A Distributed Algorithm for Wasserstein Proximal Operator Splitting

Abhishek Halder

Department of Aerospace Engineering, Iowa State University
Translational AI Center, Iowa State University
Department of Applied Mathematics, UC Santa Cruz
Joint work with I. Nodozi, A.M. Teter (UC Santa Cruz)

Decision and Control Seminar
Coordinated Science Lab
University of Illinois Urbana-Champaign, November 01, 2023

Topic of this talk

Optimization over the space of measures or distributions

Probability Distribution
 Population Distribution

$$
x(t)=\left(\begin{array}{l}
x \\
y \\
\theta
\end{array}\right) \in \mathcal{X} \equiv \mathbb{R}^{2} \times \mathbb{S}^{1}
$$

$$
\rho(x, t): \mathcal{X} \times[0, \infty) \mapsto \mathbb{R}_{\geq 0}
$$

$$
\begin{aligned}
& \text { measure }=\text { mass } \quad \text { density function } \\
& \int_{\mathcal{X}} \mathrm{d} \mu=\int_{\mathcal{X}} \rho \mathrm{d} x=1 \quad \text { for all } t \in[0, \infty)
\end{aligned}
$$

Geometry on the Space of Prob. Measures

Numer. Math. (2000) 84: 375-393
Digital Object Identifier (DOI) 10.1007/s002119900117

Numerische
Mathematik
© Springer-Verlag 2000
© Springer-Verlag 2000

A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem
Jean-David Benamou ${ }^{1}$, Yann Brenier ${ }^{2}$

2-Wasserstein distance metric

$$
\begin{aligned}
& W\left(\mu_{0}, \mu_{1}\right):=\left(\inf _{\mu, \boldsymbol{v}}\left\{\frac{1}{2} \int_{0}^{1} \int_{\mathcal{X}}\|\boldsymbol{v}\|^{2} \mathrm{~d} \mu \mathrm{~d} t\right\}\right)^{1 / 2} \\
& \text { subject to } \frac{\partial \mu}{\partial t}=-\nabla \cdot(\mu \boldsymbol{v}), \mu(t=0, \cdot)=\mu_{0}, \mu(t=1, \cdot)=\mu_{1}
\end{aligned}
$$

Geometry on the Space of Prob. Measures

Numer. Math. (2000) 84: 375-393
Digital Object Identifier (DOI) 10.1007/s002119900117

Numerische
Mathematik
© Springer-Verlag 2000

A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem Jean-David Benamou ${ }^{1}$, Yann Brenier ${ }^{2}$

2-Wasserstein distance metric
$W\left(\mu_{0}, \mu_{1}\right):=\left(\inf _{\mu, \boldsymbol{v}}\left\{\frac{1}{2} \int_{0}^{1} \int_{\mathcal{X}}\|\boldsymbol{v}\|^{2} \mathrm{~d} \mu \mathrm{~d} t\right\}\right)^{1 / 2}$
subject to $\frac{\partial \mu}{\partial t}=-\nabla \cdot(\mu \boldsymbol{v}), \mu(t=0, \cdot)=\mu_{0}, \mu(t=1, \cdot)=\mu_{1}$

Measure-valued geodesic path for any $t \in[0,1]$
$\mu_{t}=\underset{\nu \in \mathcal{P}_{2}(\mathcal{X})}{\arg \inf }\left\{(1-t) W^{2}\left(\mu_{0}, \nu\right)+t W^{2}\left(\mu_{1}, \nu\right)\right\}$
〔 manifold of probability measures supported
on \mathcal{X} with finite second moments

Geometry on the Space of Prob. Measures

2-Wasserstein distance metric

$$
(\mu, \boldsymbol{v}) \in \operatorname{AC}\left((0,1) ; \mathcal{P}_{2}(\mathcal{X})\right) \times L^{2}\left(\mu_{t}, \mathcal{X}\right)
$$

Measure-valued geodesic path for any $t \in[0,1]$
$\mu_{t}=\underset{\nu \in \mathcal{P}_{2}(\mathcal{X})}{\arg \inf }\left\{(1-t) W^{2}\left(\mu_{0}, \nu\right)+t W^{2}\left(\mu_{1}, \nu\right)\right\}$
〔 manifold of probability measures supported
on \mathcal{X} with finite second moments

Geometry on the Space of Prob. Measures

Ground cost, e.g., $\frac{1}{2}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}$

$$
W\left(\mu_{0}, \mu_{1}\right):=\left(\inf _{m} \int_{\mathcal{X} \times \mathcal{Y}} c(\boldsymbol{x}, \boldsymbol{y}) \widehat{\mathrm{d} m(\boldsymbol{x}, \boldsymbol{y})}\right)^{1 / 2}
$$

$$
\text { subject to } \quad \int_{\mathcal{Y}} \mathrm{d} m=\mu_{0}(\mathrm{~d} \boldsymbol{x}), \quad \int_{\mathcal{X}} \mathrm{d} m=\mu_{1}(\mathrm{~d} \boldsymbol{y})
$$

Gaspard Monge Leonid Kantorovich

Geometry on the Space of Prob. Measures

Ground cost, e.g., $\frac{1}{2}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}$

$$
\begin{aligned}
& W\left(\mu_{0}, \mu_{1}\right):=\left(\inf _{m} \int_{\mathcal{X} \times \mathcal{Y}} c(\boldsymbol{x}, \boldsymbol{y}) \mathrm{d} m(\boldsymbol{x}, \boldsymbol{y})\right)^{1 / 2} \\
& \quad \text { subject to } \quad \int_{\mathcal{Y}} \mathrm{d} m=\mu_{0}(\mathrm{~d} \boldsymbol{x}), \quad \int_{\mathcal{X}} \mathrm{d} m=\mu_{1}(\mathrm{~d} \boldsymbol{y})
\end{aligned}
$$

Gaspard Monge Leonid Kantorovich

Entropic / Sinkhorn regularization:
$W_{\varepsilon}\left(\mu_{0}, \mu_{1}\right):=\left(\inf _{m} \int_{\mathcal{X} \times \mathcal{Y}}\{c(\boldsymbol{x}, \boldsymbol{y})+\varepsilon \log m\} \mathrm{d} m(\boldsymbol{x}, \boldsymbol{y})\right)^{1 / 2}, \quad \varepsilon>0$

$$
\text { subject to } \quad \int_{\mathcal{Y}} \mathrm{d} m=\mu_{0}(\mathrm{~d} \boldsymbol{x}), \quad \int_{\mathcal{X}} \mathrm{d} m=\mu_{1}(\mathrm{~d} \boldsymbol{y})
$$

Measure-valued Optimization Problems

2-Wasserstein geodescially convex functional
Space of Borel probability measures on \mathbb{R}^{d} with finite second moments

In many applications, we have additive structure:
$F(\mu)=F_{1}(\mu)+F_{2}(\mu)+\ldots+F_{n}(\mu)$
where each $F_{i}: \mathscr{P}_{2}\left(\mathbb{R}^{d}\right) \mapsto(-\infty,+\infty]$ is proper, lsc, and 2 -Wasserstein geodescially convex

Connection with Wasserstein Gradient Flows

$$
\frac{\partial \mu}{\partial t}=-\nabla^{W} F(\mu):=\nabla \cdot\left(\mu \nabla \frac{\delta F}{\delta \mu}\right)
$$

