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Topic of this talk

Optimization over the space of 
measures a.k.a. distributions
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measure a.k.a. distribution = mass

mass = density       volume

What do we mean by measure a.k.a. distribution
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Trajectory Generation  
and Optimal Control

Probability Density Fn.
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Probability Distribution
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probability measure probability density function

Probability Distribution

=
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2-Wasserstein distance metric

Geometry on the Space of Prob. Measures
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2-Wasserstein distance metric

Measure-valued geodesic path for any t ∈ [0,1]

Geometry on the Space of Prob. Measures

manifold of probability measures supported 
on       with finite second moments
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2-Wasserstein distance metric

Measure-valued geodesic path for any t ∈ [0,1]

Geometry on the Space of Prob. Measures

manifold of probability measures supported 
on       with finite second moments
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Optimal coupling formulation:

Geometry on the Space of Prob. Measures

Ground cost, e.g., 
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Optimal coupling formulation:

Geometry on the Space of Prob. Measures

Ground cost, e.g., 

Sinkhorn divergence:



Measure-valued Optimization Problems

13

Space of Borel probability measures 
on  with finite second momentsℝd

2-Wasserstein geodescially 
convex functional

In many applications, we have additive structure:

where each  is proper, lsc, 
and 2-Wasserstein geodescially convex 

Fi : 𝒫2 (ℝd) ↦ (−∞, + ∞]



Connection with Wasserstein Gradient Flows
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Minimizer of ( ⋆ )⇝Stationary solution of 

( ⋆ )

⇝( ⋆ )Transient solution of Discrete time-stepping realizing

grad. descent of 

Wasserstein gradient



Connection with Wasserstein Gradient Flows
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Minimizer of ( ⋆ )⇝Stationary solution of 

⇝( ⋆ )Transient solution of Discrete time-stepping realizing

grad. descent of 

Wasserstein proximal recursion à la Jordan-Kinderlehrer-Otto (JKO) scheme

( ⋆ )

Wasserstein gradient



Gradient Flows
Gradient Flow

Gradient Flow in Rn

dx
dt

= �r'(x), x(0) = x0

Recursion:

xk = xk�1 � hr'(xk)

= arg min
x2Rn

⇢
1

2
kx � xk�1k22 + h'(x)

�

=: proxk·k2

h' (xk�1)

Convergence:

xk ! x(t = kh) as h # 0

Gradient Flow in P2(Rn
)

@⇢

@t
= �rW

�(⇢), ⇢(x , 0) = ⇢0

Recursion:

⇢k = ⇢(·, t = kh)

= arg min
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h�(⇢)

�

=: proxW 2

h� (⇢k�1)

Convergence:

⇢k ! ⇢(·, t = kh) as h # 0

Kenneth Caluya Joint work with Abhishek Halder CITRIS/CPAR Control Theory and Automation Symposium

Geometric Meaning of Gradient Flow

 as Lyapunov function:  as Lyapunov functional:
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Motivating Applications

Langevin sampling from given unnormalized prior Density control

[Vempala and Wibisono, 2019]

[Stramer and Tweedie, 1999]

[Jarner and Hansen, 2000]

[Roberts and Stramer, 2002] [Y. Chen et al., 2021]

[Caluya and Halder,., 2021]

3

Langevin sampling from 
an unnormalized prior

Optimal control of distributions 
a.k.a. Schrödinger bridge problems 

Stramer and Tweedie, Methodology and Computing 
in Applied Probability, 1999

Jarner and Hansen, Stochastic Processes and their 
Applications, 2000

Roberts and Stramer, Methodology and Computing 
in Applied Probability, 2002

Vempala and Wibisino, NeurIPS, 2019
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[Jarner and Hansen, 2000]

[Roberts and Stramer, 2002] [Y. Chen et al., 2021]

[Caluya and Halder,., 2021]

