Control of Large Scale Cyberphysical Systems

Abhishek Halder

Department of Mechanical and Aerospace Engineering University of California, Irvine Irvine, CA 92697-3975

Motivation: Drone Traffic Management

Motivation: Smart Grid Demand Response

Controlling Population of ACs

What to Control

Outlook

Continuum of systems

Finitely many systems

One system

Outline of Today's Talk

Part I: An Application Controlling Air Conditioners

Part II: A Theory Controlling Density

Part III: Ongoing and Future Research Unmanned Aerial Systems Traffic Management

Part I. An Application

Controlling Air Conditioners

Direct Control for Demand Response

Joint work with X. Geng, F.A.C.C. Fontes, P.R. Kumar, and L. Xie

Research Scope

Objective: A theory of operation for the LSE

Challenges:

1. How to design the target consumption as a function of price?

2. How to control so as to preserve **privacy** of the loads' states?

3. How to respect loads' **contractual obligations** (e.g. comfort range width Δ)?

Two Layer Block Diagram

First Layer: Planning Optimal Consumption

$$\underset{\{u_1(t),\dots,u_N(t)\}\in\{0,1\}^N}{\text{minimize}} \int_0^T \frac{P}{\eta} \quad \widehat{\pi}(t) \quad (u_1(t) + u_2(t) + \dots + u_N(t)) \, \mathrm{d}t$$

subject to

(1)
$$\dot{\theta}_i = -\alpha_i \left(\theta_i(t) - \widehat{\theta}_a(t) \right) - \beta_i P u_i(t) \quad \forall i = 1, \dots, N,$$

(2)
$$\int_0^T (u_1(t) + u_2(t) + \ldots + u_N(t)) dt = \tau \doteq \frac{\eta E}{NP} (< T, \text{given})$$

(3) $L_{i0} \leq \theta_i(t) \leq U_{i0}$ $\forall i = 1, \dots, N.$

Optimal consumption: $P_{\text{ref}}^{*}(t) = \frac{P}{\eta} \sum_{i=1}^{N} u_{i}^{*}(t)$

First Layer: "discretize-then-optimize"

Numerical challenges for MILP and LP

Solution: continuous time ~ PMP w. state inequality constraints

Second Layer: Real-time Setpoint Control

optimal
reference

$$P_{\text{ref}}^{*}(t) = \frac{P}{\eta} \sum_{i=1}^{N} u_{i}^{*}(t), \rightsquigarrow e(t) = P_{\text{ref}}^{*}(t) - \frac{P_{\text{total}}(t)}{P_{\text{total}}(t)},$$

Moving lower boundary $L_{it} = U_{i0} \wedge [L_{i0} \vee (s_i(t) - \Delta_i)],$ Moving upper boundary $L_{it} = L_{i0} \vee [U_{i0} \wedge (s_i(t) + \Delta_i)].$

Boundary Control: Deadband \rightarrow **Liveband**

Initial Condition and \triangle Distribution for 500 Homes

Houston Temperature + Market Price

How Can the LSE Price A Contract

Part II. A Theory

Controlling Density

Finite Horizon LQG Density Regulator

Joint work with E.D.B. Wendel (Draper Laboratory)

How to Go from One Density to Another

or Close to Another

LQG State Regulator

$$\min_{u \in \mathcal{U}} \phi(x_1, x_d) + \mathbb{E}_x \left[\int_0^{t_1} (x^\top Q x + u^\top R u) \, \mathrm{d}t \right]$$

$$dx(t) = Ax(t) dt + Bu(t) dt + F dw(t),$$

 $x(0) = x_0$ given, x_d given, t_1 fixed,

Typical terminal cost: MSE

$$\phi(x_1, x_d) = \mathbb{E}_{x_1}\left[(x_1 - x_d)^\top M(x_1 - x_d)\right]$$

LQG Density Regulator

$$\min_{u \in \mathcal{U}} \varphi\left(\rho_1, \rho_d\right) + \mathbb{E}_x\left[\int_0^{t_1} (x^\top Q x + u^\top R u) \, \mathrm{d}t\right]$$

$$dx(t) = Ax(t) dt + Bu(t) dt + F dw(t),$$

$$x(0) \sim
ho_0$$
 given, $x_d \sim
ho_d$ given, t_1 fixed,

Proposed terminal cost: MMSE

$$\varphi(x_1, x_d) = \inf_{y \sim \rho \in \mathcal{P}_2(\rho_1, \rho_d)} \mathbb{E}_y \left[(x_1 - x_d)^\top M(x_1 - x_d) \right],$$

