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Motivation: Drone Traffic Management

Controlling A Drone Controlling Swarm of Drones



Motivation: Smart Grid Demand Response
Controlling An AC Controlling Population of ACs



What to Control
Signal

Sets

Densities



Outlook



Outline of Today’s Talk

Part I: An Application
Controlling Air Conditioners

Part II: A Theory
Controlling Density

Part III: Ongoing and Future Research
Unmanned Aerial Systems Traffic Management



Part I. An Application

Controlling Air Conditioners

Direct Control for Demand Response

Joint work with X. Geng, F.A.C.C. Fontes, P.R. Kumar, and L. Xie



Architecture



Research Scope

Objective: A theory of operation for the LSE

Challenges:

1. How to design the target consumption as a function
of price?

2. How to control so as to preserve privacy of the loads’
states?

3. How to respect loads’ contractual obligations (e.g.
comfort range width ∆)?



Two Layer Block Diagram



First Layer: Planning Optimal Consumption

minimize
{u1(t),...,uN(t)}∈{0,1}N

∫ T

0

P
η

price
forecast

π̂ (t) (u1(t) + u2(t) + . . . + uN(t)) dt

subject to

(1) θ̇i = −αi

(
θi(t)− θ̂a(t)

)
− βiPui(t) ∀ i = 1, . . . , N,

(2)
∫ T

0
(u1(t) + u2(t) + . . . + uN(t)) dt = τ

·
=

ηE
NP

(< T, given)

(3) Li0 ≤ θi(t) ≤ Ui0 ∀ i = 1, . . . , N.

Optimal consumption: P∗ref (t) =
P
η

N

∑
i=1

u∗i (t)



First Layer: "discretize-then-optimize"

Numerical challenges for MILP and LP

Solution: continuous time PMP w. state inequality constraints



Second Layer: Real-time Setpoint Control

optimal
reference

P∗ref(t) =
P
η

N

∑
i=1

u∗i (t),  

error

e(t) = P∗ref(t)−

measured

Ptotal(t) ,

v(t) =

PDE based velocity control

γtracking (e(t)) ,
dsi
dt

=

gain

∆i

broadcast

v(t) ,

Moving lower boundary

Lit = Ui0 ∧ [Li0 ∨ (si(t)− ∆i)] ,
Moving upper boundary

Uit = Li0 ∨ [Ui0 ∧ (si(t) + ∆i)] .



Boundary Control: Deadband→ Liveband
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Initial Condition and ∆ Distribution for
500 Homes



Houston Temperature + Market Price
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How Can the LSE Price A Contract



Part II. A Theory

Controlling Density

Finite Horizon LQG Density Regulator

Joint work with E.D.B. Wendel (Draper Laboratory)



How to Go from One Density to Another



or Close to Another



LQG State Regulator

min
u∈U

φ (x1, xd) + Ex

[∫ t1

0
(x>Qx + u>Ru) dt

]
dx(t) = Ax(t) dt + Bu(t) dt + F dw(t),

x(0) = x0 given, xd given, t1 fixed,

Typical terminal cost: MSE

φ (x1, xd) = Ex1

[
(x1− xd)>M(x1− xd)

]



LQG Density Regulator

min
u∈U

ϕ (ρ1, ρd) + Ex

[∫ t1

0
(x>Qx + u>Ru) dt

]
dx(t) = Ax(t) dt + Bu(t) dt + F dw(t),

x(0) ∼ ρ0 given, xd ∼ ρd given, t1 fixed,

Proposed terminal cost: MMSE

ϕ (x1, xd) = inf
y∼ρ∈P2(ρ1,ρd)

Ey
[
(x1− xd)

>M(x1− xd)
]
,

where y := (x1, xd)>



Formulation: LQG Density Regulator

min
u∈U

ϕ(ρ1, ρd)

inf
y∼ρ∈P2(ρ1,ρd)

Ey
[
(x1− xd)

>M(x1− xd)
]

+ Ex

[∫ t1

0
(x>Qx + u>Ru) dt

]
dx(t) = Ax(t) dt + Bu(t) dt + F dw(t),

x(0) ∼ ρ0 = N (µ0, S0) , xd ∼ ρd = N (µd, Sd) ,

t1 fixed, U = {u : u(x, t) = K(t)x + v(t)}



However, ϕ (N (µ1, S1) ,N (µd, Sd)) equals

(µ1− µd)
>M (µ1− µd) +

min
C∈Rn×n

tr ((S1 + Sd− 2C)M) s.t.
[

S1 C
C> Sd

]
� 0

m
max

C∈Rn×n
tr (CM) s.t. CS−1

d C> � 0

m

C∗ = S1S
1
2
d

(
S

1
2
d S1S

1
2
d

)− 1
2

S
1
2
d



However, ϕ (N (µ1, S1) ,N (µd, Sd)) equals

(µ1− µd)
>M (µ1− µd) +

min
C∈Rn×n

tr ((S1 + Sd− 2C)M) s.t.
[

S1 C
C> Sd

]
� 0

m
max

C∈Rn×n
tr (CM) s.t. CS−1

d C> � 0

m

C∗ = S1S
1
2
d

(
S

1
2
d S1S

1
2
d

)− 1
2

S
1
2
d



This gives

ϕ (N (µ1, S1) ,N (µd, Sd)) = (µ1− µd)
>M (µ1− µd)