3

Chen, Georgiou and Pavon, SIAM Review, 2021

Chen, Georgiou and Pavon, SIAM Journal on 
Applied Mathematics, 2016

Chen, Georgiou and Pavon, Journal on 
Optimization Theory and Applications, 2016

Caluya and Halder, IEEE Transactions on 
Automatic Control, 2021
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Mean field learning dynamics 
in neural networks

Prediction and estimation of time-varying 
joint state probability densities

Mei, Montanari and Nguyen, Proceedings of the 
National Academy of Sciences, 2018

Chizat and Bach, NeurIPS, 2018

Rotskoff and Vanden-Eijnden, NeurIPS, 2018

Caluya and Halder, IEEE Transactions on Automatic 
Control, 2019

Sirignano and Spiliopoulos, Stochastic Processes 
and their Applications, 2020

Motivating Applications

Stochastic prediction Stochastic estimation

θ1

θ2

θnH

nH

θi

Mean field neural network learning

[Jordan et al., 1998]

[Ambrosio et al., 2005]
[Caluya and Halder, 2019]

[Kushner, 1964]

[Stratonovich, 1965]

[Bucy, 1965]

[Halder and Georgiou, 2017, 2018, 2019]

[Rotskoff and Vanden-Eijnden, 2018]

[Sirignano and Spiliopoulos, 2020]

[Domingo-Enrich et al., 2020]

[Krichene, et al., 2020]

[Halder et al., 2020] 4
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Halder and Georgiou, CDC, 2019

Halder and Georgiou, ACC, 2018

Halder and Georgiou, CDC, 2017



Many Recently Proposed Algorithms to Solve 
Measure-valued Optimization Problems
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Benamou, Carlier and Laborde, ESAIM: Proceedings and Surveys, 2016

Caluya and Halder, IEEE Transactions on Automatic Control, 2019

Peyré, SIAM Journal on Imaging Sciences, 2015

Carlier, Duval, Peyré and Schimtzer, SIAM Journal on Mathematical Analysis, 2017

Carrillo, Craig, Wang and Wei, Foundations of Computational Mathematics, 2021

Karlsson and Ringh, SIAM Journal on Imaging Sciences, 2017

Mokrov, Korotin, Li, Gnevay, Solomon, and Burnaev, NeurIPS, 2021

Alvarez-Melis, Schiff, and Mroueh, NeurIPS, 2021



Many Recently Proposed Algorithms to Solve 
Measure-valued Optimization Problems
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Benamou, Carlier and Laborde, ESAIM: Proceedings and Surveys, 2016

Caluya and Halder, IEEE Transactions on Automatic Control, 2019

But all require centralized computing

Peyré, SIAM Journal on Imaging Sciences, 2015

Carlier, Duval, Peyré and Schimtzer, SIAM Journal on Mathematical Analysis, 2017

Carrillo, Craig, Wang and Wei, Foundations of Computational Mathematics, 2021

Karlsson and Ringh, SIAM Journal on Imaging Sciences, 2017

Mokrov, Korotin, Li, Gnevay, Solomon, and Burnaev, NeurIPS, 2021

Alvarez-Melis, Schiff, and Mroueh, NeurIPS, 2021



Centralized Computing Case Study: 
Mean Field SGD Dynamics in NN Classification
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depend on activation functions of the NN

Neuronal population measure dynamics:

Wasserstein proximal recursion:



Centralized Computing Case Study: 
Mean Field SGD Dynamics in NN Classification
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Case study: Wisconsin Breast Cancer (Diagnostic) Data Set

CPU: 3.4 GHz 6 core intel i5 8GB RAM (  33 hrs runtime)≈

GPU: Jetson TX2 NVIDIA Pascal GPU 256 CUDA cores, 64 bit NVIDIA Denver + 
ARM Cortex A57 CPUs (  2 hrs runtime)≈

Teter, Nodozi and Halder, arXiv: 2210.13879, 2022
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Our Present Work: Distributed Algorithm
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Main idea:

⇝
re-write



Our Present Work: Distributed Algorithm
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Main idea:

⇝
re-write

Define Wasserstein augmented Lagrangian:

regularization > 0 Lagrange multipliers



Proposed Consensus ADMM
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where i ∈ [n], k ∈ ℕ0



Proposed Consensus ADMM
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where i ∈ [n], k ∈ ℕ0

Define

and simplify the recursions to



Proposed Consensus ADMM (contd.)
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Split free energy functionals: 

 Distributed Wasserstein prox  time updates of ∴ ≈



Proposed Consensus ADMM (contd.)