Wasserstein gradient

Minimizer of $\arg \inf F(\mu) \quad \leftarrow \downarrow \quad$ Stationary solution of (\star) $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$

Transient solution of (\star) \leadsto Discrete time-stepping realizing grad. descent of $\underset{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}{\arg \inf } F(\mu)$

Connection with Wasserstein Gradient Flows

$$
\frac{\partial \mu}{\partial t}=-\nabla^{W} F(\mu):=\nabla \cdot\left(\mu \nabla \frac{\delta F}{\delta \mu}\right)
$$

Wasserstein gradient

Minimizer of $\underset{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}{\arg \inf } F(\mu) \quad \hookleftarrow \sim \quad$ Stationary solution of (\star)

Transient solution of (\star)

Discrete time-stepping realizing
grad. descent of $\arg \inf F(\mu)$

$$
\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)
$$

Wasserstein proximal recursion à la Jordan-Kinderlehrer-Otto (JKO) scheme

Gradient Flows

Gradient Flow in \mathcal{X}

$\frac{\mathrm{d} \boldsymbol{x}}{\mathrm{~d} t}=-\nabla f(x), \quad x(0)=x_{0}$	$\frac{\partial \mu}{\partial t}=-\nabla^{W} F(\mu), \quad \mu(x, 0)=\mu_{0}$				
Recursion: $\begin{aligned} \boldsymbol{x}_{k} & =\boldsymbol{x}_{k-1}-h \nabla f\left(\boldsymbol{x}_{k}\right) \\ & =\underset{\boldsymbol{x} \in \mathcal{X}}{\arg \min }\left\{\frac{1}{2}\left\\|\boldsymbol{x}-\boldsymbol{x}_{k-1}\right\\|_{2}^{2}+h f(\boldsymbol{x})\right\} \\ & =: \operatorname{prox}_{h f}^{\\|\cdot\\|_{2}}\left(\boldsymbol{x}_{k-1}\right) \end{aligned}$	Recursion: $\begin{aligned} \mu_{k} & =\mu(\cdot, t=k h) \\ & =\underset{\mu \in \mathcal{P}_{2}(\mathcal{X})}{\arg \min }\left\{\frac{1}{2} W^{2}\left(\mu, \mu_{k-1}\right)+h F(\mu)\right\} \\ & =: \operatorname{prox}_{h F}^{w}\left(\mu_{k-1}\right) \end{aligned}$				
Convergence: $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}(t=k h) \quad \text { as } \quad h \downarrow 0$	Convergence: $\mu_{k} \rightarrow \mu(\cdot, t=k h) \quad \text { as } \quad h \downarrow 0$				
f as Lyapunov function: $\frac{\mathrm{d}}{\mathrm{~d} t} f=-\\|\nabla f\\|_{2}^{2} \leq 0$	F as Lyapunov functional: $\frac{\mathrm{d}}{\mathrm{~d} t} F=-\mathbb{E}_{\mu}\left[\left\\|\nabla \frac{\delta F}{\delta \mu}\right\\|_{2}^{2}\right] \leq 0$				

Motivating Applications

Langevin sampling from an unnormalized prior

Stramer and Tweedie, Methodology and Computing in Applied Probability, 1999

Jarner and Hansen, Stochastic Processes and their Applications, 2000

Roberts and Stramer, Methodology and Computing in Applied Probability, 2002

Vempala and Wibisino, NeurIPS, 2019

Optimal control of distributions a.k.a. Schrödinger bridge problems

Chen, Georgiou and Pavon, SIAM Review, 2021
Chen, Georgiou and Pavon, SIAM Journal on
Applied Mathematics, 2016
Chen, Georgiou and Pavon, Journal on
Optimization Theory and Applications, 2016
Caluya and Halder, IEEE Transactions on
Automatic Control, 2021

Motivating Applications (contd.)

Mean field learning dynamics in neural networks

Mei, Montanari and Nguyen, Proceedings of the
National Academy of Sciences, 2018
Chizat and Bach, NeurIPS, 2018
Rotskoff and Vanden-Eijnden, NeurIPS, 2018
Sirignano and Spiliopoulos, Stochastic Processes
and their Applications, 2020

Prediction and estimation of time-varying joint state probability densities

Caluya and Halder, IEEE Transactions on Automatic Control, 2019

Halder and Georgiou, CDC, 2019
Halder and Georgiou, ACC, 2018
Halder and Georgiou, CDC, 2017

Many Recently Proposed Algorithms to Solve Measure-valued Optimization Problems

Peyré, SIAM Journal on Imaging Sciences, 2015

Benamou, Carlier and Laborde, ESAIM: Proceedings and Surveys, 2016

Carlier, Duval, Peyré and Schimtzer, SIAM Journal on Mathematical Analysis, 2017

Karlsson and Ringh, SIAM Journal on Imaging Sciences, 2017

Caluya and Halder, IEEE Transactions on Automatic Control, 2019

Carrillo, Craig, Wang and Wei, Foundations of Computational Mathematics, 2021

Mokrov, Korotin, Li, Gnevay, Solomon, and Burnaev, NeurIPS, 2021

Alvarez-Melis, Schiff, and Mroueh, NeurIPS, 2021

Wang, and Li, Journal of Scientific Computing, 2022

Many Recently Proposed Algorithms to Solve Measure-valued Optimization Problems

Peyré, SIAM Journal on Imaging Sciences, 2015

Benamou, Carlier and Laborde, ESAIM: Proceedings and Surveys, 2016

Carlier, Duval, Peyré and Schimtzer, SIAM Journal on Mathematical Analysis, 2017

Karlsson and Ringh, SIAM Journal on Imaging Sciences, 2017

Caluya and Halder, IEEE Transactions on Automatic Control, 2019

Carrillo, Craig, Wang and Wei, Foundations of Computational Mathematics, 2021

Mokrov, Korotin, Li, Gnevay, Solomon, and Burnaev, NeurIPS, 2021

Alvarez-Melis, Schiff, and Mroueh, NeurIPS, 2021

Wang, and Li, Journal of Scientific Computing, 2022

But all require centralized computing

Centralized Computing Can Become Intensive: Mean Field SGD Dynamics in NN Classification

Free energy functional: $F(\mu)=R(\hat{f}(\boldsymbol{x}, \mu))$
For quadratic loss:

$$
F(\mu)=F_{0}+\int_{\mathbb{R}^{p}} V(\boldsymbol{\theta}) \mathrm{d} \mu(\boldsymbol{\theta})+\int_{\mathbb{R}^{2 p}} U(\boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}) \mathrm{d} \mu(\boldsymbol{\theta}) \mathrm{d} \mu(\tilde{\boldsymbol{\theta}})
$$

depend on activation functions of the NN
Neuronal population measure dynamics: $\frac{\partial \mu}{\partial t}=\nabla \cdot\left(\mu \nabla \frac{\delta F}{\delta \mu}\right)=:-\nabla^{W_{2}} F(\mu)$
Wasserstein proximal recursion: $\mu_{k+1}=\operatorname{prox}_{h F}^{W}\left(\mu_{k}\right)$

Centralized Computing can become intensive: Mean Field SGD Dynamics in NN Classification

