A Distributed Algorithm for Wasserstein Proximal Operator Splitting

Abhishek Halder

Department of Applied Mathematics University of California, Santa Cruz Santa Cruz, CA 95064

Joint work with I. Nodozi, A.M. Teter (UC Santa Cruz)

Applied Mathematics Department Seminar, UC Santa Cruz, CA November 07, 2022

Topic of this talk

Optimization over the space of measures a.k.a. distributions

What do we mean by measure a.k.a. distribution

measure a.k.a. distribution = mass

mass = density × volume

Probability Distribution

$$\boldsymbol{x}(t) = \begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{y} \\ \boldsymbol{\theta} \end{pmatrix} \in \mathcal{X} \equiv \mathbb{R}^2 \times \mathbb{S}^1$$

Probability Distribution

$$\mathbf{x}(t) = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} \in \mathcal{X} \equiv \mathbb{R}^2 \times \mathbb{S}^1$$

 $\rho\left(\boldsymbol{x},t\right):\mathcal{X}\times\left[0,\infty\right)\mapsto\mathbb{R}_{\geq0}$

$$\int_{\mathcal{X}} \mathrm{d}\mu = \int_{\mathcal{X}} \rho \, \mathrm{d}x = 1 \quad \text{for all } t \in [0, \infty)$$

Probability Distribution

$$x(t) = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} \in \mathcal{X} \equiv \mathbb{R}^2 \times \mathbb{S}^1$$

$$\rho(\mathbf{x},t): \mathcal{X} \times [0,\infty) \mapsto \mathbb{R}_{\geq 0}$$

probability measure probability density function $\int_{\mathcal{X}} d\mu = \int_{\mathcal{X}} \rho \, dx = 1 \quad \text{for all } t \in [0, \infty)$

Probability Distribution Population Distribution Trajectory Generation and Optimal Control $\mathbf{x}(t) = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} \in \mathcal{X} \equiv \mathbb{R}^2 \times \mathbb{S}^1$

2-Wasserstein distance metric

$$egin{aligned} W_2(\mu_0,\mu_1) &:= \left(\inf_{\mu,oldsymbol{v}} \left\{ rac{1}{2} \int_0^1 \int_{\mathcal{X}} \|oldsymbol{v}\|^2 \mathrm{d}\mu \ \mathrm{d}t
ight\}
ight)^{1/2} \ & ext{ subject to } \quad rac{\partial \mu}{\partial t} = -
abla \cdot (\mu oldsymbol{v}), \ \mu(t=0,\cdot) = \mu_0, \ \mu(t=1,\cdot) = \mu_1 \end{aligned}$$

Measure-valued geodesic path for any $t \in [0,1]$

$$\mu_t = \arg \inf_{\nu \in \mathcal{P}_2(\mathcal{X})} \left\{ (1-t) W_2^2(\mu_0, \nu) + t W_2^2(\mu_1, \nu) \right\}$$

$$\bigwedge_{\text{manifold of probability measures supported}} \max_{\text{on } \mathcal{X} \text{ with finite second moments}}$$

Measure-valued geodesic path for any $t \in [0,1]$

$$\mu_{t} = \underset{\nu \in \mathcal{P}_{2}(\mathcal{X})}{\operatorname{arg inf}} \left\{ (1-t)W_{2}^{2}(\mu_{0},\nu) + tW_{2}^{2}(\mu_{1},\nu) \right\}$$

$$\underset{\text{on } \mathcal{X} \text{ manifold of probability measures supported}}{\overset{\text{manifold of probability measures supported}}{\operatorname{manifold moments}}$$

Sinkhorn divergence:

$$egin{aligned} W_arepsilon(\mu_0,\mu_1) &:= \left(\inf_m \int_{\mathcal{X} imes\mathcal{Y}} \left\{ c(oldsymbol{x},oldsymbol{y}) + oldsymbol{arepsilon}\log m
ight\} \mathrm{d}m(oldsymbol{x},oldsymbol{y})
ight)^{1/2}, & arepsilon > 0 \ \end{aligned}$$
 $\mathrm{subject \ to} \quad \int_{\mathcal{Y}} \mathrm{d}m = \mu_0(\mathrm{d}oldsymbol{x}), & \int_{\mathcal{X}} \mathrm{d}m = \mu_1(\mathrm{d}oldsymbol{y}) \end{aligned}$

Measure-valued Optimization Problems

2-Wasserstein geodescially convex functional

Space of Borel probability measures on \mathbb{R}^d with finite second moments

In many applications, we have additive structure:

$$F(\mu)=F_1(\mu)+F_2(\mu)+\ldots+F_n(\mu)$$

where each $F_i : \mathscr{P}_2(\mathbb{R}^d) \mapsto (-\infty, +\infty]$ is proper, lsc, and 2-Wasserstein geodescially convex

Connection with Wasserstein Gradient Flows

$$\frac{\partial \mu}{\partial t} = -\nabla^{W_2} F(\mu) := \nabla \cdot \left(\mu \nabla \frac{\delta F}{\delta \mu} \right) \quad (\star)$$

Wasserstein gradient

Minimizer of $\underset{\mu \in \mathcal{P}_2(\mathbb{R}^d)}{\operatorname{arg\,inf}} F(\mu) \quad \bigstar \quad \text{Stationary solution of } (\star)$

Transient solution of (\star) \checkmark I

Discrete time-stepping realizing grad. descent of $\operatorname*{arg\,inf}_{\mu\in\mathcal{P}_2(\mathbb{R}^d)}F(\mu)$