where $y := (x_1, x_d)^\top$

Formulation: LQG Density Regulator $\varphi(\rho_1, \rho_d)$ $\min_{u \in \mathcal{U}} \inf_{y \sim \rho \in \mathcal{P}_2(\rho_1, \rho_d)} \mathbb{E}_y \left[(x_1 - x_d)^\top M(x_1 - x_d) \right]$ $+\mathbb{E}_{x}\left[\int_{0}^{t_{1}}(x^{\top}Qx + u^{\top}Ru) dt\right]$ dx(t) = Ax(t) dt + Bu(t) dt + F dw(t), $x(0) \sim ho_0 = \mathcal{N}\left(\mu_0, S_0 ight), \ \ x_d \sim ho_d = \mathcal{N}\left(\mu_d, S_d ight),$ t_1 fixed, $\mathcal{U} = \{ u : u(x,t) = K(t)x + v(t) \}$

However, $\varphi \left(\mathcal{N} \left(\mu_1, S_1 \right), \mathcal{N} \left(\mu_d, S_d \right) \right)$ equals $\left(\mu_1 - \mu_d \right)^\top M \left(\mu_1 - \mu_d \right) +$

$$\min_{C \in \mathbb{R}^{n \times n}} \operatorname{tr} \left((S_1 + S_d - 2C)M \right) \text{ s.t. } \begin{bmatrix} S_1 & C \\ C^\top & S_d \end{bmatrix} \succeq 0$$

However, $\varphi(\mathcal{N}(\mu_1, S_1), \mathcal{N}(\mu_d, S_d))$ equals $(\mu_1 - \mu_d)^{\top} M (\mu_1 - \mu_d) +$ $\min_{C \in \mathbb{R}^{n \times n}} \operatorname{tr} \left((S_1 + S_d - 2C)M \right) \text{ s.t. } \begin{vmatrix} S_1 & C \\ C^\top & S_d \end{vmatrix} \succeq 0$ € $\max_{\mathbf{C} \in \mathbb{D}^{n \times n}} \operatorname{tr} (CM) \quad \text{s.t.} \quad CS_d^{-1}C^{\top} \succeq 0$ $C \in \mathbb{R}^{n \times n}$ € $C^* = S_1 S_d^{\frac{1}{2}} \left(S_d^{\frac{1}{2}} S_1 S_d^{\frac{1}{2}} \right)^{-\frac{1}{2}} S_d^{\frac{1}{2}}$

This gives

$$\varphi\left(\mathcal{N}\left(\mu_{1}, S_{1}\right), \mathcal{N}\left(\mu_{d}, S_{d}\right)\right) = \left(\mu_{1} - \mu_{d}\right)^{\top} M\left(\mu_{1} - \mu_{d}\right)$$
$$+ \operatorname{tr}\left(MS_{1} + MS_{d} - 2\left[\left(\sqrt{S_{d}}MS_{1}\sqrt{S_{d}}\right)\left(\sqrt{S_{d}}S_{1}\sqrt{S_{d}}\right)^{-\frac{1}{2}}\right]\right)$$

Applying maximum principle:

$$K^o(t) = R^{-1}B^{ op}P(t),$$

 $v^o(t) = R^{-1}B^{ op}(z(t) - P(t)\mu(t)),$

 ∞ dim. TPBVP $\rightsquigarrow (n^2 + 3n)$ dim. TPBVP

$$\begin{pmatrix} \dot{\mu}(t) \\ \dot{z}(t) \end{pmatrix} = \begin{pmatrix} A & BR^{-1}B^{\top} \\ Q & -A^{\top} \end{pmatrix} \begin{pmatrix} \mu(t) \\ z(t) \end{pmatrix},$$

 $\dot{S}(t) = (A + BK^{o})S(t) + S(t)(A + BK^{o})^{\top} + FF^{\top},$

$$\dot{P}(t) = -A^{\top}P(t) - P(t)A - P(t)BR^{-1}B^{\top}P(t) + Q,$$

Boundary conditions:

$$\mu(0) = \mu_0, \quad z(t_1) = M(\mu_d - \mu_1),$$

$$S(0) = S_0, \quad P(t_1) = \left(S_d \# S_1^{-1} - I_n\right) N_0$$

Controlled State Covariance

Application: Active Control for Mars EDL

Part III. Ongoing and Future Research

UTM

Unmanned Aerial Systems Traffic Management

Vision for UAS Traffic Management (UTM)

Class G airspace extends up to 1200 ft AGL

500 ft AGL

Weight no more than 55 lbs

200 ft AGL

Requires: Automated V2V separation management Yield manned traffic Avoid obstacles (buildings, towers etc.)