Case study: Wisconsin Breast Cancer (Diagnostic) Data Set

Classification accuracy for the WBDC dataset		
β	Estimate \#1	Estimate \#2
0.03	91.17%	92.35%
0.05	92.94%	92.94%
0.07	78.23%	92.94%

CPU: 3.4 GHz 6 core intel i5 8GB RAM ($\approx 33 \mathrm{hrs}$ runtime)
GPU: Jetson TX2 NVIDIA Pascal GPU 256 CUDA cores, 64 bit NVIDIA Denver + ARM Cortex A57 CPUs (≈ 2 hrs runtime)

Specific Instances of Additive Objective

$$
\underset{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}{\arg \inf } F_{1}(\mu)+F_{2}(\mu)+\ldots+F_{n}(\mu)
$$

Maximum likelihood deconvolution

$Y_{i}=X_{i}+Z_{i}, \quad X \sim \mu$ (unknown), PDF of Z is ρ_{Z} (known)
$F_{i}(\mu)=-\log \left(\int \rho_{Z}\left(Y_{i}-x\right) \mathrm{d} \mu(x)\right)$
If $\rho_{Z}=\mathcal{N}\left(0, \varepsilon^{2}\right)$
then the optimizer is the projection:
$\underset{\mu \in \mathcal{P}_{2}}{\arg \inf } W_{\varepsilon}^{2}\left(\mu, \frac{1}{n} \sum_{i=1}^{n} \delta_{Y_{i}}\right)$

Le transport optimal entropique correspond à l'estimateur du maximum de vraisemblance en déconvolution

Philippe Rigollet, Jonathan Weed

Specific Instances of Additive Objective

$$
\underset{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}{\arg \inf } F_{1}(\mu)+F_{2}(\mu)+\ldots+F_{n}(\mu)
$$

Wasserstein Barycenter of measures

Unregularized: $\quad F_{i}(\mu)=w_{i} W^{2}\left(\mu, \mu_{i}\right), \quad w_{i} \geq 0$ Sinkhorn-regularized: $\quad F_{i}(\mu)=w_{i} W_{\varepsilon}^{2}\left(\mu, \mu_{i}\right), \quad w_{i} \geq 0$

Our Present Work: Distributed Algorithm

$$
\underset{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}{\arg \inf } F_{1}(\mu)+F_{2}(\mu)+\ldots+F_{n}(\mu)
$$

Our Present Work: Distributed Algorithm

$$
\underset{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}{\arg \operatorname{in}} F_{1}(\mu)+F_{2}(\mu)+\ldots+F_{n}(\mu)
$$

Main idea:

$$
\begin{aligned}
& \underset{\left(\mu_{1}, \ldots, \mu_{n}, \zeta\right) \in \mathcal{P}_{2}^{n+1}\left(\mathbb{R}^{d}\right)}{\arg \inf } F_{1}\left(\mu_{1}\right)+F_{2}\left(\mu_{2}\right)+\ldots+F_{n}\left(\mu_{n}\right) \\
& \text { subject to } \quad \mu_{i}=\zeta \text { for all } i \in[n]
\end{aligned}
$$

Our Present Work: Distributed Algorithm

$$
\underset{\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}{\arg \inf } F_{1}(\mu)+F_{2}(\mu)+\ldots+F_{n}(\mu)
$$

Main idea:

$$
\begin{aligned}
& \underset{\left(\mu_{1}, \ldots, \mu_{n}, \zeta\right) \in \mathcal{P}_{2}^{n+1}\left(\mathbb{R}^{d}\right)}{\arg \inf } F_{1}\left(\mu_{1}\right)+F_{2}\left(\mu_{2}\right)+\ldots+F_{n}\left(\mu_{n}\right) \\
& \text { subject to } \quad \mu_{i}=\zeta \text { for all } i \in[n]
\end{aligned}
$$

Define Wasserstein augmented Lagrangian:

$$
\begin{aligned}
& L_{\alpha}\left(\mu_{1}, \ldots, \mu_{n}, \zeta, \nu_{1}, \ldots, \nu_{n}\right):= \sum_{i=1}^{n}\left\{F_{i}\left(\mu_{i}\right)+\frac{\alpha}{2} W^{2}\left(\mu_{i}, \zeta\right)+\int_{\mathbb{R}^{d}} \nu_{i}(\boldsymbol{\theta})\left(\mathrm{d} \mu_{i}-\mathrm{d} \zeta\right)\right\} \\
& \text { regularization }>0 \quad \text { Lagrange multipliers }
\end{aligned}
$$

Proposed Consensus ADMM

$$
\begin{aligned}
\mu_{i}^{k+1}= & \underset{\mu_{i} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}{\arg \inf } L_{\alpha}\left(\mu_{1}, \ldots, \mu_{n}, \zeta^{k}, \nu_{1}^{k}, \ldots, \nu_{n}^{k}\right) \\
\zeta^{k+1}= & \underset{\zeta \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}{\arg \inf } L_{\alpha}\left(\mu_{1}^{k+1}, \ldots, \mu_{n}^{k+1}, \zeta, \nu_{1}^{k}, \ldots, \nu_{n}^{k}\right) \\
\nu_{i}^{k+1}= & \nu_{i}^{k}+\alpha\left(\mu_{i}^{k+1}-\zeta^{k+1}\right)
\end{aligned}
$$

where $i \in[n], k \in \mathbb{N}_{0}$

Proposed Consensus ADMM

$$
\begin{aligned}
\mu_{i}^{k+1}= & \underset{\mu_{i} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}{\arg \inf } L_{\alpha}\left(\mu_{1}, \ldots, \mu_{n}, \zeta^{k}, \nu_{1}^{k}, \ldots, \nu_{n}^{k}\right) \\
\zeta^{k+1}= & \underset{\zeta \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}{\arg \inf } L_{\alpha}\left(\mu_{1}^{k+1}, \ldots, \mu_{n}^{k+1}, \zeta, \nu_{1}^{k}, \ldots, \nu_{n}^{k}\right) \\
\nu_{i}^{k+1}= & \nu_{i}^{k}+\alpha\left(\mu_{i}^{k+1}-\zeta^{k+1}\right)
\end{aligned}
$$

where $i \in[n], k \in \mathbb{N}_{0}$
Define

$$
\nu_{\mathrm{sum}}^{k}(\boldsymbol{\theta}):=\sum_{i=1}^{n} \nu_{i}^{k}(\boldsymbol{\theta}), \quad k \in \mathbb{N}_{0}
$$

and simplify the recursions to

$$
\begin{aligned}
\mu_{i}^{k+1} & =\operatorname{prox}_{\frac{1}{\alpha}\left(F_{i}(\cdot)+\int \nu_{i}^{k} \mathrm{~d}(\cdot)\right)}^{W}\left(\zeta^{k}\right) \\
\zeta^{k+1} & =\underset{\zeta \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}{\arg \inf }\left\{\left(\sum_{i=1}^{n} W^{2}\left(\mu_{i}^{k+1}, \zeta\right)\right)-\frac{2}{\alpha} \int_{\mathbb{R}^{d}} \nu_{\text {sum }}^{k}(\boldsymbol{\theta}) \mathrm{d} \zeta\right\} \\
\nu_{i}^{k+1} & =\nu_{i}^{k}+\alpha\left(\mu_{i}^{k+1}-\zeta^{k+1}\right)
\end{aligned}
$$