Connection with Wasserstein Gradient Flows

$$\frac{\partial \mu}{\partial t} = -\nabla^{W_2} F(\mu) := \nabla \cdot \left(\mu \nabla \frac{\delta F}{\delta \mu}\right) \qquad (\star)$$
Wasserstein gradient
Minimizer of $\underset{\mu \in \mathcal{P}_2(\mathbb{R}^d)}{\operatorname{arg inf}} F(\mu) \quad \nleftrightarrow \quad \text{Stationary solution of } (\star)$
Transient solution of (\star)

$$\stackrel{\bullet }{\longrightarrow} \quad \underset{\mu \in \mathcal{P}_2(\mathbb{R}^d)}{\operatorname{Discrete time-stepping realizing}} \underset{\mu \in \mathcal{P}_2(\mathbb{R}^d)}{\operatorname{grad. descent of } \underset{\mu \in \mathcal{P}_2(\mathbb{R}^d)}{\operatorname{arg inf}} F(\mu)$$

Wasserstein proximal recursion à la Jordan-Kinderlehrer-Otto (JKO) scheme

Gradient Flows

Gradient Flow in $\mathcal{P}_2(\mathcal{X})$ Gradient Flow in \mathcal{X} $\frac{\partial \mu}{\partial t} = -\nabla^{W} F(\mu), \quad \mu(\mathbf{x}, 0) = \mu_{0}$ $\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}\boldsymbol{t}} = -\nabla f(\boldsymbol{x}), \quad \boldsymbol{x}(0) = \boldsymbol{x}_0$ **Recursion: Recursion:** $\mu_k = \mu(\cdot, t = kh)$ $\mathbf{x}_k = \mathbf{x}_{k-1} - h \nabla f(\mathbf{x}_k)$ $= \underset{\boldsymbol{x}\in\mathcal{X}}{\arg\min} \left\{ \frac{1}{2} \|\boldsymbol{x}-\boldsymbol{x}_{k-1}\|_{2}^{2} + hf(\boldsymbol{x}) \right\} = \underset{\boldsymbol{\mu}\in\mathcal{P}_{2}(\mathcal{X})}{\arg\min} \left\{ \frac{1}{2} W^{2}(\boldsymbol{\mu},\boldsymbol{\mu}_{k-1}) + hF(\boldsymbol{\mu}) \right\}$ $=: \operatorname{prox}_{hf}^{\|\cdot\|_2}(\mathbf{x}_{k-1})$ $=: \operatorname{prox}_{kF}^{W}(\mu_{k-1})$ **Convergence: Convergence:** $\mathbf{x}_k \to \mathbf{x}(t = kh)$ as $h \downarrow 0$ $\mu_k \rightarrow \mu(\cdot, t = kh)$ as $h \downarrow 0$ *f* as Lyapunov function: *F* as Lyapunov functional: $\frac{\mathrm{d}}{\mathrm{d}t}F = -\mathbb{E}_{\mu}\left[\left\|\nabla\frac{\delta F}{\delta u}\right\|_{2}^{2}\right] \leq 0$ $\frac{\mathrm{d}}{\mathrm{d}t}f = - \|\nabla f\|_2^2 \leq 0$

Motivating Applications

Langevin sampling from an unnormalized prior

Stramer and Tweedie, *Methodology and Computing in Applied Probability*, 1999

Jarner and Hansen, *Stochastic Processes and their Applications*, 2000

Roberts and Stramer, *Methodology and Computing in Applied Probability*, 2002

Vempala and Wibisino, *NeurIPS*, 2019

Optimal control of distributions a.k.a. Schrödinger bridge problems

Chen, Georgiou and Pavon, SIAM Review, 2021

Chen, Georgiou and Pavon, SIAM Journal on Applied Mathematics, 2016

Chen, Georgiou and Pavon, *Journal on Optimization Theory and Applications*, 2016

Caluya and Halder, *IEEE Transactions on Automatic Control*, 2021

Motivating Applications (contd.)

Mean field learning dynamics in neural networks

Prediction and estimation of time-varying joint state probability densities

Many Recently Proposed Algorithms to Solve Measure-valued Optimization Problems

Peyré, SIAM Journal on Imaging Sciences, 2015

Benamou, Carlier and Laborde, ESAIM: Proceedings and Surveys, 2016

Carlier, Duval, Peyré and Schimtzer, SIAM Journal on Mathematical Analysis, 2017

Karlsson and Ringh, SIAM Journal on Imaging Sciences, 2017

Caluya and Halder, IEEE Transactions on Automatic Control, 2019

Carrillo, Craig, Wang and Wei, Foundations of Computational Mathematics, 2021

Mokrov, Korotin, Li, Gnevay, Solomon, and Burnaev, NeurIPS, 2021

Alvarez-Melis, Schiff, and Mroueh, NeurIPS, 2021

Many Recently Proposed Algorithms to Solve Measure-valued Optimization Problems

Peyré, SIAM Journal on Imaging Sciences, 2015

Benamou, Carlier and Laborde, ESAIM: Proceedings and Surveys, 2016

Carlier, Duval, Peyré and Schimtzer, SIAM Journal on Mathematical Analysis, 2017

Karlsson and Ringh, SIAM Journal on Imaging Sciences, 2017

Caluya and Halder, IEEE Transactions on Automatic Control, 2019

Carrillo, Craig, Wang and Wei, Foundations of Computational Mathematics, 2021

Mokrov, Korotin, Li, Gnevay, Solomon, and Burnaev, NeurIPS, 2021

Alvarez-Melis, Schiff, and Mroueh, NeurIPS, 2021

But all require centralized computing

Centralized Computing Case Study: Mean Field SGD Dynamics in NN Classification

Free energy functional: $F(\mu) = R\Big(\hat{f}\left(oldsymbol{x},\mu
ight)\Big)$

