Wasserstein Gradient Flow for Stochastic Prediction, Filtering, Learning and Control

Abhishek Halder

Department of Applied Mathematics
University of California, Santa Cruz
Santa Cruz, CA 95064

Joint work with Kenneth F. Caluya (UC Santa Cruz), Tryphon T. Georgiou (UC Irvine), Walid Krichene (Google)

Controls, Autonomy and Robotics Seminar, UT Austin, TX, Nov. 18, 2020

Overarching Theme

Systems-control theory for densities

What is density?

Probability Density Fn.

$$
x(t) \in\left(\begin{array}{l}
x \\
y \\
\theta
\end{array}\right) \in \mathcal{X} \equiv \mathbb{R}^{2} \times \mathrm{S}^{1}
$$

Probability Density Fn.

$$
\begin{aligned}
& x(t) \in\left(\begin{array}{l}
x \\
y \\
\theta
\end{array}\right) \in \mathcal{X} \equiv \mathbb{R}^{2} \times \mathbb{S}^{1} \\
& \rho(x, t): \mathcal{X} \times[0, \infty) \mapsto \mathbb{R}_{\geq 0} \\
& \int_{\mathcal{X}} \rho \mathrm{d} x=1 \quad \text { for all } t \in[0, \infty)
\end{aligned}
$$

Probability Density Fn.
Population Density Fn.

Why care about densities?

Prediction Problem

Compute

 joint state PDF$\rho(x, t)$

Trajectory flow:

$\mathrm{d} \mathbf{X}(t)=\mathbf{f}(\mathbf{X}, t) \mathrm{d} t+\mathbf{g}(\mathbf{X}, t) \mathrm{d} \mathbf{w}(t), \quad \mathrm{d} \mathbf{w}(t) \sim \mathcal{N}(0, \mathbf{Q} \mathrm{~d} t)$
Density flow:

$$
\frac{\partial \rho}{\partial t}=\mathcal{L}_{\mathrm{FP}}(\rho):=-\nabla \cdot(\rho \mathbf{f})+\frac{1}{2} \sum_{i, j=1}^{n} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left(\left(\mathbf{g Q g}^{\top}\right)_{i j} \rho\right)
$$

Filtering Problem

Compute conditional joint state PDF

$$
\rho^{+}:=\rho(x, t \mid z(s), 0 \leq s \leq t)
$$

Trajectory flow:

$$
\begin{array}{ll}
\mathrm{d} \mathbf{X}(t)=\mathbf{f}(\mathbf{X}, t) \mathrm{d} t+\mathbf{g}(\mathbf{X}, t) \mathrm{d} \mathbf{w}(t), & \mathrm{d} \mathbf{w}(t) \sim \mathcal{N}(0, \mathbf{Q} \mathrm{~d} t) \\
\mathrm{d} \mathbf{Z}(t)=\mathbf{h}(\mathbf{X}, t) \mathrm{d} t+\mathrm{d} \mathbf{v}(t), & \mathrm{d} \mathbf{v}(t) \sim \mathcal{N}(0, \mathbf{R} \mathrm{~d} t)
\end{array}
$$

Density flow:

$$
\mathrm{d} \rho^{+}=\left[\mathcal{L}_{\mathrm{FP}} \mathrm{~d} t+\left(\mathbf{h}(\mathbf{x}, t)-\mathbb{E}_{\rho^{+}}\{\mathbf{h}(\mathbf{x}, t)\}\right)^{\top} \mathbf{R}^{-1}\left(\mathrm{~d} \mathbf{z}(t)-\mathbb{E}_{\rho^{+}}\{\mathbf{h}(\mathbf{x}, t)\} \mathrm{d} t\right)\right] \rho^{+}
$$

Control Problem

Steer joint state PDF via feedback control over finite time horizon

$\underset{u \in \mathcal{U}}{\operatorname{minimize}} \mathbb{E}\left[\int_{0}^{1}\|\boldsymbol{u}\|_{2}^{2} \mathrm{~d} t\right]$
subject to

$$
\begin{aligned}
& \mathrm{d} x=f(x, u, t) \mathrm{d} t+\boldsymbol{g}(\boldsymbol{x}, \mathrm{t}) \mathrm{d} \boldsymbol{w}, \\
& x(t=0) \sim \rho_{0}, \quad x(t=1) \sim \rho_{1}
\end{aligned}
$$