Proposed Consensus ADMM (contd.)

$$
\begin{aligned}
& \mu_{i}^{k+1}=\operatorname{prox}_{\frac{1}{\alpha}\left(F_{i} \cdot(\cdot)+\int \nu_{i}^{k} \mathrm{~d}(\cdot)\right)}^{W}\left(\zeta^{k}\right) \\
& \zeta^{k+1}=\underset{\zeta \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}{\arg \inf }\left\{\left(\sum_{i=1}^{n} W^{2}\left(\mu_{i}^{k+1}, \zeta\right)\right)-\frac{2}{\alpha} \int_{\mathbb{R}^{d}} \nu_{\text {sum }}^{k}(\boldsymbol{\theta}) \mathrm{d} \zeta\right\} \\
& \nu_{i}^{k+1}=\nu_{i}^{k}+\alpha\left(\mu_{i}^{k+1}-\zeta^{k+1}\right)
\end{aligned}
$$

Split free energy functionals: $\Phi_{i}\left(\mu_{i}\right):=F_{i}\left(\mu_{i}\right)+\int_{\mathbb{R}^{d}} \nu_{i}^{k} \mathrm{~d} \mu_{i}$
\therefore Distributed Wasserstein prox \approx time updates of $\frac{\partial \tilde{\mu}_{i}}{\partial t}=-\nabla^{W} \Phi_{i}\left(\tilde{\mu}_{i}\right)$

Proposed Consensus ADMM (contd.)

$$
\begin{aligned}
& \mu_{i}^{k+1}=\operatorname{prox}_{\frac{1}{\alpha}\left(F_{i} \cdot(\cdot)+\int \nu_{i}^{k} \mathrm{~d}(\cdot)\right)}^{W}\left(\zeta^{k}\right) \\
& \zeta^{k+1}=\underset{\zeta \in \mathcal{P}_{\mathcal{P}}\left(\mathbb{R}^{d}\right)}{\arg \inf }\left\{\left(\sum_{i=1}^{n} W^{2}\left(\mu_{i}^{k+1}, \zeta\right)\right)-\frac{2}{\alpha} \int_{\mathbb{R}^{d}} \nu_{\text {sum }}^{k}(\boldsymbol{\theta}) \mathrm{d} \zeta\right\} \\
& \nu_{i}^{k+1}=\nu_{i}^{k}+\alpha\left(\mu_{i}^{k+1}-\zeta^{k+1}\right)
\end{aligned}
$$

Split free energy functionals: $\Phi_{i}\left(\mu_{i}\right):=F_{i}\left(\mu_{i}\right)+\int_{\mathbb{R}^{d}} \nu_{i}^{k} \mathrm{~d} \mu_{i}$
\therefore Distributed Wasserstein prox \approx time updates of $\frac{\partial \tilde{\mu}_{i}}{\partial t}=-\nabla^{W} \Phi_{i}\left(\tilde{\mu}_{i}\right)$

Examples:

$\Phi_{i}(\cdot)=F_{i}(\cdot)+\int \nu_{i}^{k} \mathrm{~d}(\cdot)$	PDE	Name
$\int_{\mathbb{R}^{d}}\left(V(\boldsymbol{\theta})+\nu_{i}^{k}(\boldsymbol{\theta})\right) \mathrm{d} \mu_{i}(\boldsymbol{\theta})$	$\frac{\partial \widetilde{\mu}_{i}}{\partial t}=\nabla \cdot\left(\widetilde{\mu}_{i}\left(\nabla V+\nabla \nu_{i}^{k}\right)\right)$	Liouville equation
$\int_{\mathbb{R}^{d}}\left(\nu_{i}^{k}(\boldsymbol{\theta})+\beta^{-1} \log \mu_{i}(\boldsymbol{\theta})\right) \mathrm{d} \mu_{i}(\boldsymbol{\theta})$	$\frac{\partial \widetilde{\mu}_{i}}{\partial t}=\nabla \cdot\left(\widetilde{\mu}_{i} \nabla \nu_{i}^{k}\right)+\beta^{-1} \Delta \widetilde{\mu}_{i}$	Fokker-Planck equation
$\int_{\mathbb{R}^{d}} \nu_{i}^{k}(\boldsymbol{\theta}) \mathrm{d} \mu_{i}(\boldsymbol{\theta})+\int_{\mathbb{R}^{2 d}} U(\boldsymbol{\theta}, \boldsymbol{\sigma}) \mathrm{d} \mu_{i}(\boldsymbol{\theta}) \mathrm{d} \mu_{i}(\boldsymbol{\sigma})$	$\frac{\partial \widetilde{\mu}_{i}}{\partial t}=\nabla \cdot\left(\widetilde{\mu}_{i}\left(\nabla \nu_{i}^{k}+\nabla\left(U \circledast \widetilde{\mu}_{i}\right)\right)\right)$	Propagation of chaos equation
$\int_{\mathbb{R}^{d}}\left(\nu_{i}^{k}(\boldsymbol{\theta})+\frac{\beta^{-1}}{m-1} \mathbf{1}^{\top} \mu_{i}^{m}\right) \mathrm{d} \mu_{i}(\boldsymbol{\theta}), m>1$	$\frac{\partial \widetilde{\mu}_{i}}{\partial t}=\nabla \cdot\left(\widetilde{\mu}_{i} \nabla \nu_{i}^{k}\right)+\beta^{-1} \Delta \widetilde{\mu}_{i}^{m}$	Porous medium equation

Discrete Version of the Proposed ADMM

$$
\begin{aligned}
\boldsymbol{\mu}_{i}^{k+1} & =\operatorname{prox}_{\frac{1}{\alpha}\left(F_{i}\left(\boldsymbol{\mu}_{i}\right)+\left\langle\boldsymbol{\nu}_{i}^{k}, \boldsymbol{\mu}_{i}\right\rangle\right)}^{W}\left(\boldsymbol{\zeta}^{k}\right) \quad \text { Euclidean distance matrix } \\
& =\underset{\boldsymbol{\mu}_{i} \in \Delta^{N-1}}{\arg \inf }\left\{\min _{\boldsymbol{M} \in \Pi_{N}\left(\boldsymbol{\mu}_{i}, \zeta^{k}\right)} \frac{1}{2}\langle\boldsymbol{C}, \boldsymbol{M}\rangle+\frac{1}{\alpha}\left(F_{i}\left(\boldsymbol{\mu}_{i}\right)+\left\langle\boldsymbol{\nu}_{i}^{k}, \boldsymbol{\mu}_{i}\right\rangle\right)\right\} \\
\boldsymbol{\zeta}^{k+1} & =\underset{\boldsymbol{\zeta} \in \Delta^{N-1}}{\arg \inf }\left\{\left(\sum_{i=1}^{n} \min _{\boldsymbol{M}_{i} \in \Pi_{N}\left(\boldsymbol{\mu}_{i}^{k+1}, \boldsymbol{\zeta}\right)} \frac{1}{2}\left\langle\boldsymbol{C}, \boldsymbol{M}_{i}\right\rangle\right)-\frac{2}{\alpha}\left\langle\boldsymbol{\nu}_{\text {sum }}^{k}, \boldsymbol{\zeta}\right\rangle\right\}
\end{aligned}
$$

$$
\boldsymbol{\nu}_{i}^{k+1}=\boldsymbol{\nu}_{i}^{k}+\alpha\left(\boldsymbol{\mu}_{i}^{k+1}-\boldsymbol{\zeta}^{k+1}\right) \quad \text { where } N \text { is the number of samples }
$$