Split free energy functionals: 

 Distributed Wasserstein prox  time updates of ∴ ≈Wasserstein Consensus ADMM A PREPRINT

�i(·) = Fi(·) +
R
⌫ki d(·) PDE in (10) Name

R
Rd

�
V (✓) + ⌫ki (✓)

�
dµi(✓)

@eµi

@t
= r ·

�
eµi

�
rV +r⌫ki

��
Liouville equation

R
Rd

�
⌫ki (✓) + ��1 logµi(✓)

�
dµi(✓)

@eµi

@t
= r ·

�
eµir⌫ki

�
+ ��1�eµi Fokker-Planck equation

R
Rd ⌫ki (✓)dµi(✓) +

R
R2d U(✓,�)dµi(✓)dµi(�)

@eµi

@t
= r ·

�
eµi

�
r⌫ki +r (U �⇤ eµi)

��
Propagation of chaos equation

R
Rd

⇣
⌫ki (✓) +

��1

m�11
>µm

i

⌘
dµi(✓),m > 1

@eµi

@t
= r ·

�
eµir⌫ki

�
+ ��1�eµm

i Porous medium equation

Table 1: Specific instances of the PDE in (10) for different choices of Fi, and hence �i. The Euclidean gradient operator r is w.r.t.
✓ 2 Rd. The operator �⇤ can be seen as a generalized convolution, given by (U �⇤ eµi)(✓) :=

R
Rd U(✓,�)deµi(�) where U(✓,�)

is symmetric and positive definite for all (✓,�) 2 Rd ⇥ Rd.

important difference arises in (7b) compared to its Euclidean counterpart due to the sum of squares of Wasserstein
distances. In the Euclidean case, the corresponding z update can be analytically performed in terms of the arithmetic
mean of the x updates. While (7b) does involve a generalized mean of the updates from (7a), we now have Wasserstein

barycentric proximal of a linear functional. In other words, (7b) amounts to computing the Wasserstein barycenter of n
measures {µk+1

1 , . . . , µk+1
n } with a linear regularization involving ⌫ksum.

The proximal updates (7a) are closely related to the Wasserstein gradient flows [3], [38, Ch. 23], [35] generated by the
respective (scaled) free energy functionals

�i(µi) := Fi(µi) +

Z

Rd

⌫ki dµi, µi 2 P2(Rd), i 2 [n].

Specifically, consider the Wasserstein gradient [3, Ch. 8] of the functional �i : P2

�
Rd

�
7! R, denoted as rW�i,

evaluated at eµi 2 P2(Rd), given by

r
W�i (eµi) := �r ·

✓
eµir

��i

�eµi

◆
, i 2 [n],

where r denotes the d dimensional Euclidean gradient, and �
�eµi

denotes the functional derivative w.r.t. eµi. Under TBD
ASSUMPTIONS on �i, as 1/↵ # 0, the sequence {µk

i (↵)}k2N0 generated by the proximal updates (7a) converge to
the measure-valued solution trajectory eµi(t, ·), t 2 [0,1), generated by the initial value problems (IVPs)

@eµi

@t
= �r

W�i (eµi) , eµi(t = 0, ·) = eµ0
i (·), i 2 [n]. (10)

Thus, in a rather generic setting, performing the proximal updates (7a) in parallel across the index i 2 [n], amounts to
performing distributed time updates for the approximate transient solutions of the IVPs (10).