For quadratic loss:

$$F(\mu) = F_0 + \int_{\mathbb{R}^p} V(oldsymbol{ heta}) \mathrm{d} \mu(oldsymbol{ heta}) + \int_{\mathbb{R}^{2p}} U(oldsymbol{ heta}, oldsymbol{ heta}) \mathrm{d} \mu(oldsymbol{ heta}) \mathrm{d} \mu(oldsymbol{ heta})$$

depend on activation functions of the NN

Neuronal population measure dynamics:

$$rac{\partial \mu}{\partial t} =
abla \cdot \left(\mu
abla rac{\delta F}{\delta \mu}
ight) =: -
abla^{W_2} F(\mu) \, .$$

Wasserstein proximal recursion: $\mu_{k+1} = \operatorname{prox}_{hF}^{W}(\mu_k)$

Centralized Computing Case Study: Mean Field SGD Dynamics in NN Classification

Case study: Wisconsin Breast Cancer (Diagnostic) Data Set

CPU: 3.4 GHz 6 core intel i5 8GB RAM (≈ 33 hrs runtime)

GPU: Jetson TX2 NVIDIA Pascal GPU 256 CUDA cores, 64 bit NVIDIA Denver + ARM Cortex A57 CPUs (≈ 2 hrs runtime) Teter, Nodozi and Halder, arXiv: 2210.13879, 2022

Our Present Work: Distributed Algorithm

$$rginf_{\mu\in\mathcal{P}_2(\mathbb{R}^d)} F_1(\mu) + F_2(\mu) + \ldots + F_n(\mu)$$

Our Present Work: Distributed Algorithm

$$rginf_{\mu\in\mathcal{P}_2(\mathbb{R}^d)} F_1(\mu) + F_2(\mu) + \ldots + F_n(\mu)$$
 $\downarrow re-write$

Main idea:

$$egin{argsinf} rginf \ (\mu_1,\ldots,\mu_n,\zeta)\in \mathcal{P}_2^{n+1}(\mathbb{R}^d) \ \mathrm{subject \ to} \ \mu_i=\zeta \ \ \ \mathrm{for \ all} \ i\in[n] \end{array}$$

Our Present Work: Distributed Algorithm

$$rginf_{\mu\in\mathcal{P}_2(\mathbb{R}^d)} F_1(\mu) + F_2(\mu) + \ldots + F_n(\mu)$$
 $\downarrow re-write$

Main idea:

$$egin{argsinf} rginf \ (\mu_1,\ldots,\mu_n,\zeta)\in \mathcal{P}_2^{n+1}(\mathbb{R}^d) \ \mathrm{subject \ to} \ \mu_i=\zeta \ \ \ \mathrm{for \ all} \ i\in [n] \end{cases} ext{ for all } i\in [n]$$

Define Wasserstein augmented Lagrangian:

$$egin{aligned} L_lpha(\mu_1,\ldots,\mu_n,\zeta,
u_1,\ldots,
u_n) &:= \sum_{i=1}^n iggl\{F_i(\mu_i) + rac{lpha}{2} W^2(\mu_i,\zeta) + \int_{\mathbb{R}^d} oldsymbol{
u}_i(oldsymbol{ heta})(\mathrm{d}\mu_i - \mathrm{d}\zeta)iggr\} \ & \swarrow \ & \square \$$

Proposed Consensus ADMM

$$\begin{split} \mu_i^{k+1} &= \operatorname*{arg\,inf}_{\mu_i \in \mathcal{P}_2(\mathbb{R}^d)} L_\alpha(\mu_1, \dots, \mu_n, \zeta^k, \nu_1^k, \dots, \nu_n^k) \\ \zeta^{k+1} &= \operatorname*{arg\,inf}_{\zeta \in \mathcal{P}_2(\mathbb{R}^d)} L_\alpha(\mu_1^{k+1}, \dots, \mu_n^{k+1}, \zeta, \nu_1^k, \dots, \nu_n^k) \\ \nu_i^{k+1} &= \nu_i^k + \alpha(\mu_i^{k+1} - \zeta^{k+1}) \end{split} \quad \text{where } i \in [n], k \in \mathbb{N}_0 \end{split}$$

Proposed Consensus ADMM

$$egin{aligned} &\mu_i^{k+1} = rginf_{\mu_i \in \mathcal{P}_2(\mathbb{R}^d)} L_lphaig(\mu_1,\ldots,\mu_n,\zeta^k,
u_1^k,\ldots,
u_n^kig) \ &\zeta^{k+1} = rginf_{\zeta \in \mathcal{P}_2(\mathbb{R}^d)} L_lphaig(\mu_1^{k+1},\ldots,\mu_n^{k+1},\zeta,
u_1^k,\ldots,
u_n^kig) \ &
u_i^{k+1} =
u_i^k + lphaig(\mu_i^{k+1} - \zeta^{k+1}ig) & ext{where } i \in [n], k \in \mathbb{N}_0 \end{aligned}$$