Discrete Version of the Proposed ADMM

$$
\begin{aligned}
\boldsymbol{\mu}_{i}^{k+1} & =\operatorname{prox}_{\frac{1}{\alpha}\left(F_{i}\left(\boldsymbol{\mu}_{i}\right)+\left\langle\boldsymbol{\nu}_{i}^{k}, \boldsymbol{\mu}_{i}\right\rangle\right)}^{W}\left(\boldsymbol{\zeta}^{k}\right) \\
& =\underset{\boldsymbol{\mu}_{i} \in \Delta^{N-1}}{\arg \inf }\left\{\min _{\boldsymbol{M} \in \Pi_{N}\left(\boldsymbol{\mu}_{i}, \zeta^{k}\right)} \frac{1}{2}\langle\boldsymbol{C}, \boldsymbol{M}\rangle+\frac{1}{\alpha}\left(F_{i}\left(\boldsymbol{\mu}_{i}\right)+\left\langle\boldsymbol{\nu}_{i}^{k}, \boldsymbol{\mu}_{i}\right\rangle\right)\right\} \\
\boldsymbol{\zeta}^{k+1} & =\underset{\boldsymbol{\zeta} \in \Delta^{N-1}}{\arg \inf }\left\{\left(\sum_{i=1}^{n} \min _{\boldsymbol{M}_{i} \in \Pi_{N}\left(\boldsymbol{\mu}_{i}^{k+1}, \boldsymbol{\zeta}\right)} \frac{1}{2}\left\langle\boldsymbol{C}, \boldsymbol{M}_{i}\right\rangle\right)-\frac{2}{\alpha}\left\langle\boldsymbol{\nu}_{\text {sum }}^{k}, \boldsymbol{\zeta}\right\rangle\right\} \\
\boldsymbol{\nu}_{i}^{k+1} & =\boldsymbol{\nu}_{i}^{k}+\alpha\left(\boldsymbol{\mu}_{i}^{k+1}-\boldsymbol{\zeta}^{k+1}\right)
\end{aligned}
$$

With Sinkhorn regularization:

$$
\begin{aligned}
& \boldsymbol{\mu}_{i}^{k+1}=\operatorname{prox}_{\frac{1}{\alpha}\left(F_{i}\left(\boldsymbol{\mu}_{i}\right)+\left\langle\boldsymbol{\nu}_{i}^{k}, \boldsymbol{\mu}_{i}\right\rangle\right)}^{W_{\varepsilon}}\left(\boldsymbol{\zeta}^{k}\right) \\
& =\underset{\boldsymbol{\mu}_{i} \in \Delta^{N-1}}{\arg \inf \left\{\min _{M \in \Pi_{N}\left(\boldsymbol{\mu}_{i}, \zeta^{k}\right)}\left\langle\frac{1}{2} \boldsymbol{C}+\varepsilon \log \boldsymbol{M}, \boldsymbol{M}\right\rangle+\frac{1}{\alpha}\left(F_{i}\left(\boldsymbol{\mu}_{i}\right)+\left\langle\boldsymbol{\nu}_{i}^{k}, \boldsymbol{\mu}_{i}\right\rangle\right)\right\}} \\
& \boldsymbol{\zeta}^{k+1}=\underset{\boldsymbol{\zeta} \in \Delta^{N-1}}{\arg \inf }\left\{\left(\sum_{i=1}^{n} \min _{\boldsymbol{M}_{i} \in \Pi_{N}\left(\boldsymbol{\mu}_{i}^{k+1}, \boldsymbol{\zeta}\right)}\left\langle\frac{1}{2} \boldsymbol{C}+\varepsilon \log \boldsymbol{M}_{i}, \boldsymbol{M}_{i}\right\rangle\right)-\frac{2}{\alpha}\left\langle\boldsymbol{\nu}_{\mathrm{sum}}^{k}, \boldsymbol{\zeta}\right\rangle\right\} \\
& \boldsymbol{\nu}_{i}^{k+1}=\boldsymbol{\nu}_{i}^{k}+\alpha\left(\boldsymbol{\mu}_{i}^{k+1}-\boldsymbol{\zeta}^{k+1}\right)
\end{aligned}
$$

Discrete Version of the Proposed ADMM

$$
\begin{aligned}
\boldsymbol{\mu}_{i}^{k+1} & =\operatorname{prox}_{\frac{1}{\alpha}\left(F_{i}\left(\boldsymbol{\mu}_{i}\right)+\left\langle\boldsymbol{\nu}_{i}^{k}, \boldsymbol{\mu}_{i}\right\rangle\right)}^{W}\left(\boldsymbol{\zeta}^{k}\right) \\
& =\underset{\boldsymbol{\mu}_{i} \in \Delta^{N-1}}{\arg \inf }\left\{\min _{\boldsymbol{M} \in \Pi_{N}\left(\boldsymbol{\mu}_{i}, \zeta^{k}\right)} \frac{1}{2}\langle\boldsymbol{C}, \boldsymbol{M}\rangle+\frac{1}{\alpha}\left(F_{i}\left(\boldsymbol{\mu}_{i}\right)+\left\langle\boldsymbol{\nu}_{i}^{k}, \boldsymbol{\mu}_{i}\right\rangle\right)\right\} \\
\boldsymbol{\zeta}^{k+1} & =\underset{\boldsymbol{\zeta} \in \Delta^{N-1}}{\arg \inf }\left\{\left(\sum_{i=1}^{n} \min _{\boldsymbol{M}_{i} \in \Pi_{N}\left(\boldsymbol{\mu}_{i}^{k+1}, \boldsymbol{\zeta}\right)} \frac{1}{2}\left\langle\boldsymbol{C}, \boldsymbol{M}_{i}\right\rangle\right)-\frac{2}{\alpha}\left\langle\boldsymbol{\nu}_{\mathrm{sum}}^{k}, \boldsymbol{\zeta}\right\rangle\right\} \\
\boldsymbol{\nu}_{i}^{k+1} & =\boldsymbol{\nu}_{i}^{k}+\alpha\left(\boldsymbol{\mu}_{i}^{k+1}-\boldsymbol{\zeta}^{k+1}\right)
\end{aligned}
$$

With Sinkhorn regularization:

Discrete Sinkhorn divergence

$$
\begin{aligned}
& \boldsymbol{\mu}_{i}^{k+1}=\operatorname{prox}_{\frac{1}{\alpha}\left(F_{i}\left(\boldsymbol{\mu}_{i}\right)+\left\langle\boldsymbol{\nu}_{i}^{k}, \boldsymbol{\mu}_{i}\right\rangle\right)}^{W_{\varepsilon}}\left(\boldsymbol{\zeta}^{k}\right) \\
& =\underset{\boldsymbol{\mu}_{i} \in \Delta^{N-1}}{\arg \inf \left\{\min _{M \in \Pi_{N}\left(\boldsymbol{\mu}_{i}, \zeta^{k}\right)}\left\langle\frac{1}{2} \boldsymbol{C}+\varepsilon \log \boldsymbol{M}, \boldsymbol{M}\right\rangle+\frac{1}{\alpha}\left(F_{i}\left(\boldsymbol{\mu}_{i}\right)+\left\langle\boldsymbol{\nu}_{i}^{k}, \boldsymbol{\mu}_{i}\right\rangle\right)\right\}} \\
& \left.\left.\boldsymbol{\zeta}^{k+1}=\underset{\boldsymbol{\zeta} \in \Delta^{N-1}}{\arg \inf \left\{\left(\sum_{i=1}^{n} \boldsymbol{M}_{i} \in \Pi_{N}\left(\boldsymbol{\mu}_{i}^{k+1}, \boldsymbol{\zeta}\right)\right.\right.}\left\langle\frac{1}{2} \boldsymbol{C}+\varepsilon \log \boldsymbol{M}_{i}, \boldsymbol{M}_{i}\right\rangle\right)-\frac{2}{\alpha}\left\langle\boldsymbol{\nu}_{\text {sum }}^{k}, \boldsymbol{\zeta}\right\rangle\right\} \begin{array}{l}
\text { Inner } \\
\text { layer } \\
\text { ADMM }
\end{array} \\
& \boldsymbol{\nu}_{i}^{k+1}=\boldsymbol{\nu}_{i}^{k}+\alpha\left(\boldsymbol{\mu}_{i}^{k+1}-\boldsymbol{\zeta}^{k+1}\right)
\end{aligned}
$$

Overall Schematic

Distributed Processor \# 1

μ_{i} update \leadsto Outer Consensus (Sinkhorn) ADMM

Example. $\Phi(\boldsymbol{\mu}):=\langle\boldsymbol{a}, \boldsymbol{\mu}\rangle, \boldsymbol{a} \in \mathbb{R}^{N} \backslash\{\boldsymbol{0}\}, \boldsymbol{\mu}, \zeta \in \Delta^{N-1}, \boldsymbol{\Gamma}:=\exp (-\boldsymbol{C} / 2 \varepsilon), \varepsilon>0$

$$
\operatorname{prox}_{\frac{1}{\alpha} \Phi}^{W_{\varepsilon}}(\zeta)=\exp \left(-\frac{1}{\alpha \varepsilon} \boldsymbol{a}\right) \odot\left(\boldsymbol{\Gamma}^{\top}\left(\zeta \oslash\left(\boldsymbol{\Gamma} \exp \left(-\frac{1}{\alpha \varepsilon} \boldsymbol{a}\right)\right)\right)\right)
$$

μ_{i} update \leadsto Outer Consensus (Sinkhorn) ADMM

Example. $\Phi(\boldsymbol{\mu}):=\langle\boldsymbol{a}, \boldsymbol{\mu}\rangle, \boldsymbol{a} \in \mathbb{R}^{N} \backslash\{\boldsymbol{0}\}, \boldsymbol{\mu}, \boldsymbol{\zeta} \in \Delta^{N-1}, \boldsymbol{\Gamma}:=\exp (-\boldsymbol{C} / 2 \varepsilon), \varepsilon>0$

$$
\operatorname{prox}_{\frac{1}{\alpha} \Phi}^{W_{\varepsilon}}(\boldsymbol{\zeta})=\exp \left(-\frac{1}{\alpha \varepsilon} \boldsymbol{a}\right) \odot\left(\boldsymbol{\Gamma}^{\top}\left(\zeta \oslash\left(\boldsymbol{\Gamma} \exp \left(-\frac{1}{\alpha \varepsilon} \boldsymbol{a}\right)\right)\right)\right)
$$

Example. $G_{i}\left(\boldsymbol{\mu}_{i}\right):=F_{i}\left(\boldsymbol{\mu}_{i}\right)+\left\langle\boldsymbol{\nu}_{i}^{k}, \boldsymbol{\mu}_{i}\right\rangle, \boldsymbol{\zeta}^{k} \in \Delta^{N-1}, k \in \mathbb{N}_{0}$.
Convex

$$
\boldsymbol{\mu}_{i}^{k+1}=\operatorname{prox}_{\frac{1}{\alpha}\left(F_{i}\left(\boldsymbol{\mu}_{i}\right)+\left\langle\boldsymbol{\nu}_{i}^{k}, \boldsymbol{\mu}_{i}\right\rangle\right)}^{W_{\mathcal{N}^{\prime}}}\left(\boldsymbol{\zeta}^{k}\right)=\exp \left(\frac{\boldsymbol{\lambda}_{1 i}^{\mathrm{opt}}}{\alpha \varepsilon}\right) \odot\left(\exp \left(-\frac{\boldsymbol{C}^{\top}}{2 \varepsilon}\right) \exp \left(\frac{\lambda_{0 i}^{\mathrm{opt}}}{\alpha \varepsilon}\right)\right)
$$

where $\boldsymbol{\lambda}_{0 i}^{\mathrm{opt}}, \boldsymbol{\lambda}_{1 i}^{\mathrm{opt}} \in \mathbb{R}^{N}$ solve

$$
\begin{aligned}
& \exp \left(\frac{\lambda_{0 i i}^{\text {opt }}}{\alpha \varepsilon}\right) \odot\left(\exp \left(-\frac{C}{2 \varepsilon}\right) \exp \left(\frac{\lambda_{1 i}^{\text {opt }}}{\alpha \varepsilon}\right)\right)=\zeta_{k}, \\
& \mathbf{0} \in \partial_{\lambda_{1 i}^{\text {opt }}} G_{i}^{*}\left(-\boldsymbol{\lambda}_{1 i}^{\text {opt }}\right)-\exp \left(\frac{\lambda_{1 i}^{\mathrm{opt}}}{\alpha \varepsilon}\right) \odot\left(\exp \left(-C^{\top}\right) \exp \left(\frac{\boldsymbol{\lambda}_{0 i}^{\mathrm{opt}}}{\alpha \varepsilon}\right)\right) .
\end{aligned}
$$

ζ update \rightsquigarrow Inner (Euclidean) ADMM

Theorem.

Consider the convex problem

$$
\begin{align*}
& \left(\boldsymbol{u}_{1}^{\mathrm{opt}}, \ldots, \boldsymbol{u}_{n}^{\mathrm{opt}}\right)=\underset{\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}\right) \in \mathbb{R}^{n N}}{\arg \min } \sum_{i=1}^{n}\left\langle\boldsymbol{\mu}_{i}^{k+1}, \log \left(\boldsymbol{\Gamma} \exp \left(\boldsymbol{u}_{i} / \varepsilon\right)\right)\right\rangle \\
& \quad \text { subject to } \sum_{i=1}^{n} \boldsymbol{u}_{i}=\frac{2}{\alpha} \boldsymbol{\nu}_{\mathrm{sum}}^{k} . \\
& \text { Then }
\end{align*}
$$

$$
\boldsymbol{\zeta}^{k+1}=\exp \left(\boldsymbol{u}_{i}^{\mathrm{opt}} / \varepsilon\right) \odot\left(\boldsymbol{\Gamma}\left(\boldsymbol{\mu}_{i}^{k+1} \odot\left(\boldsymbol{\Gamma} \exp \left(\boldsymbol{u}_{i}^{\text {opt }} / \varepsilon\right)\right)\right)\right) \in \Delta^{N-1} \forall i \in[n] .
$$

ζ update \leadsto Inner (Euclidean) ADMM

Theorem.