For specific choices of i 2 [n], important examples of Fi include
R
V (✓)dµi(✓) (potential energy for some suitable

advection potential V ), ��1
R
logµi(✓)dµi(✓) (internal energy with the “inverse temperature” parameter � > 0),R

R2d U(✓,�)dµi(✓)dµi(�) (interaction energy for some symmetric positive definite interaction potential U ). In Table
1, we summarize how the PDE in (10) specializes in such cases. An interesting observation for (7a) is that for each
i 2 [n], the dual variables ⌫ki contribute as time-varying advection potentials irrespective of whether Fi already has an
advection potential or not.

To have an overall overview of the architecture of the proposed algorithm, look at the block diagram given in Fig. 1. As
shown in this block diagram, we have a central processor and n distributed processors. Here, we consider n = 3, but
n can be extended to any finite number. The central processor updates ⇣k+1. We call the upstairs of the distributed
processors (lighter shade) as outer layer ADMM, and it is assigned to update µk+1

i . It gets updated ⇣k+1 from the
central processor and passes the updated µk+1

i to the central processor and also to the inner layer ADMM (darker shade)
in the downstairs of the distributed processors . In Section 4.2, we show that updating ⇣k+1 is a two-step process. First,
we solve a scaled ADMM problem, and then, having the minimizer of this scaled ADMM problem, we update ⇣k+1

with an analytic equation. We call this scaled ADMM problem the inner layer ADMM and solve it at the distributed
processors.

3

Examples:
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Discrete Version of the Proposed ADMM

where  is the number of samplesN

Euclidean distance matrix
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With Sinkhorn regularization:

Discrete Version of the Proposed ADMM

Discrete Sinkhorn divergence
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With Sinkhorn regularization:

Discrete Version of the Proposed ADMM

Discrete Sinkhorn divergence

Outer 
layer
ADMM Inner 

layer
ADMM
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Overall SchematicWasserstein Consensus ADMM A PREPRINT

Inner layer
ADMM

Outer layer
ADMM

Inner layer
ADMM

Outer layer
ADMM

�k+11

�k+12

�k+13

�k+1

�k+1

�k+1Central  
Processor

Distributed  Processor #1

Inner layer
ADMM

Outer layer
ADMM

Distributed Processor #2 Distributed Processor #3

Inner ADMM minimizer #2

Inner ADMM minimizer #1

Inner ADMM minimizer #3

�k+11 �k+12 �k+13

Figure 1: General schematic of the proposed distributed computational framework.

3 Background and Contributions

3.1 Preliminaries

Wasserstein distance and Sinkhorn regularization. The squared 2-Wasserstein distance between a pair of probability
measures µx, µy 2 P2

�
Rd

�
, is defined as

W 2 (µx, µy) := inf
⇡2⇧(µx,µy)

Z

R2d

c (x,y) d⇡(x,y), (11)

where ⇧ (µx, µy) is the set of joint probability measures or couplings over the product space R2d, having x marginal
µx, and y marginal µy. We use the ground cost c (x,y) := kx� yk22 (the squared Euclidean distance in Rd). With
slight abuse of nomenclature, we henceforth refer to (11) as the “squared Wasserstein distance” dropping the prefix 2. It
is well-known [37, Ch. 7] that the Wasserstein distance W defines a metric on P2

�
Rd

�
. The minimizer ⇡opt is referred

to as the optimal transportation plan, and if µ 2 P2,ac(Rd), then ⇡opt is supported on the graph of the optimal transport

map T opt pushing µx to µy .

Given a strictly convex regularizer R(·), and a reference probability measure ⇡0 over R2d, consider the regularized

squared Wasserstein distance

W 2
" (µx, µy) := inf

⇡2⇧(µx,µy)
⇡ is absolutely continuous w.r.t. ⇡0

Z

R2d

c (x,y) d⇡(x,y) + "

Z

R2d

R

✓
d⇡

d⇡0

◆
d⇡0(x,y) (12)

where " > 0 is a regularization parameter, and
d⇡

d⇡0
denotes the Radon-Nikodym derivative. Examples of ⇡0 include

the product measure µx(x)µy(y) [25] and the uniform measure [21]. In this paper, we consider the entropic regularizer

R(x) := x log x� x for x � 0, with the convention 0 log 0 = 0. (13)

The work in [21] considered the discrete version of (12) with an entropic regularizer R as above, and named it as
the Sinkhorn divergence. This entropy or Sinkhorn regularized squared Wasserstein distance has found widespread
applications in the computation and analysis of variational problems involving the Wasserstein distance (see e.g.,
[7, 17, 22, 33]), and will be useful in our development too.