Define

$$u_{ ext{sum}}^k\left(oldsymbol{ heta}
ight):=\sum_{i=1}^n
u_i^k(oldsymbol{ heta}),\quad k\in\mathbb{N}_0$$

and simplify the recursions to

$$egin{aligned} &\mu_i^{k+1} = \mathrm{prox}_{rac{1}{lpha}ig(F_i(\cdot) + \int
u_i^k \,\mathrm{d}(\cdot)ig)}ig(\zeta^kig) \ &\zeta^{k+1} = rginf_{\zeta\in\mathcal{P}_2(\mathbb{R}^d)}igg\{ig(\sum_{i=1}^n W^2ig(\mu_i^{k+1},\zetaig)ig) - rac{2}{lpha}\int_{\mathbb{R}^d}
u_{\mathrm{sum}}^kig(oldsymbol{ heta}ig)\mathrm{d}\zetaig\} \ &
u_i^{k+1} =
u_i^k + lphaig(\mu_i^{k+1} - \zeta^{k+1}ig) \end{aligned}$$

Proposed Consensus ADMM (contd.)

$$egin{aligned} & \mu_i^{k+1} = \mathrm{prox}_{rac{1}{lpha}ig(F_i(\cdot) + \int
u_i^k \,\mathrm{d}(\cdot)ig)}ig(\zeta^kig) \ & \zeta^{k+1} = rginf_{\zeta\in\mathcal{P}_2(\mathbb{R}^d)}igg\{ig(\sum_{i=1}^n W^2ig(\mu_i^{k+1},\zetaig)ig) - rac{2}{lpha}\int_{\mathbb{R}^d}
u_{\mathrm{sum}}^k(oldsymbol{ heta}ig)\mathrm{d}\zetaig\} \ &
u_i^{k+1} =
u_i^k + lphaig(\mu_i^{k+1} - \zeta^{k+1}ig) \end{aligned}$$

Split free energy functionals: $\Phi_i(\mu_i) := F_i(\mu_i) + \int_{\mathbb{R}^d}
u_i^k \, \mathrm{d} \mu_i$

 \therefore Distributed Wasserstein prox \approx time updates of $\frac{\partial \tilde{\mu}_i}{\partial t} = -\nabla^W \Phi_i(\tilde{\mu}_i)$

Proposed Consensus ADMM (contd.)

$$egin{aligned} &\mu_i^{k+1} = \mathrm{prox}_{rac{1}{lpha}ig(F_i(\cdot) + \int
u_i^k \,\mathrm{d}(\cdot)ig)}ig(\zeta^kig) \ &\zeta^{k+1} = rgin_{\zeta\in\mathcal{P}_2(\mathbb{R}^d)}igg\{ig(\sum_{i=1}^n W^2ig(\mu_i^{k+1},\zetaig)ig) - rac{2}{lpha}\int_{\mathbb{R}^d}
u_{ ext{sum}}^kig(oldsymbol{ heta}ig)\mathrm{d}\zetaig\} \ &
u_i^{k+1} =
u_i^k + lphaig(\mu_i^{k+1} - \zeta^{k+1}ig) \end{aligned}$$

Split free energy functionals: $\Phi_i(\mu_i) := F_i(\mu_i) + \int_{\mathbb{R}^d} \nu_i^k \,\mathrm{d}\mu_i$

 \therefore Distributed Wasserstein prox \approx time updates of $\frac{\partial \tilde{\mu}_i}{\partial t} = -\nabla^W \Phi_i(\tilde{\mu}_i)$

Examples:

$\Phi_i(\cdot) = F_i(\cdot) + \int \nu_i^k \mathbf{d}(\cdot)$	PDE	Name
$\int_{\mathbb{R}^d} \left(V(\boldsymbol{\theta}) + \nu_i^k(\boldsymbol{\theta}) \right) \mathrm{d}\mu_i(\boldsymbol{\theta})$	$\frac{\partial \widetilde{\mu}_i}{\partial t} = \nabla \cdot \left(\widetilde{\mu}_i \left(\nabla V + \nabla \nu_i^k \right) \right)$	Liouville equation
$\int_{\mathbb{R}^d} \left(\nu_i^k(\boldsymbol{\theta}) + \beta^{-1} \log \mu_i(\boldsymbol{\theta}) \right) \mathrm{d} \mu_i(\boldsymbol{\theta})$	$\frac{\partial \widetilde{\mu}_i}{\partial t} = \nabla \cdot \left(\widetilde{\mu}_i \nabla \nu_i^k \right) + \beta^{-1} \Delta \widetilde{\mu}_i$	Fokker-Planck equation
$\int_{\mathbb{R}^d} \nu_i^k(\boldsymbol{\theta}) \mathrm{d}\mu_i(\boldsymbol{\theta}) + \int_{\mathbb{R}^{2d}} U(\boldsymbol{\theta}, \boldsymbol{\sigma}) \mathrm{d}\mu_i(\boldsymbol{\theta}) \mathrm{d}\mu_i(\boldsymbol{\sigma})$	$\frac{\partial \widetilde{\mu}_i}{\partial t} = \nabla \cdot \left(\widetilde{\mu}_i \left(\nabla \nu_i^k + \nabla \left(U \circledast \widetilde{\mu}_i \right) \right) \right)$	Propagation of chaos equation
$\int_{\mathbb{R}^d} \left(\nu_i^k(\boldsymbol{\theta}) + \frac{\beta^{-1}}{m-1} 1^\top \mu_i^m \right) \mathrm{d}\mu_i(\boldsymbol{\theta}), m > 1$	$\frac{\partial \widetilde{\mu}_i}{\partial t} = \nabla \cdot \left(\widetilde{\mu}_i \nabla \nu_i^k \right) + \beta^{-1} \Delta \widetilde{\mu}_i^m$	Porous medium equation