Let $f_{i}\left(\boldsymbol{u}_{i}\right):=\left\langle\boldsymbol{\mu}_{i}^{k+1}, \log \left(\boldsymbol{\Gamma} \exp \left(\boldsymbol{u}_{i} / \varepsilon\right)\right)\right\rangle, \quad \boldsymbol{u}_{i} \in \mathbb{R}^{N}, \quad$ for all $i \in[n]$,

Then the following Euclidean ADMM solves ($\boldsymbol{\mathcal { V }}$)

$$
\begin{aligned}
& \boldsymbol{u}_{i}^{\ell+1}=\operatorname{prox}_{\frac{1}{\tau} f_{i}}^{\|\cdot\|_{2}}\left(\boldsymbol{z}_{i}^{\ell}-\widetilde{\boldsymbol{\nu}}_{i}^{\ell}\right) \longleftarrow \quad \text { No analytical solution, use e.g., } \\
& \boldsymbol{z}_{i}^{\ell+1}=\left(\boldsymbol{u}_{i}^{\ell+1}-\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{u}_{i}^{\ell+1}\right)+\left(\widetilde{\boldsymbol{\nu}}_{i}^{\ell}-\frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{\nu}}_{i}^{\ell}\right)+\frac{2}{n \alpha} \boldsymbol{\nu}_{\text {sum }}^{k} \\
& \widetilde{\boldsymbol{\nu}}_{i}^{\ell+1}=\widetilde{\boldsymbol{\nu}}_{i}^{\ell}+\left(\boldsymbol{u}_{i}^{\ell+1}-\boldsymbol{z}_{i}^{\ell+1}\right)
\end{aligned}
$$

ζ update \leadsto Inner (Euclidean) ADMM

Theorem.

Let $f_{i}\left(\boldsymbol{u}_{i}\right):=\left\langle\boldsymbol{\mu}_{i}^{k+1}, \log \left(\boldsymbol{\Gamma} \exp \left(\boldsymbol{u}_{i} / \varepsilon\right)\right)\right\rangle, \quad \boldsymbol{u}_{i} \in \mathbb{R}^{N}, \quad$ for all $i \in[n]$,

Then the following Euclidean ADMM solves ($\boldsymbol{\mathcal { V }}$)

$$
\boldsymbol{u}_{i}^{\ell+1}=\operatorname{prox}_{\frac{1}{\tau} f_{i}}^{\|\cdot\|_{2}}\left(\boldsymbol{z}_{i}^{\ell}-\widetilde{\boldsymbol{\nu}}_{i}^{\ell}\right) \rightleftarrows \begin{aligned}
& \text { No analytical solution, use e.g., } \\
& \text { Newton's method (has structured Hess) }
\end{aligned}
$$

$\boldsymbol{z}_{i}^{\ell+1}=\left(\boldsymbol{u}_{i}^{\ell+1}-\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{u}_{i}^{\ell+1}\right)+\left(\widetilde{\boldsymbol{\nu}}_{i}^{\ell}-\frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{\nu}}_{i}^{\ell}\right)+\frac{2}{n \alpha} \boldsymbol{\nu}_{\text {sum }}^{k}$

$$
\widetilde{\boldsymbol{\nu}}_{i}^{\ell+1}=\widetilde{\boldsymbol{\nu}}_{i}^{\ell}+\left(\boldsymbol{u}_{i}^{\ell+1}-\boldsymbol{z}_{i}^{\ell+1}\right)
$$

Theorem (informal).

Guaranteed convergence for inner layer ADMM under some constraints on hyper-parameters

Experiment \#1

Centralized computation:

Caluya and Halder, IEEE Trans. Automatic Control, 2019

Linear Fokker-Planck-Kolmogorov PDE
$\frac{\partial \mu}{\partial t}=\nabla \cdot(\mu \nabla V)+\beta^{-1} \Delta \mu$
$V\left(x_{1}, x_{2}\right)=\frac{1}{4}\left(1+x_{1}^{4}\right)+\frac{1}{2}\left(x_{2}^{2}-x_{1}^{2}\right)$
$\mu_{\infty} \propto \exp \left(-\beta V\left(x_{1}, x_{2}\right)\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}$

Distributed computation:

$$
F_{1}(\boldsymbol{\mu})=\left\langle\boldsymbol{V}_{k}, \boldsymbol{\mu}\right\rangle \quad F_{2}(\boldsymbol{\mu})=\left\langle\beta^{-1} \log \boldsymbol{\mu}, \boldsymbol{\mu}\right\rangle
$$

Runtime 99.89 s on Macbook Air 1.1 GHz intel i5 8GB RAM

Experiment \# 2

Aggregation-drift-diffusion nonlinear PDE

$$
\frac{\partial \mu}{\partial t}=\underbrace{\nabla \cdot(\mu \nabla(U * \mu))}_{i=1}+\underbrace{\nabla \cdot(\mu \nabla V)+\beta^{-1} \Delta \mu^{2}}_{i=2}
$$

$U(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{x}\|_{2}^{2}-\ln \|\boldsymbol{x}\|_{2}$

$$
V(\boldsymbol{x})=-\frac{1}{4} \ln \|\boldsymbol{x}\|_{2}
$$

Distributed computation:

$F_{1}(\boldsymbol{\mu})=\left\langle\boldsymbol{U}_{k} \boldsymbol{\mu}, \boldsymbol{\mu}\right\rangle \quad F_{2}(\boldsymbol{\mu})=\left\langle\boldsymbol{V}_{k}+\beta^{-1} \log \boldsymbol{\mu}, \boldsymbol{\mu}\right\rangle$

Centralized computation:

Carrillo, Craig, Wang and Wei, FOCM, 2021

$\mathrm{t}=2.0$

$$
\lim _{\beta^{-1} \downarrow 0} \mu_{\infty}=\operatorname{Unif}(\mathscr{A})
$$

Annulus with inner radius $1 / 2$ and outer radius $\sqrt{5} / 2$

Experiment \# 2 (contd.)

Aggregation-drift-diffusion nonlinear PDE

$$
\frac{\partial \mu}{\partial t}=\underbrace{\nabla \cdot(\mu \nabla(U * \mu))}_{i=1}+\underbrace{\nabla \cdot(\mu \nabla V)+\beta^{-1} \Delta \mu^{2}}_{i=2}
$$

Distributed computation:

Centralized computation:

Carrillo, Craig, Wang and Wei, FOCM, 2021

$$
U(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{x}\|_{2}^{2}-\ln \|\boldsymbol{x}\|_{2}
$$

$$
V(\boldsymbol{x})=-\frac{1}{4} \ln \|\boldsymbol{x}\|_{2}
$$

$$
F_{1}(\boldsymbol{\mu})=\left\langle\boldsymbol{U}_{k} \boldsymbol{\mu}, \boldsymbol{\mu}\right\rangle \quad F_{2}(\boldsymbol{\mu})=\left\langle\boldsymbol{V}_{k}+\beta^{-1} \log \boldsymbol{\mu}, \boldsymbol{\mu}\right\rangle \quad \text { Annulus with inner radius } 1 / 2 \text { and outer radius } \sqrt{5} / 2
$$

Experiment \# 2 (contd.)
B_{n} is nth Bell number, e.g., $B_{2}=2, B_{3}=5, B_{4}=15, B_{5}=52, \ldots$

100 run statistics for each of the 4 ways of splitting: ($\bar{B}_{n}-1$ ways in general)

Experiment \# 2 (contd.)