4



Example.   , a ∈ ℝN∖{0}, μ, ζ ∈ ΔN−1, Γ := exp (−C/2ε), ε > 0

μk+1
i = prox 1

α (Fi(μi) + ⟨νk
i , μi⟩) (ζk) = arginfμi∈ΔN−1 { min

M∈ΠN(μi, ζk)
1
2 ⟨C, M⟩ + 1

α (Fi (μi) + ⟨νk
i , μi⟩)}

The  Updateμ

proxWε
1
α Φ(ζ) = exp (− 1

αε a) ⊙ (Γ⊤ (ζ ⊘ (Γ exp (− 1
αε a))))

Theorem

a ∈ ℝN\{0}

Φ(μ) := ⟨a, μ⟩ μ ∈ ΔN−1 Γ := exp(−C/2ε)

Then for any ζ ∈ ΔN−1, α > 0

Given

Let for and

43

  update  Outer Consensus (Sinkhorn) ADMMμi ⇝
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For each i 2 [n] and k 2 N0, we write the discrete version of (7) as

µk+1
i = proxW1

↵ (Fi(µi)+h⌫k
i ,µii)

�
⇣k
�

= arg inf
µi2�N�1

⇢
min

M2⇧N (µi,⇣k)

1

2
hC,Mi+

1

↵

�
Fi(µi) + h⌫k

i ,µii
��

, (18a)

⇣k+1 = arg inf
⇣2�N�1

⇢ nX

i=1

min
Mi2⇧N(µk+1

i ,⇣)

1

2
hC,Mii

!
�

2

↵
h⌫k

sum, ⇣i

�
, (18b)

⌫k+1
i = ⌫k

i + ↵
�
µk+1

i � ⇣k+1
�
, (18c)

wherein (18a)-(18b) used the discrete version of the squared Wasserstein distance (11).

Replacing the squared Wasserstein distance (11) in (7) by the Sinkhorn regularized squared Wasserstein distance (12),
modify the recursions (18) as

µk+1
i = proxW"

1
↵ (Fi(µi)+h⌫k

i ,µii)

�
⇣k
�

= arg inf
µi2�N�1
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where " > 0 is a regularization parameter. We next provide novel results and algorithmic details to numerically perform
the recursions (19).

4.1 The µ Update

The Sinkhorn regularized recursion (19a) allows us to get semi-analytical handle on the nested minimization via strong
duality. Specifically, consider the convex functions Fi, Gi : �N�1

7! R for all i 2 [n] where

Gi(µi) := Fi(µi) + h⌫k
i ,µii,

and denote the Legendre-Fenchel conjugate of Gi as G⇤
i . Following [27, Lemma 3.5], [14, Sec. III], the Lagrange dual

problem associated with (19a) is
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Using (20), the proximal updates in (19a) can then be recovered from the following proposition.
Proposition 1. ( [27, Lemma 3.5], [14, Theorem 1]) Given ↵, " > 0, the squared Euclidean distance matrix C 2 RN⇥N

,

and the probability vector ⇣k
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, k 2 N0. Let 0 denote the N ⇥ 1 vector of zeros. For i 2 [n], the vectors
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The proximal update µk+1
i in (19a) is given by
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We point out that if Fi(µi) = ��1
hlogµi,µii where � > 0, then Proposition 1 reduces exactly to [14, Theorem

1] allowing further simplification of (21b). As we explained toward the end of Sec. 2 (see also Table 1, second
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For each i 2 [n] and k 2 N0, we write the discrete version of (7) as
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i = proxW1

↵ (Fi(µi)+h⌫k
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wherein (18a)-(18b) used the discrete version of the squared Wasserstein distance (11).