Discrete Version of the Proposed ADMM

$$\begin{split} \boldsymbol{\mu}_{i}^{k+1} &= \operatorname{prox}_{\frac{1}{\alpha}\left(F_{i}(\boldsymbol{\mu}_{i}) + \langle \boldsymbol{\nu}_{i}^{k}, \boldsymbol{\mu}_{i} \rangle\right)}^{W} \left(\boldsymbol{\zeta}^{k}\right) \qquad \text{Euclidean distance matrix} \\ &= \operatorname*{arg inf}_{\boldsymbol{\mu}_{i} \in \Delta^{N-1}} \left\{ \operatorname*{min}_{\boldsymbol{M} \in \Pi_{N}(\boldsymbol{\mu}_{i}, \boldsymbol{\zeta}^{k})} \frac{1}{2} \langle \boldsymbol{C}, \boldsymbol{M} \rangle + \frac{1}{\alpha} \left(F_{i}(\boldsymbol{\mu}_{i}) + \langle \boldsymbol{\nu}_{i}^{k}, \boldsymbol{\mu}_{i} \rangle\right)\right\} \\ \boldsymbol{\zeta}^{k+1} &= \operatorname*{arg inf}_{\boldsymbol{\zeta} \in \Delta^{N-1}} \left\{ \left(\sum_{i=1}^{n} \operatorname*{min}_{\boldsymbol{M}_{i} \in \Pi_{N}(\boldsymbol{\mu}_{i}^{k+1}, \boldsymbol{\zeta})} \frac{1}{2} \langle \boldsymbol{C}, \boldsymbol{M}_{i} \rangle \right) - \frac{2}{\alpha} \langle \boldsymbol{\nu}_{\mathrm{sum}}^{k}, \boldsymbol{\zeta} \rangle \right\} \\ \boldsymbol{\nu}_{i}^{k+1} &= \boldsymbol{\nu}_{i}^{k} + \alpha \left(\boldsymbol{\mu}_{i}^{k+1} - \boldsymbol{\zeta}^{k+1} \right) \qquad \text{where N is the number of samples} \end{split}$$

Discrete Version of the Proposed ADMM

$$egin{aligned} oldsymbol{\mu}_{i}^{k+1} &= \mathrm{prox}_{rac{1}{lpha}ig(F_{i}(oldsymbol{\mu}_{i})+ig\langleoldsymbol{
u}_{i}^{k},oldsymbol{\mu}_{i}igig) &= rginf_{oldsymbol{\mu}_{i}\in\Delta^{N-1}}igg\{ \min_{oldsymbol{M}\in\Pi_{N}ig(oldsymbol{\mu}_{i},\zeta^{k}ig)rac{1}{2}ig\langleoldsymbol{C},oldsymbol{M}ig
angle+rac{1}{lpha}ig(F_{i}(oldsymbol{\mu}_{i})+ig\langleoldsymbol{
u}_{i}^{k},oldsymbol{\mu}_{i}igigig) \\ oldsymbol{\zeta}^{k+1} &= rginf_{oldsymbol{\zeta}\in\Delta^{N-1}}igg\{ \left(\sum_{i=1}^{n}\min_{oldsymbol{M}_{i}\in\Pi_{N}ig(oldsymbol{\mu}_{i}^{k+1},oldsymbol{\zeta}ig)rac{1}{2}ig\langleoldsymbol{C},oldsymbol{M}_{i}ig
angle
ight) -rac{2}{lpha}ig\langleoldsymbol{
u}_{\mathrm{sum}}^{k},oldsymbol{\zeta}ig
angle igg\} \ oldsymbol{
u}_{i}^{k+1} &= oldsymbol{
u}_{i}^{k} + lphaig(oldsymbol{\mu}_{i}^{k+1} - oldsymbol{\zeta}^{k+1}ig) \end{array}$$

With Sinkhorn regularization:

$$\begin{aligned} \mu_i^{k+1} &= \operatorname{prox}_{\frac{1}{\alpha}(F_i(\boldsymbol{\mu}_i) + \langle \boldsymbol{\nu}_i^k, \boldsymbol{\mu}_i \rangle)}^{W_{\varepsilon}} (\boldsymbol{\zeta}^k) \\ &= \underset{\boldsymbol{\mu}_i \in \Delta^{N-1}}{\operatorname{arg inf}} \left\{ \underbrace{\min_{\boldsymbol{M} \in \Pi_N(\boldsymbol{\mu}_i, \boldsymbol{\zeta}^k)} \left\langle \frac{1}{2} \boldsymbol{C} + \varepsilon \log \boldsymbol{M}, \boldsymbol{M} \right\rangle}_{\boldsymbol{M} \in \Pi_N(\boldsymbol{\mu}_i) + \langle \boldsymbol{\nu}_i^k, \boldsymbol{\mu}_i \rangle) \right\} \\ \boldsymbol{\zeta}^{k+1} &= \underset{\boldsymbol{\zeta} \in \Delta^{N-1}}{\operatorname{arg inf}} \left\{ \left(\sum_{i=1}^n \min_{\boldsymbol{M}_i \in \Pi_N(\boldsymbol{\mu}_i^{k+1}, \boldsymbol{\zeta})} \left\langle \frac{1}{2} \boldsymbol{C} + \varepsilon \log \boldsymbol{M}_i, \boldsymbol{M}_i \right\rangle \right) - \frac{2}{\alpha} \langle \boldsymbol{\nu}_{\operatorname{sum}}^k, \boldsymbol{\zeta} \rangle \right\} \\ \boldsymbol{\nu}_i^{k+1} &= \boldsymbol{\nu}_i^k + \alpha \left(\boldsymbol{\mu}_i^{k+1} - \boldsymbol{\zeta}^{k+1} \right) \end{aligned}$$

D.