Technical Challenges

Dynamic Geofencing

Control over LTE

Image credit: NASA Ames Research Center

Wind Uncertainty

Provable Safety

Input: Approved Flight Path

Reach Set Evolution due to Wind Uncertainty

Discrete Decision Making Instances

4D Flight Tubes $\mathcal{F}_{[t_j,t_{j+1})}$

4D Flight + Landing Tubes $\{\mathcal{F}_{[t_j,t_{j+1})}, \mathcal{L}_{[t_{j+1},t_{j+2})}\}$

Motion Protocol: $t = t_0$

IF: Have all + ACKs for $\{\mathcal{F}_{[t_0,t_1)}, \mathcal{L}_{[t_1,t_2)}\}$ **AND** $D \in \mathcal{R}_{\pi_F}(\{O\}, t_f - t_0)$

THEN: Take-off **AND** broadcast req. for $\{\mathcal{F}_{[t_1,t_2)}, \mathcal{L}_{[t_2,t_3)}\}$

Motion Protocol: $t \in [t_0, t_1)$

Listening for \pm ACKs, $\boldsymbol{x}(t) \in \mathcal{F}_{[t_0,t_1)}$

Motion Protocol: $t = t_1$ IF: All + ACKs AND $D \in \mathcal{R}_{\pi_F}(\{\boldsymbol{x}(t_1)\}, t_f - t_1)$

ELSE: Abort mission via $\mathcal{L}_{[t_1,t_2)}$

Motion Protocol: $t = t_1$ IF: All + ACKs AND D $\in \mathcal{R}_{\pi_F}(\{\boldsymbol{x}(t_1)\}, t_f - t_1)$

ELSE: Abort mission via $\mathcal{L}_{[t_1,t_2)}$

Motion Protocol: $t = t_1$ IF: All + ACKs AND D $\notin \mathcal{R}_{\pi_F}(\{\boldsymbol{x}(t_1)\}, t_f - t_1)$

THEN: Continue in $\mathcal{F}_{[t_1,t_2)}$ **AND** broadcast req. for $\{\mathcal{F}_{[t_2,t_3)}, \mathcal{L}_{[t_3,t_4)}\}$

ELSE: Abort mission via $\mathcal{L}_{[t_1, t_2)}$

Algorithms for Motion Protocol

Compute minimum volume outer ellipsoids: SDP

Proposed Architecture: Performance

Number of offline approvals

Thank You

Backup Slides for Part I

Differential Privacy Preserving Sensing

Distribution of Parameters α and β

Houston Data for August 2015

Limits of Control Performance

Backup Slides for Part II

Matrix Geometric Mean

The minimal geodesic $\gamma^* : [0,1] \mapsto \mathbf{S}_n^+$ connecting $\gamma(0) = S_d$ and $\gamma(1) = S_1^{-1}$, associated with the Riemannian metric $g_A(S_d, S_1^{-1}) = \operatorname{tr} (A^{-1}S_d A^{-1}S_1^{-1})$, is $\gamma^*(t) = S_d \, \#_t \, S_1^{-1} = S_d^{\frac{1}{2}} \left(S_d^{-\frac{1}{2}} S_1^{-1} S_d^{-\frac{1}{2}} \right)^t S_d^{\frac{1}{2}}$ $= S_1^{-1} \#_{1-t} S_d = S_1^{-\frac{1}{2}} \left(S_1^{\frac{1}{2}} S_d S_1^{\frac{1}{2}} \right)^{1-t} S_1^{-\frac{1}{2}}$

Geometric Mean: $\gamma^*\left(\frac{1}{2}\right) = S_d \#_{\frac{1}{2}} S_1^{-1} = S_1^{-1} \#_{\frac{1}{2}} S_d$

Example

$$\begin{pmatrix} dx_1 \\ dx_2 \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & -3 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} dt + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u dt + \begin{bmatrix} 0.01 \\ 0.01 \end{bmatrix} dw$$

$$ho_0 = \mathcal{N}\left((1,1)^ op, I_2
ight), \hspace{1em}
ho_d = \mathcal{N}\left((0,0)^ op, 0.1\, I_2
ight),$$

 $Q = 100 I_2, \quad R = 1, \quad M = I_2, \quad t_1 = 2$

Expected Optimal Control

Backup Slides for Part III

Our Proposed Architecture Offline Path Planning and Conflict Resolution

Proposed Architecture Offline Path Planning and Conflict Resolution

Proposed Architecture Offline Path Planning and Conflict Resolution

Proposed Architecture Offline Path Planning and Conflict Resolution