Neural Network Learning Problem

Consider fully connected NN

Think "layers" as interacting population of neurons

Mean field learning problem: $\inf _{\rho \in \mathcal{P}_{2}\left(\mathbb{R}^{p}\right)} R\left(\int \Phi(\boldsymbol{x}, \boldsymbol{\theta}) \rho(\boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta}\right)$

PDF dynamics:

$$
\frac{\partial \rho}{\partial t}=-\nabla^{W} R\left(\int \Phi \rho\right)=\nabla \cdot\left(\rho \nabla \frac{\delta}{\delta \rho} R\left(\int \Phi \rho\right)\right)
$$

PDFs in Mars Entry-Descent-Landing

Prediction problem

Predict heating rate uncertainty
Control problem

Filtering problem

Learning problem

PDFs in Mars Entry-Descent-Landing

Prediction problem

Predict heating rate uncertainty
Control problem

Filtering problem

Estimate state to deploy parachute
Learning problem

PDFs in Mars Entry-Descent-Landing

Prediction problem

Predict heating rate uncertainty
Control problem

Filtering problem

Estimate state to deploy parachute
Learning problem

Gale Crater (4.49S, 137.42E)
Steer state PDF to achieve desired landing footprint accuracy

PDFs in Mars Entry-Descent-Landing

Prediction problem

Predict heating rate uncertainty
Control problem

Gale Crater (4.49S, 137.42E)
Steer state PDF to achieve desired landing footprint accuracy

Filtering problem

Estimate state to deploy parachute
Learning problem

Learn surface feature from data

Solving prediction problem as Wasserstein gradient flow

What's New?

Main idea: Solve $\frac{\partial \rho}{\partial t}=\mathcal{L}_{\mathrm{FP}} \rho, \rho(x, t=0)=\rho_{0}$ as gradient flow in $\mathcal{P}_{2}(\mathcal{X})$

Infinite dimensional variational recursion:

Proximal operator: $\varrho_{k}=\operatorname{prox}_{h \Phi}^{W^{2}}\left(\varrho_{k-1}\right):=\underset{\varrho \in \mathcal{P}_{2}(\mathcal{X})}{\arg \inf }\left\{\frac{1}{2} W^{2}\left(\varrho, \varrho_{k-1}\right)+h \Phi(\varrho)\right\}$
Optimal transport cost: $W^{2}\left(\varrho, \varrho_{k-1}\right):=\inf _{\pi \in \Pi\left(\varrho, e_{k-1}\right)} \int_{\mathcal{X} \times \mathcal{X}} c(x, y) \mathrm{d} \pi(x, y)$
Free energy functional: $\Phi(\varrho):=\int_{\mathcal{X}} \psi \varrho \mathrm{d} x+\beta^{-1} \int_{\mathcal{X}} \varrho \log \varrho \mathrm{d} x$

Geometric Meaning of Gradient Flow

Gradient Flow in \mathcal{X}

Gradient Flow in $\mathcal{P}_{2}(\mathcal{X})$

$\frac{\mathrm{d} \boldsymbol{x}}{\mathrm{~d} t}=-\nabla \varphi(\boldsymbol{x}), \quad \boldsymbol{x}(0)=x_{0}$	$\frac{\partial \rho}{\partial t}=-\nabla^{W} \Phi(\rho), \quad \rho(\boldsymbol{x}, 0)=\rho_{0}$		
Recursion:	Recursion:		
$\boldsymbol{x}_{k}=\boldsymbol{x}_{k-1}-h \nabla \varphi\left(\boldsymbol{x}_{k}\right)$	$\rho_{k}=\rho(\cdot, t=k h)$		
$=\underset{\boldsymbol{x} \in \mathcal{X}}{\arg \min }\left\{\frac{1}{2}\left\\|\boldsymbol{x}-\boldsymbol{x}_{k-1}\right\\|_{2}^{2}+h \varphi(\boldsymbol{x})\right\}$	$=\underset{\rho \in \mathcal{P}_{2}(\mathcal{X})}{\arg \min }\left\{\frac{1}{2} W^{2}\left(\rho, \rho_{k-1}\right)+h \Phi(\rho)\right\}$		
$=: \operatorname{prox}_{h \varphi}^{\\|\cdot\\|_{2}}\left(x_{k-1}\right)$	$=: \operatorname{prox}_{h \Phi}^{W^{2}}\left(\rho_{k-1}\right)$		

Convergence:

Convergence:

$\rho_{k} \rightarrow \rho(\cdot, t=k h) \quad$ as $\quad h \downarrow 0$
φ as Lyapunov function:
$\frac{\mathrm{d}}{\mathrm{d} t} \varphi=-\|\nabla \varphi\|_{2}^{2} \leq 0$
Φ as Lyapunov functional:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \Phi=-\mathbb{E}_{\rho}\left[\left\|\nabla \frac{\delta \Phi}{\delta \rho}\right\|_{2}^{2}\right] \leq 0
$$

Geometric Meaning of Gradient Flow

Gradient Flow in \mathcal{X}

$$
z=\phi(x), \quad x \in \mathbb{R}^{2}
$$

Gradient Flow in $\mathcal{P}_{2}(\mathcal{X})$

$$
z=\Phi(\rho), \quad \rho \in \mathcal{P}_{2}(\mathcal{X})
$$

Algorithm: Gradient Ascent on the Dual Space

Uncertainty propagation via point clouds

No spatial discretization or function approximation

Algorithm: Gradient Ascent on the Dual Space

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}=\nabla \cdot(\nabla \psi \rho)+\beta^{-1} \Delta \rho \\
& \Uparrow \text { Proximal Recursion } \\
& \rho_{k}=\rho(\boldsymbol{x}, t=k h)=\underset{\rho \in \mathcal{P}_{2}\left(\mathbb{R}^{n}\right)}{\arg \inf }\left\{\frac{1}{2} W^{2}\left(\rho, \rho_{k-1}\right)+h \Phi(\rho)\right\} \\
& \Downarrow \quad \text { Discrete Primal Formulation } \\
& \boldsymbol{\varrho}_{k}=\underset{\boldsymbol{\varrho}}{\arg \min }\left\{\min _{\boldsymbol{M} \in \Pi\left(\boldsymbol{\varrho}_{k-1}, \boldsymbol{\varrho}\right)} \frac{1}{2}\left\langle\boldsymbol{C}_{k}, \boldsymbol{M}\right\rangle+h\left\langle\boldsymbol{\psi}_{k-1}+\beta^{-1} \log \boldsymbol{\varrho}, \boldsymbol{\varrho}\right\rangle\right\} \\
& \Downarrow \quad \text { Entropic Regularization } \\
& \begin{aligned}
\boldsymbol{\varrho}_{k}= & \underset{\varrho}{\arg \min }\left\{\min _{\boldsymbol{M} \in \Pi\left(\boldsymbol{\varrho}_{k-1}, \boldsymbol{\varrho}\right)} \frac{1}{2}\left\langle\boldsymbol{C}_{k}, \boldsymbol{M}\right\rangle+\epsilon H(\boldsymbol{M})+h\left\langle\boldsymbol{\psi}_{k-1}+\beta^{-1} \log \boldsymbol{\varrho}, \boldsymbol{\varrho}\right\rangle\right\} \\
& \mathbb{V} \quad \text { Dualization }
\end{aligned} \\
& \boldsymbol{\lambda}_{0}^{\mathrm{opt}}, \boldsymbol{\lambda}_{1}^{\mathrm{opt}}=\underset{\boldsymbol{\lambda}_{0}, \boldsymbol{\lambda}_{1} \geq 0}{\arg \max }\left\{\left\langle\boldsymbol{\lambda}_{0}, \boldsymbol{\varrho}_{k-1}\right\rangle-F^{\star}\left(-\boldsymbol{\lambda}_{1}\right)\right. \\
& \left.-\frac{\epsilon}{h}\left(\exp \left(\boldsymbol{\lambda}_{0}^{\top} h / \epsilon\right) \exp \left(-\boldsymbol{C}_{k} / 2 \epsilon\right) \exp \left(\boldsymbol{\lambda}_{1} h / \epsilon\right)\right)\right\}
\end{aligned}
$$

Recursion on the Cone

$$
\boldsymbol{y}=e^{\frac{\lambda_{0}^{*}}{\epsilon}} \downarrow \downarrow \quad \downarrow \mathbf{z}=e^{\frac{\lambda_{1}^{*}}{\epsilon} h}
$$

Coupled Transcendental Equations in y and z

$$
\begin{aligned}
\boldsymbol{\Gamma}_{k}=e^{\frac{-\boldsymbol{C}_{k}}{2 \epsilon}}
\end{aligned} \longrightarrow \begin{gathered}
\boldsymbol{y} \odot \boldsymbol{\Gamma}_{k} \mathbf{z}=\varrho_{k-1} \\
\boldsymbol{\varrho}_{k-1}
\end{gathered} \longrightarrow \begin{gathered}
\mathbf{z} \odot \boldsymbol{\Gamma}_{k}^{\top} \boldsymbol{y}=\boldsymbol{\xi}_{k-1} \bigodot^{-\beta \epsilon / 2 h} \\
\xi_{k-1}=\frac{e^{-\beta \boldsymbol{\psi}_{k-1}}}{e}
\end{gathered} \longrightarrow \boldsymbol{\varrho}_{k}=\mathbf{z} \odot \boldsymbol{\Gamma}_{k}^{\top} \boldsymbol{y}
$$