+tr
(

MS1 + MSd− 2
[(√

SdMS1
√

Sd
) (√

SdS1
√

Sd
)− 1

2

])

Applying maximum principle:

Ko(t) = R−1B>P(t),

vo(t) = R−1B> (z(t)− P(t)µ(t))



∞ dim. TPBVP 
(
n2 + 3n

)
dim. TPBVP(

µ̇(t)
ż(t)

)
=

(
A BR−1B>

Q −A>

)(
µ(t)
z(t)

)
,

Ṡ(t) = (A + BKo)S(t) + S(t)(A + BKo)> + FF>,

Ṗ(t) = −A>P(t)− P(t)A− P(t)BR−1B>P(t) +Q,

Boundary conditions:

µ(0) = µ0, z(t1) = M(µd− µ1),

S(0) = S0, P(t1) =
(
Sd # S−1

1 − In
)

M



Controlled State Covariance

ρd = N (µd, Sd) ρ1 = N (µ1, S1)

x1

x2



Application: Active Control for Mars EDL

Navigational
uncertainty

Heating
uncertainty

Chute deployment
uncertainty

Landing footprint
uncertainty

Image credit: NASA JPL



Part III. Ongoing and Future Research

UTM

Unmanned Aerial Systems Traffic Management



Vision for UAS Traffic Management (UTM)

200 ft AGL

500 ft AGL

Class G airspace extends up to 1200 ft AGL

Weight no more than 55 lbs 

Requires: Automated V2V separation management

Yield manned traffic

Avoid obstacles (buildings, towers etc.)



Technical Challenges

Dynamic Geofencing

AIRSPACE OPERATIONS & MANAGEMENT  
•  ~500 ft. and below 
•  Geographical needs and applications 
•  Rules of the airspace: performance-based 
•  Geofences: dynamic and static 

5 
Image credit: NASA Ames Research Center

Control over LTE

Wind Uncertainty Provable Safety



Input: Approved Flight Path



Reach Set Evolution due to Wind Uncertainty



Discrete Decision Making Instances



4D Flight Tubes F[tj,tj+1)



4D Flight + Landing Tubes {F[tj,tj+1),L[tj+1,tj+2)}



Motion Protocol: t = t0



Motion Protocol: t ∈ [t0, t1)



Motion Protocol: t = t1



Motion Protocol: t = t1



Motion Protocol: t = t1



Algorithms for Motion Protocol

Compute minimum volume outer ellipsoids: SDP



Proposed Architecture: Performance
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Number of offline approvals

w1(t) and w2(t) are different
wind trajectories





Thank You



Backup Slides for Part I



Differential Privacy Preserving Sensing



Distribution of Parameters α and β
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Houston Data for August 2015

5 PM



Limits of Control Performance

⇡
0.000
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Matrix Geometric Mean
The minimal geodesic γ∗ : [0, 1] 7→ S+

n

connecting γ(0) = Sd and γ(1) = S−1
1 ,

associated with the Riemannian metric
gA(Sd, S−1

1 ) = tr
(
A−1SdA−1S−1

1

)
, is

γ∗(t) = Sd #t S−1
1 = S

1
2
d

(
S−

1
2

d S−1
1 S−

1
2

d

)t

S
1
2
d

= S−1
1 #1−t Sd = S−

1
2

1

(
S

1
2
1 SdS

1
2
1

)1−t

S−
1
2

1

Geometric Mean:

γ∗
(

1
2

)
= Sd # 1

2
S−1

1 = S−1
1 # 1

2
Sd



Example

(
dx1

dx2

)
=

[
0 1
2 −3

] (
x1

x2

)
dt +

[
0
1

]
u dt +

[
0.01
0.01

]
dw

ρ0 = N
(
(1, 1)>, I2

)
, ρd = N

(
(0, 0)>, 0.1 I2

)
,

Q = 100 I2, R = 1, M = I2, t1 = 2



Expected Optimal Control

t
0 0.5 1 1.5 2

E
[u

o
(t

)]

-20

-15

-10

-5



Backup Slides for Part III



Our Proposed Architecture
Offline Path Planning and Conflict Resolution

Server

Path planner 1

UAS 1

requested 
flight paths



Proposed Architecture
Offline Path Planning and Conflict Resolution
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{Wind, geofencing, 
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flight paths
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Proposed Architecture
Offline Path Planning and Conflict Resolution

Server

Path planner 1

UAS 1

requested 
flight paths

{Wind, geofencing, 
obstacle} database forecasts

suggested 
flight paths

Path manager 1 Drone team 1
commanded paths

Approved flight 
path history

update 
database

accepted paths, 
drone license IDs

update 
history

Path planner 2

suggested 
flight paths

UAS 2

Path manager 2 Drone team 2
commanded paths

requested 
flight paths

accepted paths, 
drone license IDs