Discrete Version of the Proposed ADMM

$$egin{aligned} oldsymbol{\mu}_{i}^{k+1} &= \mathrm{prox}_{rac{1}{lpha}ig(F_{i}(oldsymbol{\mu}_{i})+ig\langleoldsymbol{
u}_{i}^{k},oldsymbol{\mu}_{i}igig) \ &= rginf_{oldsymbol{\mu}_{i}\in\Delta^{N-1}}igg\{ \min_{oldsymbol{M}\in\Pi_{N}ig(oldsymbol{\mu}_{i},\zeta^{k}ig)rac{1}{2}ig\langleoldsymbol{C},oldsymbol{M}ig
angle+rac{1}{lpha}ig(F_{i}(oldsymbol{\mu}_{i})+ig\langleoldsymbol{
u}_{i}^{k},oldsymbol{\mu}_{i}igig) ig\} \ &oldsymbol{\zeta}^{k+1} &= rginf_{oldsymbol{\zeta}\in\Delta^{N-1}}igg\{ \left(\sum_{i=1}^{n}\min_{oldsymbol{M}_{i}\in\Pi_{N}ig(oldsymbol{\mu}_{i}^{k+1},oldsymbol{\zeta}ig)rac{1}{2}ig\langleoldsymbol{C},oldsymbol{M}_{i}ig
angle
ight) -rac{2}{lpha}ig\langleoldsymbol{
u}_{\mathrm{sum}}^{k},oldsymbol{\zeta}ig
angle ig\} \ &oldsymbol{
u}_{i}^{k+1} &= oldsymbol{
u}_{i}^{k}+lphaig(oldsymbol{\mu}_{i}^{k+1}-oldsymbol{\zeta}^{k+1}ig) \ \end{split}$$

With Sinkhorn regularization:

$$\begin{array}{l} \text{Outer} \\ \text{layer} \\ \text{ADMM} \\ \boldsymbol{\zeta}^{k+1} = \operatorname{arg\,inf}_{\boldsymbol{\zeta} \in \Delta^{N-1}} \left\{ \begin{array}{l} \min_{\boldsymbol{M} \in \Pi_{N}(\boldsymbol{\mu}_{i},\boldsymbol{\zeta}^{k})} \left\langle \boldsymbol{\zeta}^{k} \right\rangle \\ mind \\ \boldsymbol{M} \in \Pi_{N}(\boldsymbol{\mu}_{i},\boldsymbol{\zeta}^{k}) \left\langle \boldsymbol{1} & \boldsymbol{C} + \varepsilon \log \boldsymbol{M}, \boldsymbol{M} \right\rangle + \frac{1}{\alpha} \left(F_{i}(\boldsymbol{\mu}_{i}) + \left\langle \boldsymbol{\nu}_{i}^{k}, \boldsymbol{\mu}_{i} \right\rangle \right) \right\} \\ \boldsymbol{\zeta}^{k+1} = \operatorname{arg\,inf}_{\boldsymbol{\zeta} \in \Delta^{N-1}} \left\{ \left(\sum_{i=1}^{n} \min_{\boldsymbol{M}_{i} \in \Pi_{N}(\boldsymbol{\mu}_{i}^{k+1},\boldsymbol{\zeta})} \left\langle \boldsymbol{1} & \boldsymbol{2} & \boldsymbol{C} + \varepsilon \log \boldsymbol{M}_{i}, \boldsymbol{M}_{i} \right\rangle \right) - \frac{2}{\alpha} \left\langle \boldsymbol{\nu}_{\mathrm{sum}}^{k}, \boldsymbol{\zeta} \right\rangle \right\} \\ \boldsymbol{\nu}_{i}^{k+1} = \boldsymbol{\nu}_{i}^{k} + \alpha \left(\boldsymbol{\mu}_{i}^{k+1} - \boldsymbol{\zeta}^{k+1} \right) \end{array} \right] \\ \begin{array}{l} \text{Inner} \\ \text{Inner} \\ \text{Iayer} \\ \text{ADMM} \end{array}$$

Overall Schematic

μ_i update → Outer Consensus (Sinkhorn) ADMM

Example. $\Phi(\boldsymbol{\mu}) := \langle \boldsymbol{a}, \boldsymbol{\mu} \rangle$, $\boldsymbol{a} \in \mathbb{R}^N \setminus \{\boldsymbol{0}\}$, $\boldsymbol{\mu}, \boldsymbol{\zeta} \in \Delta^{N-1}$, $\Gamma := \exp(-C/2\varepsilon), \varepsilon > 0$

$$\operatorname{prox}_{\frac{1}{\alpha}\Phi}^{W_{\varepsilon}}(\boldsymbol{\zeta}) = \exp\left(-\frac{1}{\alpha\varepsilon}\boldsymbol{a}\right) \odot \left(\boldsymbol{\Gamma}^{\top}\left(\boldsymbol{\zeta} \oslash \left(\boldsymbol{\Gamma} \exp\left(-\frac{1}{\alpha\varepsilon}\boldsymbol{a}\right)\right)\right)\right)$$