Theorem: Consider the recursion on the cone $\mathbb{R}_{\geq 0}^{n} \times \mathbb{R}_{\geq 0}^{n}$
$\boldsymbol{y} \odot\left(\boldsymbol{\Gamma}_{k} \boldsymbol{z}\right)=\varrho_{k-1}, \quad \boldsymbol{z} \odot\left(\boldsymbol{\Gamma}_{k}^{\top} \boldsymbol{y}\right)=\boldsymbol{\xi}_{k-1} \odot \boldsymbol{z}^{-\frac{\bar{\beta} \epsilon}{h}}$,
Then the solution $\left(\boldsymbol{y}^{*}, \boldsymbol{z}^{*}\right)$ gives the proximal update $\boldsymbol{\varrho}_{k}=\boldsymbol{z}^{*} \odot\left(\boldsymbol{\Gamma}_{k}^{\top} \boldsymbol{y}^{*}\right)$

Algorithmic Setup

Theorem: Block co-ordinate iteration of (\mathbf{y}, \mathbf{z}) recursion is contractive on $\mathbb{R}_{>0}^{n} \times \mathbb{R}_{>0}^{n}$.

Proximal Prediction: 2D Linear Gaussian

Proximal Prediction: Nonlinear Non-Gaussian

Computational Time: Nonlinear Non-Gaussian

Proximal Prediction: Satellite in Geocentric Orbit

Here, $\mathcal{X} \equiv \mathbb{R}^{6}$

$$
\left(\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
\mathrm{dy} \\
\mathrm{dz} \\
\mathrm{~d} v_{x} \\
\mathrm{~d} v_{y} \\
\mathrm{~d} v_{z}
\end{array}\right)=\left(\begin{array}{c}
\\
-\frac{\mu x}{r^{3}}+\left(f_{x}\right)_{\text {pert }}-\gamma v_{x} \\
-\frac{\mu y}{r^{3}}+\left(f_{y}\right)_{\text {pert }}-\gamma v_{y} \\
-\frac{\mu z}{r^{3}}+\left(f_{z}\right)_{\text {pert }}-\gamma v_{z}
\end{array}\right) \mathrm{dt+} \mathrm{\sqrt{2} \mathrm{\beta}^{-1} \gamma\left(\begin{array}{c}
0 \\
0 \\
0 \\
\mathrm{~d} w_{1} \\
\mathrm{~d} w_{2} \\
\mathrm{~d} w_{3}
\end{array}\right), ~}
$$

$\left(\begin{array}{l}f_{x} \\ f_{y} \\ f_{z}\end{array}\right)_{\text {pert }}=\left(\begin{array}{ccc}s \theta c \phi & c \theta c \phi & -s \phi \\ s \theta s \phi & c \theta s \phi & c \phi \\ c \theta & -s \theta & 0\end{array}\right)\left(\begin{array}{c}\frac{k}{2 r^{4}}\left(3(s \theta)^{2}-1\right) \\ -\frac{k}{r^{5}} s \theta c \theta \\ 0\end{array}\right), k:=3 J_{2} R_{E}^{2}, \mu=$ constant

Computational Time: Satellite in Geocentric Orbit

Extensions: Nonlocal Interactions

PDF dependent sample path dynamics:
$\mathrm{d} \mathbf{x}=-(\nabla U(\mathbf{x})+\nabla \rho * V) \mathrm{d} t+\sqrt{2 \beta^{-1}} \mathrm{~d} \mathbf{w}$

Mckean-Vlasov-Fokker-Planck-
Kolmogorov integro PDE:

$$
\frac{\partial \rho}{\partial t}=\nabla \cdot(\rho \nabla(U+\rho * V))+\beta^{-1} \Delta \rho
$$

Free energy:

$$
F(\rho):=\mathbb{E}_{\rho}\left[U+\beta^{-1} \rho \log \rho+\rho * V\right]
$$

Extensions: Nonlocal Interactions

$$
U(\cdot)=V(\cdot)=\|\cdot\|_{2}^{2}
$$

Extensions: Multiplicative Noise

Cox-Ingersoll-Ross: $\mathrm{d} x=a(\theta-x) \mathrm{d} t+b \sqrt{x} \mathrm{~d} w, 2 a>b^{2}, \theta>0$

Solving filtering as

Wasserstein gradient flow

What's New?