100 run statistics for each of the 4 ways of splitting: ($B_{n}-1$ ways in general)

Splitting case	Functionals	Wasserstein distance
\#1	$\begin{aligned} & F_{1}(\boldsymbol{\mu})=\left\langle\boldsymbol{V}_{k}+\beta^{-1} \boldsymbol{\mu}, \boldsymbol{\mu}\right\rangle \\ & F_{2}(\boldsymbol{\mu})=\left\langle\boldsymbol{U}_{k} \boldsymbol{\mu}^{k}, \boldsymbol{\mu}\right\rangle \end{aligned}$ av. runtime $=294.06 \mathrm{~s}$	
\#2	$\begin{aligned} & F_{1}(\boldsymbol{\mu})=\left\langle\boldsymbol{U}_{k} \boldsymbol{\mu}^{k}+\beta^{-1} \boldsymbol{\mu}, \boldsymbol{\mu}\right\rangle, \\ & F_{2}(\boldsymbol{\mu})=\left\langle\boldsymbol{V}_{k}, \boldsymbol{\mu}\right\rangle \end{aligned}$ av. runtime $=285.32 \mathrm{~s}$	
\#3	$\begin{aligned} & F_{1}(\boldsymbol{\mu})=\left\langle\boldsymbol{U}_{k} \boldsymbol{\mu}^{k}+\boldsymbol{V}_{k}, \boldsymbol{\mu}\right\rangle, \\ & F_{2}(\boldsymbol{\mu})=\left\langle\beta^{-1} \boldsymbol{\mu}, \boldsymbol{\mu}\right\rangle \end{aligned}$ av. runtime $=289.87 \mathrm{~s}$	
\#4	$\begin{aligned} & F_{1}(\boldsymbol{\mu})=\left\langle\boldsymbol{V}_{k}, \boldsymbol{\mu}\right\rangle, \\ & F_{2}(\boldsymbol{\mu})=\left\langle\boldsymbol{U}_{k} \boldsymbol{\mu}^{k}\right\rangle, \\ & F_{3}(\boldsymbol{\mu})=\left\langle\beta^{-1} \boldsymbol{\mu}, \boldsymbol{\mu}\right\rangle \end{aligned}$ av. runtime $=108.99 \mathrm{~s}$	

Experiment \# 2 (contd.) Centralized is pink dotted (repeated in subplots)

100 run statistics for each of the 4 ways of splitting: ($B_{n}-1$ ways in general)

Case	Functionals	Wasserstein distances
\#1	$\begin{aligned} & F_{1}(\boldsymbol{\mu})=\left\langle\begin{array}{l} \left.\boldsymbol{V}_{k}+\beta^{-1} \boldsymbol{\mu}, \boldsymbol{\mu}\right\rangle \\ F_{2}(\boldsymbol{\mu})=\left\langle\boldsymbol{U}_{k} \boldsymbol{\mu}^{k}, \boldsymbol{\mu}\right\rangle \end{array},\right. \end{aligned}$	
\#2	$\begin{aligned} & F_{1}(\boldsymbol{\mu})=\left\langle\boldsymbol{U}_{k} \boldsymbol{\mu}^{k}+\beta^{-1} \boldsymbol{\mu}, \boldsymbol{\mu}\right\rangle \\ & F_{2}(\boldsymbol{\mu})=\left\langle\boldsymbol{V}_{k}, \boldsymbol{\mu}\right\rangle \end{aligned}$	
\#3	$\begin{aligned} & F_{1}(\boldsymbol{\mu})=\left\langle\boldsymbol{U}_{k} \boldsymbol{\mu}^{k}+\boldsymbol{V}_{k}, \boldsymbol{\mu}\right\rangle, \\ & F_{2}(\boldsymbol{\mu})=\left\langle\beta^{-1} \boldsymbol{\mu}, \boldsymbol{\mu}\right\rangle \end{aligned}$	
\#4	$\begin{aligned} & F_{1}(\boldsymbol{\mu})=\left\langle\boldsymbol{V}_{k}, \boldsymbol{\mu}\right\rangle \\ & F_{2}(\boldsymbol{\mu})=\left\langle\boldsymbol{U}_{k} \boldsymbol{\mu}^{k}, \boldsymbol{\mu}\right\rangle, \\ & F_{3}(\boldsymbol{\mu})=\left\langle\beta^{-1} \boldsymbol{\mu}, \boldsymbol{\mu}\right\rangle \end{aligned}$	

Experiment \#3

Sinkhorn regularized barycenter

Summary

Distributed computation for measure-valued optimization

Distributed Processor \#1

Realizes measure-valued operator splitting

Takes advantage of the existing proximal and JKO type algorithms
preprint arXiv:2309.07351

Ongoing

Convergence guarantees for the outer layer ADMM (technically challenging)

Is there an optimal way to split?

Open Postdoc Positions on Stochastic Control, Learning, Optimal Transport, Schrödinger Bridge

URL: https:/ /isu.wd1.myworkdayjobs.com/IowaStateJobs/job/ Ames-IA/Postdoctoral-Research-Associate R13304

Applications due: Nov. 08, 2023

Thank You

Support:

Back up Slides

More Results for Experiment \# 2

Effect of Varying the Outer Layer ADMM Barrier Parameter α

α	10	10.5	11	11.5	12	12.5	13	13.5	14	14.5	15
F^{10000}, case \#1	10.8945	10.9153	10.9058	10.9224	10.8978	10.9064	10.8922	10.9203	10.9124	10.9203	10.9139
F^{10000}, case \#2	11.0544	11.0586	11.0624	11.0598	11.0618	11.0578	11.0694	11.0692	11.0591	11.0570	11.0561
F^{10000}, case \#3	11.0282	11.0344	11.0296	11.0325	11.0275	11.0312	11.0338	11.0301	11.0395	11.0351	11.0305
F^{10000}, case \#4	16.5034	16.5051	16.5087	16.5012	16.5106	16.5080	16.5049	16.5029	16.5030	16.5018	16.5057

Effect of Varying the Inner Layer ADMM Iteration Number

Inner layer ADMM iter. \#	3	4	5	6	7	8	9	10
F^{10000}, case \#1	10.9263	10.8981	10.9165	10.8997	10.9124	10.9157	10.8813	10.9009
F^{10000}, case \#2	11.0638	11.0546	11.0643	11.0625	11.0632	11.0583	11.0701	11.0678
F^{10000}, case \#3	11.0368	11.0457	11.0374	11.0381	11.0363	11.0359	11.0318	11.0322
F^{10000}, case \#4	16.5072	16.5023	16.5046	16.5001	16.5123	16.5039	16.5045	16.5034

