + \mathbb{E}_x \left[\int_0^{t_1} (x^\top Q x + u^\top R u) \, \mathrm{d}t \right]$$

$$dx(t) = Ax(t) dt + Bu(t) dt + F dw(t),$$

 $x(0) \sim \rho_0$ given, $x_d \sim \rho_d$ given, t_1 fixed,

Proposed terminal cost: MMSE

$$\varphi\left(x_{1}, x_{d}\right) = \inf_{y \sim \rho \in \mathcal{P}_{2}(\rho_{1}, \rho_{d})} \mathbb{E}_{y}\left[\left(x_{1} - x_{d}\right)^{\top} M(x_{1} - x_{d})\right],$$

where
$$y := (x_1, x_d)^{\top}$$

However, φ (\mathcal{N} (μ_1 , S_1), \mathcal{N} (μ_d , S_d)) **equals**

$$(\mu_1 - \mu_d)^{\top} M (\mu_1 - \mu_d) +$$

$$\min_{C \in \mathbb{R}^{n \times n}} \operatorname{tr} \left((S_1 + S_d - 2C)M \right) \text{ s.t. } \begin{bmatrix} S_1 & C \\ C^{\top} & S_d \end{bmatrix} \succeq 0$$

However, φ (\mathcal{N} (μ_1 , S_1), \mathcal{N} (μ_d , S_d)) **equals**

$$(\mu_1 - \mu_d)^{\top} M (\mu_1 - \mu_d) +$$

$$\min_{C \in \mathbb{R}^{n \times n}} \operatorname{tr} \left((S_1 + S_d - 2C)M \right) \text{ s.t. } \begin{bmatrix} S_1 & C \\ C^\top & S_d \end{bmatrix} \succeq 0$$

$$\max_{C \in \mathbb{R}^{n \times n}} \operatorname{tr}(CM) \quad \text{s.t.} \quad CS_d^{-1}C^{\top} \succeq 0$$

$$C^* = S_1 S_d^{\frac{1}{2}} \left(S_d^{\frac{1}{2}} S_1 S_d^{\frac{1}{2}} \right)^{-\frac{1}{2}} S_d^{\frac{1}{2}}$$

This gives

$$\varphi\left(\mathcal{N}\left(\mu_{1}, S_{1}\right), \mathcal{N}\left(\mu_{d}, S_{d}\right)\right) = \left(\mu_{1} - \mu_{d}\right)^{\top} M\left(\mu_{1} - \mu_{d}\right)$$

$$+\mathrm{tr}\left(MS_1+MS_d-2\left|\left(\sqrt{S_d}MS_1\sqrt{S_d}\right)\left(\sqrt{S_d}S_1\sqrt{S_d}\right)^{-\frac{1}{2}}\right|\right)$$

Applying maximum principle:

$$K^o(t) = R^{-1}B^{\top}P(t),$$

$$v^o(t) = R^{-1}B^{\top}\left(z(t) - P(t)\mu(t)\right)$$

∞ dim. TPBVP \rightsquigarrow $(n^2 + 3n)$ dim. TPBVP

$$\begin{pmatrix} \dot{\mu}(t) \\ \dot{z}(t) \end{pmatrix} = \begin{pmatrix} A & BR^{-1}B^{\top} \\ Q & -A^{\top} \end{pmatrix} \begin{pmatrix} \mu(t) \\ z(t) \end{pmatrix},$$

$$\dot{S}(t) = (A + BK^{o})S(t) + S(t)(A + BK^{o})^{\top} + FF^{\top},$$

$$\dot{P}(t) = -A^{\top}P(t) - P(t)A - P(t)BR^{-1}B^{\top}P(t) + Q,$$

Boundary conditions:

$$\mu(0) = \mu_0, \quad z(t_1) = M(\mu_d - \mu_1),$$

$$S(0) = S_0, \quad P(t_1) = (S_d \# S_1^{-1} - I_n) M$$

Matrix Geometric Mean

The minimal geodesic $\gamma^* : [0,1] \mapsto \mathbf{S}_n^+$ connecting $\gamma(0) = S_d$ and $\gamma(1) = S_1^{-1}$, associated with the Riemannian metric $g_A(S_d, S_1^{-1}) = \operatorname{tr} \left(A^{-1} S_d A^{-1} S_1^{-1} \right)$, is

$$g_{A}(S_{d}, S_{1}^{-}) = \text{tr} \left(A^{-1} S_{d} A^{-1} S_{1}^{-1} \right), \text{ is}$$

$$\gamma^{*}(t) = S_{d} \#_{t} S_{1}^{-1} = S_{d}^{\frac{1}{2}} \left(S_{d}^{-\frac{1}{2}} S_{1}^{-1} S_{d}^{-\frac{1}{2}} \right)^{t} S_{d}^{\frac{1}{2}}$$

$$= S_{1}^{-1} \#_{1-t} S_{d} = S_{1}^{-\frac{1}{2}} \left(S_{1}^{\frac{1}{2}} S_{d} S_{1}^{\frac{1}{2}} \right)^{1-t} S_{1}^{-\frac{1}{2}}$$

Geometric Mean:

$$\gamma^* \left(\frac{1}{2}\right) = S_d \#_{\frac{1}{2}} S_1^{-1} = S_1^{-1} \#_{\frac{1}{2}} S_d$$

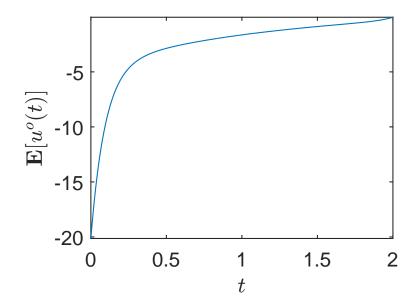
Example

$$\begin{pmatrix} dx_1 \\ dx_2 \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & -3 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} dt + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u dt + \begin{bmatrix} 0.01 \\ 0.01 \end{bmatrix} dw$$

$$ho_0 = \mathcal{N}\left((1,1)^{ op}, I_2
ight), \quad
ho_d = \mathcal{N}\left((0,0)^{ op}, 0.1 \, I_2
ight),$$

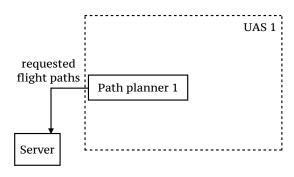
$$Q = 100 I_2$$
, $R = 1$, $M = I_2$, $t_1 = 2$

Expected Optimal Control

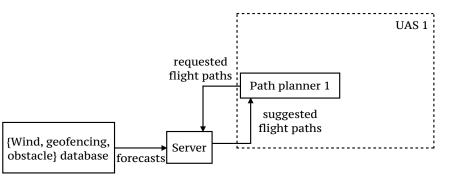


Backup Slides for Part III

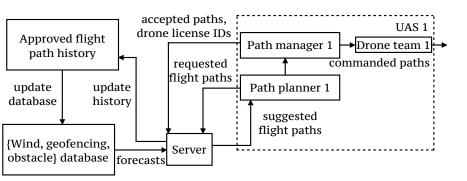
Our Proposed Architecture



Proposed Architecture



Proposed Architecture



Proposed Architecture