Main idea: Solve the Kushner-Stratonovich SPDE
$\mathrm{d} \rho^{+}=\left[\mathcal{L}_{\mathrm{FP}} \mathrm{d} t+\mathcal{L}\left(\mathrm{d} z, \mathrm{~d} t, \rho^{+}\right)\right] \rho^{+}, \rho(x, t=0)=\rho_{0}$ as gradient flow in $\mathcal{P}_{2}(\mathcal{X})$
Recursion of \{deterministic o stochastic\} proximal operators:

Convergence: $\varrho_{k}^{+}(h) \rightarrow \rho^{+}(x, t=k h) \quad$ as $\quad h \downarrow 0$
For prior, as before: $\quad d^{-} \equiv W^{2}, \quad \Phi^{-} \equiv \mathbb{E}_{\varrho}\left[\psi+\beta^{-1} \log \varrho\right]$
For posterior: $d^{+} \equiv d_{\mathrm{FR}}^{2}$ or $D_{\mathrm{KL}}, \quad \Phi^{+} \equiv \frac{1}{2} \mathbb{E}_{\varrho^{+}}\left[\left(y_{k}-h(x)\right)^{\top} R^{-1}\left(y_{k}-h(x)\right)\right]$

Explicit Recovery of the Kalman-Bucy Filter

Model:

$$
\begin{array}{ll}
\mathrm{d} \mathbf{x}(t)=\mathbf{A x}(t) \mathrm{d} t+\mathbf{B d} \mathbf{w}(t), & \mathrm{d} \mathbf{w}(t) \sim \mathcal{N}(0, \mathbf{Q} \mathrm{~d} t) \\
\mathrm{d} \mathbf{z}(t)=\mathbf{C} \mathbf{x}(t) \mathrm{d} t+\mathrm{d} \mathbf{v}(t), & \mathrm{d} \mathbf{v}(t) \sim \mathcal{N}(0, \mathbf{R} \mathrm{~d} t)
\end{array}
$$

Given $\mathbf{x}(0) \sim \mathcal{N}\left(\mu_{0}, \mathbf{P}_{0}\right)$, want to recover:

$$
\begin{aligned}
& \\
& \mathrm{d} \mu^{+}(t)=\mathbf{A} \mu^{+}(t) \mathrm{d} t+\underset{\mid}{\mathbf{P}^{+} \mathbf{C R}^{-1}} \quad \\
& \dot{\mathbf{P}}^{+}(t)\left.=\mathbf{A} \mathbf{P}^{+}(t)+\mathbf{P}^{+}(t) \mathbf{A}^{\top}+\mathbf{B} \mathbf{Q} \mathbf{B}^{\top}-\mathbf{K}(t)-\mathbf{C} \mu^{+}(t) \mathrm{R} t\right),
\end{aligned}
$$

- A.H. and T.T. Georgiou, Gradient Flows in Uncertainty Propagation and Filtering of Linear Gaussian Systems, CDC 2017.
— A.H. and T.T. Georgiou, Gradient Flows in Filtering and Fisher-Rao Geometry, ACC 2018.

Explicit Recovery of the Wonham Filter

Model:

$x(t) \sim \operatorname{Markov}(Q)$, $\mathrm{d} z(t)=h(x(t)) \mathrm{d} t+\sigma_{v}(t) \mathrm{d} v(t)$

State space: $\Omega:=\left\{a_{1}, \ldots, a_{m}\right\}$
Posterior $\pi^{+}(t):=\left\{\pi_{1}^{+}(t), \ldots, \pi_{m}^{+}(t)\right\}$ solves the nonlinear SDE:

$$
\mathrm{d} \pi^{+}(t)=\pi^{+}(t) Q \mathrm{~d} t+\frac{1}{\left(\sigma_{v}(t)\right)^{2}} \pi^{+}(t)(H-\widehat{h}(t) I)(\mathrm{d} z(t)-\widehat{h}(t) \mathrm{d} t),
$$

where $H:=\operatorname{diag}\left(h\left(a_{1}\right), \ldots, h\left(a_{m}\right)\right), \quad \widehat{h}(t):=\sum_{i=1}^{m} h\left(a_{i}\right) \pi_{i}^{+}(t)$,
Initial condition: $\pi^{+}(t=0)=\pi_{0}$,
By defn. $\pi^{+}(t)=\mathbb{P}\left(x(t)=a_{i} \mid z(s), 0 \leq s \leq t\right)$
— A.H. and T.T. Georgiou, Proximal Recursion for the Wonham Filter, CDC 2019.