µ_i update → Outer Consensus (Sinkhorn) ADMM

Example. $\Phi(\boldsymbol{\mu}) := \langle \boldsymbol{a}, \boldsymbol{\mu} \rangle, \boldsymbol{a} \in \mathbb{R}^N \setminus \{\boldsymbol{0}\}, \boldsymbol{\mu}, \boldsymbol{\zeta} \in \Delta^{N-1}, \boldsymbol{\Gamma} := \exp(-\boldsymbol{C}/2\varepsilon), \varepsilon > 0$

$$\operatorname{prox}_{\frac{1}{\alpha}\Phi}^{W_{\varepsilon}}(\boldsymbol{\zeta}) = \exp\left(-\frac{1}{\alpha\varepsilon}\boldsymbol{a}\right) \odot \left(\boldsymbol{\Gamma}^{\mathsf{T}}\left(\boldsymbol{\zeta} \oslash \left(\boldsymbol{\Gamma} \exp\left(-\frac{1}{\alpha\varepsilon}\boldsymbol{a}\right)\right)\right)\right)$$

Example.
$$G_i(\boldsymbol{\mu}_i) := F_i(\boldsymbol{\mu}_i) + \langle \boldsymbol{\nu}_i^k, \boldsymbol{\mu}_i \rangle, \ \boldsymbol{\zeta}^k \in \Delta^{N-1}, \ k \in \mathbb{N}_0.$$

Convex

$$\boldsymbol{\mu}_{i}^{k+1} = \operatorname{prox}_{\frac{1}{\alpha}\left(F_{i}(\boldsymbol{\mu}_{i}) + \left\langle \boldsymbol{\nu}_{i}^{k}, \boldsymbol{\mu}_{i} \right\rangle\right)}^{W_{\varepsilon}}\left(\boldsymbol{\zeta}^{k}\right) = \exp\left(\frac{\boldsymbol{\lambda}_{1i}^{\operatorname{opt}}}{\alpha\varepsilon}\right) \odot\left(\exp\left(-\frac{\boldsymbol{C}^{\top}}{2\varepsilon}\right)\exp\left(\frac{\boldsymbol{\lambda}_{0i}^{\operatorname{opt}}}{\alpha\varepsilon}\right)\right)$$

where $\boldsymbol{\lambda}_{0i}^{\mathrm{opt}}, \boldsymbol{\lambda}_{1i}^{\mathrm{opt}} \in \mathbb{R}^N$ solve

$$\exp\left(\frac{\boldsymbol{\lambda}_{0i}^{\text{opt}}}{\alpha\varepsilon}\right) \odot \left(\exp\left(-\frac{\boldsymbol{C}}{2\varepsilon}\right) \exp\left(\frac{\boldsymbol{\lambda}_{1i}^{\text{opt}}}{\alpha\varepsilon}\right)\right) = \boldsymbol{\zeta}_{k},$$
$$\boldsymbol{0} \in \partial_{\boldsymbol{\lambda}_{1i}^{\text{opt}}} G_{i}^{*}\left(-\boldsymbol{\lambda}_{1i}^{\text{opt}}\right) - \exp\left(\frac{\boldsymbol{\lambda}_{1i}^{\text{opt}}}{\alpha\varepsilon}\right) \odot \left(\exp\left(-\frac{\boldsymbol{C}^{\top}}{2\varepsilon}\right) \exp\left(\frac{\boldsymbol{\lambda}_{0i}^{\text{opt}}}{\alpha\varepsilon}\right)\right).$$

ζupdate → Inner (Euclidean) ADMM

Theorem.

Consider the convex problem

$$\begin{pmatrix} \boldsymbol{u}_{1}^{\text{opt}}, \dots, \boldsymbol{u}_{n}^{\text{opt}} \end{pmatrix} = \underset{(\boldsymbol{u}_{1}, \dots, \boldsymbol{u}_{n}) \in \mathbb{R}^{nN}}{\arg\min} \sum_{i=1}^{n} \langle \boldsymbol{\mu}_{i}^{k+1}, \log\left(\boldsymbol{\Gamma}\exp\left(\boldsymbol{u}_{i}/\varepsilon\right)\right) \rangle$$

$$\text{subject to} \quad \sum_{i=1}^{n} \boldsymbol{u}_{i} = \frac{2}{\alpha} \boldsymbol{\nu}_{\text{sum}}^{k}.$$

$$\text{Then}$$

 $\boldsymbol{\zeta}^{k+1} = \exp\left(\boldsymbol{u}_{i}^{\mathrm{opt}}/\varepsilon\right) \odot \left(\boldsymbol{\Gamma}\left(\boldsymbol{\mu}_{i}^{k+1} \oslash \left(\boldsymbol{\Gamma} \exp\left(\boldsymbol{u}_{i}^{\mathrm{opt}}/\varepsilon\right)\right)\right)\right) \in \Delta^{N-1} \quad \forall \ i \in [n].$

ζupdate → Inner (Euclidean) ADMM

Theorem.