Numerical Results for the Wonham Filter

$\cdots \quad \pi^{+}(t=k \lambda)$
$\ldots \ldots \boldsymbol{p}_{k}^{+}(\lambda)$

- A.H. and T.T. Georgiou, Proximal Recursion for the Wonham Filter, CDC 2019.

Solving density control as
 Wasserstein gradient flow

Finite Horizon Feedback Density Control

$$
\underset{u \in \mathcal{U}}{\operatorname{minimize}} \mathbb{E}\left[\int_{0}^{1}\|\boldsymbol{u}(\boldsymbol{x}, t)\|_{2}^{2} \mathrm{~d} t\right]
$$

subject to
$\mathrm{d} \boldsymbol{x}=\{\boldsymbol{f}(\boldsymbol{x}, \mathrm{t})+\boldsymbol{B}(t) \boldsymbol{u}(\boldsymbol{x}, \mathrm{t})\} \mathrm{d} t+\sqrt{2 \epsilon} \boldsymbol{B}(t) \mathrm{d} \boldsymbol{w}$
$x(t=0) \sim \rho_{0}, \quad x(t=1) \sim \rho_{1}$

Finite Horizon Feedback Density Control

$$
\underset{\boldsymbol{u} \in \mathcal{U}}{\operatorname{minimize}} \mathbb{E}\left[\int_{0}^{1}\|\boldsymbol{u}(x, t)\|_{2}^{2} \mathrm{~d} t\right]
$$

subject to

$$
\begin{aligned}
& \mathrm{d} \boldsymbol{x}=\{\boldsymbol{f}(\boldsymbol{x}, \mathrm{t})+\boldsymbol{B}(t) \boldsymbol{u}(\boldsymbol{x}, \mathrm{t})\} \mathrm{d} t+\sqrt{2 \epsilon} \boldsymbol{B}(t) \mathrm{d} \boldsymbol{w} \\
& \boldsymbol{x}(t=0) \sim \rho_{0}, \quad x(t=1) \sim \rho_{1}
\end{aligned}
$$

Necessary conditions for optimality: coupled nonlinear PDEs (FPK + HJB)

$$
\frac{\partial \rho^{\mathrm{opt}}}{\partial t}+\nabla \cdot\left(\rho^{\mathrm{opt}}\left(f+\boldsymbol{B}(t)^{\top} \nabla \psi\right)\right)=\epsilon \mathbf{1}^{\top}\left(\boldsymbol{D}(t) \odot \operatorname{Hess}\left(\rho^{\mathrm{opt}}\right)\right) \mathbf{1},
$$

$$
\frac{\partial \psi}{\partial t}+\frac{1}{2}\left\|\boldsymbol{B}(t)^{\top} \nabla \psi\right\|_{2}^{2}+\langle\nabla \psi, \boldsymbol{f}\rangle=-\epsilon\langle\boldsymbol{D}(t), \text { Hess }(\psi)\rangle
$$

Boundary conditions:
$\rho^{\mathrm{opt}}(x, 0)=\rho_{0}(x), \quad \rho^{\mathrm{opt}}(x, 1)=\rho_{1}(x)$

Optimal control:
$u^{\mathrm{opt}}(\boldsymbol{x}, t)=\boldsymbol{B}(t)^{\top} \nabla \psi$

Feedback Synthesis via the Schrödinger System

Schrödinger's (until recently) forgotten papers:

Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique

ÜBER DIE UMKEHRUNG DER NATURGESETZE

J'ai l'intention d'exposer dans ces conférences diverses idées concernant la mécanique quantique et l'interprétation qu'on en donne géné ralement à l'heure actuelle ; je parlerai principalement de la théorie quantique relativiste du mouvement de l'électron. Autant que nous pouvons nous en rendre compte aujourd'hui, il semble à peu près sur que la mécanique quantique de 1eelectron, sous sa forme ideale, que nous ne possédons pas encore, doit former un jour la base de toute la physique. A cet intérêt tout à fait général, s'ajoute, ici à Paris un intérêt particulier: vous savez tous que les bases de la théorie moderne de l'électron ont été posées à Paris par votre célèbre compa-
triote Louis de Broglie. triote Louis de Broglie.

Hopf-Cole transform: $\left(\rho^{\mathrm{opt}}, \psi\right) \mapsto(\varphi, \hat{\varphi})$

$$
\begin{aligned}
& \varphi(x, t)=\exp \left(\frac{\psi(x, t)}{2 \epsilon}\right), \\
& \hat{\varphi}(x, t)=\rho^{\mathrm{opt}}(x, t) \exp \left(-\frac{\psi(x, t)}{2 \epsilon}\right),
\end{aligned}
$$

Optimal controlled joint state PDF: $\quad \rho^{\text {opt }}(x, t)=\hat{\varphi}(x, t) \varphi(x, t)$
Optimal control: $\quad u^{\mathrm{opt}}(\boldsymbol{x}, t)=2 \epsilon \boldsymbol{B}(t)^{\top} \nabla \log \varphi(\boldsymbol{x}, t)$

Feedback Synthesis via the Schrödinger System

2 coupled nonlinear PDEs \rightarrow boundary-coupled linear PDEs!!

$$
\begin{array}{ll}
\underbrace{\frac{\partial \hat{\varphi}}{\partial t}=-\nabla \cdot(\hat{\varphi} \boldsymbol{f})+\epsilon \mathbf{1}^{\top}(\boldsymbol{D}(t) \odot \operatorname{Hess}(\hat{\varphi})) \mathbf{1}}_{\text {forward Kolmogorov PDE }}, & \varphi_{0} \hat{\varphi}_{0}=\rho_{0}, \\
\underbrace{\frac{\partial \varphi}{\partial t}=-\langle\nabla \varphi, \boldsymbol{f}\rangle-\epsilon\langle\boldsymbol{D}(t), \operatorname{Hess}(\varphi)\rangle}_{\text {backward Kolmogorov PDE }}, & \varphi_{1} \hat{\varphi}_{1}=\rho_{1} .
\end{array}
$$

Wasserstein proximal algorithm \rightarrow fixed point recursion over $\left(\hat{\varphi}_{0}, \varphi_{1}\right)$
(Contractive in Hilbert metric)

Fixed Point Recursion over $\left(\hat{\varphi}_{0}, \varphi_{1}\right)$

Feedback Density Control: Zero Prior Dynamics

Feedback Density Control: LTI Prior Dynamics

Feedback Density Control: Nonlinear Grad. Drift

Uncontrolled joint PDF evolution:

Optimal controlled joint PDF evolution:

$t=1$

Feedback Density Control: Mixed ConservativeDissipative Drift

$t=1$

10.000	0.045	0.090	0.135	0.180	0.225	0.270

Density Control for Safe Automated Driving

Learning a neural network as Wasserstein gradient flow

Learning Neural Network from Data

$($ feature vector, label $)=\left(\boldsymbol{x}_{i}, y_{i}\right) \in \mathbb{R}^{d} \times \mathbb{R}, \quad i=1, \ldots, n$
Consider shallow NN: 1 hidden layer with n_{H} neurons
NN parameter vector $\boldsymbol{\theta}:=\left(\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \ldots, \boldsymbol{\theta}_{n_{\mathrm{H}}}\right)^{\top} \in \mathbb{R}^{p n_{\mathrm{H}}}$
Approximating function:
$\hat{f}(\boldsymbol{x}, \boldsymbol{\theta})=\frac{1}{n_{\mathrm{H}}} \sum_{i=1}^{n_{\mathrm{H}}} \Phi\left(\boldsymbol{x}, \boldsymbol{\theta}_{i}\right)$, example: $\Phi\left(\boldsymbol{x}, \boldsymbol{\theta}_{i}\right)=a_{i} \sigma\left(\boldsymbol{w}_{i}^{\top} \boldsymbol{x}+b_{i}\right)$
Population risk functional:
$R(\hat{f})=\mathbb{E}_{(\boldsymbol{x}, y)}\left[(y-\hat{f}(\boldsymbol{x}, \boldsymbol{\theta}))^{2}\right] \approx \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{f}\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}\right)\right)^{2}$
Learning problem: $\operatorname{minimize}_{\boldsymbol{\theta} \in \mathbb{R}^{p n_{\mathrm{H}}}} R(\hat{f})$

Learning Neural Network from Data

$$
\text { Learning problem: } \operatorname{minimize}_{\boldsymbol{\theta} \in \mathbb{R}^{n_{\mathrm{H}}}} R(\hat{f})
$$

Challenge: highly non-convex (many local minima)

Surprise: SGD and its variants work in practice!!

Learning Neural Network from Data

$$
\text { Learning problem: } \operatorname{minimize}_{\boldsymbol{\theta} \in \mathbb{R}^{n_{\mathrm{H}}}} R(\hat{f})
$$

Challenge: highly non-convex (many local minima)

Surprise: SGD and its variants work in practice!!