Let
$$f_i(\boldsymbol{u}_i) := \langle \boldsymbol{\mu}_i^{k+1}, \log\left(\boldsymbol{\Gamma}\exp\left(\boldsymbol{u}_i/\varepsilon\right)\right) \rangle, \quad \boldsymbol{u}_i \in \mathbb{R}^N, \text{ for all } i \in [n],$$

Then the following Euclidean ADMM solves (\heartsuit)

Experiment #2

Centralized computation:

Carrillo, Craig, Wang and Wei, FOCM, 2021

Experiment #2 (contd.)

 $F_1(oldsymbol{\mu}) = \langle oldsymbol{U}_k oldsymbol{\mu}, oldsymbol{\mu}
angle \quad F_2(oldsymbol{\mu}) = \langle oldsymbol{V}_k + eta^{-1} \log oldsymbol{\mu}, oldsymbol{\mu}
angle$

Distributed computation:

Centralized computation:

Carrillo, Craig, Wang and Wei, FOCM, 2021

Annulus with inner radius 1/2 and outer radius $\sqrt{5}/2$

Experiment #2 (contd.)

100 run statistics for each of the 4 ways of splitting: $(2^n - n - 1 \text{ ways in general})$

Splitting case	Functionals	Wasserstein distance
#1	$egin{aligned} F_1(oldsymbol{\mu}) &= \left< oldsymbol{V}_k + eta^{-1}oldsymbol{\mu}, oldsymbol{\mu} ight>, \ F_2(oldsymbol{\mu}) &= \left< oldsymbol{U}_koldsymbol{\mu}^k, oldsymbol{\mu} ight>, \end{aligned}$	$\begin{array}{c} & & & \\ & &$
#2	$egin{aligned} F_1(oldsymbol{\mu}) &= \langle oldsymbol{U}_k oldsymbol{\mu}^k + eta^{-1} oldsymbol{\mu}, oldsymbol{\mu} angle, \ F_2(oldsymbol{\mu}) &= \langle oldsymbol{V}_k, oldsymbol{\mu} angle \end{aligned}$	$= \frac{10^{-2}}{4 \times 10^{-3}}$
#3	$egin{aligned} F_1(oldsymbol{\mu}) &= \langle oldsymbol{U}_k oldsymbol{\mu}^k + oldsymbol{V}_k, oldsymbol{\mu} angle, \ F_2(oldsymbol{\mu}) &= ig\langle eta^{-1} oldsymbol{\mu}, oldsymbol{\mu}ig angle, \end{aligned}$	4×10^{-2} 4×10^{-2} 4×10^{-2} 4×10^{-3} 0 10 10 10 10 10 10 10
#4	$egin{aligned} F_1(oldsymbol{\mu}) &= \langle oldsymbol{V}_k, oldsymbol{\mu} angle, \ F_2(oldsymbol{\mu}) &= ig\langle oldsymbol{U}_k oldsymbol{\mu}^k ig angle, \ F_3(oldsymbol{\mu}) &= ig\langle eta^{-1} oldsymbol{\mu}, oldsymbol{\mu} ig angle \end{aligned}$	$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$

Experiment #2 (contd.)

100 run for statistics each of the 4 ways of splitting: $(2^n - n - 1 \text{ ways in general})$

Splitting case	Functionals	Wasserstein distance	
#1	$F_1(\boldsymbol{\mu}) = \left\langle \boldsymbol{V}_k + \beta^{-1} \boldsymbol{\mu}, \boldsymbol{\mu} \right\rangle,$ $F_2(\boldsymbol{\mu}) = \left\langle \boldsymbol{U}_k \boldsymbol{\mu}^k, \boldsymbol{\mu} \right\rangle$	$\begin{array}{c} & & \\$	
	av. runnine = 294.00 s	$4 \times 10^{\circ} 0 + 10^{\circ} 0 + 10^{\circ} 10$	
#2	$F_1(\boldsymbol{\mu}) = \langle \boldsymbol{U}_k \boldsymbol{\mu}^k + \beta^{-1} \boldsymbol{\mu}, \boldsymbol{\mu} \rangle,$ $F_2(\boldsymbol{\mu}) = \langle \boldsymbol{V}_k, \boldsymbol{\mu} \rangle$ av. runtime = 285.32 s	$= \frac{10^{-2}}{10^{-2}}$	
#3	$F_1(\boldsymbol{\mu}) = \langle \boldsymbol{U}_k \boldsymbol{\mu}^k + \boldsymbol{V}_k, \boldsymbol{\mu} \rangle,$ $F_2(\boldsymbol{\mu}) = \langle \beta^{-1} \boldsymbol{\mu}, \boldsymbol{\mu} \rangle$ av. runtime = 289.87 s	4×10^{-2} 4×10^{-2} 4×10^{-3} 4×10^{-3} 10^{-2} 4×10^{-3} 10^{-2} 4×10^{-3} 10^{-2}	
#4	$F_{1}(\boldsymbol{\mu}) = \langle \boldsymbol{V}_{k}, \boldsymbol{\mu} \rangle,$ $F_{2}(\boldsymbol{\mu}) = \langle \boldsymbol{U}_{k} \boldsymbol{\mu}^{k} \rangle,$ $F_{3}(\boldsymbol{\mu}) = \langle \beta^{-1} \boldsymbol{\mu}, \boldsymbol{\mu} \rangle$ av. runtime = 108.99 s	$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	

Summary

Distributed computation for measure-valued optimization

Realizes measure-valued operator splitting

Takes advantage of the existing proximal and JKO type algorithms

Ongoing

Convergence guarantees for the overall scheme

High dimensional case studies

Thank You