Good news: emerging theory (starting in 2018!!)

Idea: Think of the mean field, i.e., infinite width $\left(n_{\mathrm{H}} \rightarrow \infty\right)$ limit

$$
\hat{f} \equiv \hat{f}(\boldsymbol{x}, \rho)=\int_{\mathbb{R}^{p}} \Phi(\boldsymbol{x}, \boldsymbol{\theta}) \rho(\boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta}
$$

Then, learning problem: $\underset{\rho \in \mathcal{P}_{\left(\mathbb{R}^{p}\right)}}{\operatorname{minimize}} R(\hat{f})$

$$
\rho \in \mathcal{P}_{2}\left(\mathbb{R}^{p}\right)
$$

Mean Field Density Dynamics of SGD

Free energy functional: $F(\rho):=R(\hat{f}(\boldsymbol{x}, \rho))$

For quadratic loss:
$F(\rho)=\underbrace{F_{0}}_{\text {independent of } \rho}+\underbrace{\int_{\mathbb{R}^{p}} V(\boldsymbol{\theta}) \rho(\boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta}}_{\text {advection potential energy, linear in } \rho}+\underbrace{\int_{\mathbb{R}^{p}} \int_{\mathbb{R}^{p}} U(\boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}) \rho(\boldsymbol{\theta}) \rho(\tilde{\boldsymbol{\theta}}) \mathrm{d} \boldsymbol{\theta} \mathrm{d} \tilde{\boldsymbol{\theta}}}_{\text {interaction potential energy, nonlinear in } \rho}$,
where
$F_{0}:=\mathbb{E}_{(\boldsymbol{x}, y)}\left[y^{2}\right], \quad V(\boldsymbol{\theta}):=\mathbb{E}_{(\boldsymbol{x}, y)}[-2 y \Phi(\boldsymbol{x}, \boldsymbol{\theta})], \quad U(\boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}):=\mathbb{E}_{(\boldsymbol{x}, y)}[\Phi(\boldsymbol{x}, \boldsymbol{\theta}) \Phi(\boldsymbol{x}, \tilde{\boldsymbol{\theta}})]$
PDF dynamics for SGD:

$$
\frac{\partial \rho}{\partial t}=\nabla \cdot(\rho \nabla(\underbrace{V+U \circledast \rho)}_{\frac{\delta F}{\delta \rho}}) \text {, where }(U \circledast \rho)(\boldsymbol{\theta}):=\int_{\mathbb{R}^{p}} U(\boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}) \rho(\tilde{\boldsymbol{\theta}}) \mathrm{d} \tilde{\boldsymbol{\theta}}
$$

This PDE is the gradient flow of functional F w.r.t. the Wasserstein metric W

Wasserstein Proximal Recursion for Training NN

$$
\begin{aligned}
\varrho_{k}(\tau, \boldsymbol{\theta}) & =\underset{\varrho \in \mathcal{P}\left(\mathbb{R}^{p}\right)}{\arg \min } \frac{1}{2}\left(W\left(\varrho(\boldsymbol{\theta}), \varrho_{k-1}(\tau, \boldsymbol{\theta})\right)\right)^{2}+\tau F(\varrho(\boldsymbol{\theta})) \\
& =\operatorname{prox}_{\tau F}^{W}\left(\varrho_{k-1}\right)
\end{aligned}
$$

Classifying two Gaussians:

$$
d=40, n=100,
$$

$$
a=1, b=0, \sigma(\cdot)=\tanh (\cdot),
$$

Joint law of $(\boldsymbol{x}, y) \in \mathbb{R}^{d} \times \mathbb{R}$:

$$
\operatorname{Prob}\left(y=+1, \boldsymbol{x} \sim \mathcal{N}\left(\mathbf{0},(1+\Delta)^{2} \boldsymbol{I}_{d}\right)\right)=\frac{1}{2},
$$

$$
\operatorname{Prob}\left(y=-1, \boldsymbol{x} \sim \mathcal{N}\left(\mathbf{0},(1-\Delta)^{2} \boldsymbol{I}_{d}\right)\right)=\frac{1}{2},
$$

$$
\tau=10^{-3}, n_{\text {sample }}=100, \Delta=0.2
$$

Noisy SGD with $\beta=\frac{1}{3}$

Take Home Message

Thank You

Support:
<
CITRIS
CITRIS PEOPLE
ROBOTS