Replacing the squared Wasserstein distance (11) in (7) by the Sinkhorn regularized squared Wasserstein distance (12),
modify the recursions (18) as

µk+1
i = proxW"

1
↵ (Fi(µi)+h⌫k

i ,µii)

�
⇣k
�
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i + ↵
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, (19c)

where " > 0 is a regularization parameter. We next provide novel results and algorithmic details to numerically perform
the recursions (19).

4.1 The µ Update

The Sinkhorn regularized recursion (19a) allows us to get semi-analytical handle on the nested minimization via strong
duality. Specifically, consider the convex functions Fi, Gi : �N�1

7! R for all i 2 [n] where

Gi(µi) := Fi(µi) + h⌫k
i ,µii,

and denote the Legendre-Fenchel conjugate of Gi as G⇤
i . Following [27, Lemma 3.5], [14, Sec. III], the Lagrange dual

problem associated with (19a) is
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Using (20), the proximal updates in (19a) can then be recovered from the following proposition.
Proposition 1. ( [27, Lemma 3.5], [14, Theorem 1]) Given ↵, " > 0, the squared Euclidean distance matrix C 2 RN⇥N

,

and the probability vector ⇣k
2 �N�1

, k 2 N0. Let 0 denote the N ⇥ 1 vector of zeros. For i 2 [n], the vectors

�opt
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in (20) solve the system
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i in (19a) is given by
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We point out that if Fi(µi) = ��1
hlogµi,µii where � > 0, then Proposition 1 reduces exactly to [14, Theorem

1] allowing further simplification of (21b). As we explained toward the end of Sec. 2 (see also Table 1, second
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For each i 2 [n] and k 2 N0, we write the discrete version of (7) as

µk+1
i = proxW1

↵ (Fi(µi)+h⌫k
i ,µii)
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⇣k
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= arg inf
µi2�N�1
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, (18b)
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, (18c)

wherein (18a)-(18b) used the discrete version of the squared Wasserstein distance (11).

Replacing the squared Wasserstein distance (11) in (7) by the Sinkhorn regularized squared Wasserstein distance (12),
modify the recursions (18) as

µk+1
i = proxW"

1
↵ (Fi(µi)+h⌫k

i ,µii)
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⇣k
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= arg inf
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⇢
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⌧
1

2
C + " logM ,M

�
+
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, (19b)

⌫k+1
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i + ↵
�
µk+1

i � ⇣k+1
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, (19c)

where " > 0 is a regularization parameter. We next provide novel results and algorithmic details to numerically perform
the recursions (19).

4.1 The µ Update

The Sinkhorn regularized recursion (19a) allows us to get semi-analytical handle on the nested minimization via strong
duality. Specifically, consider the convex functions Fi, Gi : �N�1

7! R for all i 2 [n] where

Gi(µi) := Fi(µi) + h⌫k
i ,µii,

and denote the Legendre-Fenchel conjugate of Gi as G⇤
i . Following [27, Lemma 3.5], [14, Sec. III], the Lagrange dual

problem associated with (19a) is

�
�opt
0i ,�

opt
1i

�
= argmax

�0i,�1i2RN

⇢
h�0i, ⇣ki �G⇤

i (��1i)� ↵"

✓
exp

✓
�>
0i

↵"

◆
exp

✓
�
C

2"

◆
exp

✓
�1i

↵"

◆◆�
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Using (20), the proximal updates in (19a) can then be recovered from the following proposition.
Proposition 1. ( [27, Lemma 3.5], [14, Theorem 1]) Given ↵, " > 0, the squared Euclidean distance matrix C 2 RN⇥N

,

and the probability vector ⇣k
2 �N�1

, k 2 N0. Let 0 denote the N ⇥ 1 vector of zeros. For i 2 [n], the vectors
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in (20) solve the system
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The proximal update µk+1
i in (19a) is given by
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We point out that if Fi(µi) = ��1
hlogµi,µii where � > 0, then Proposition 1 reduces exactly to [14, Theorem

1] allowing further simplification of (21b). As we explained toward the end of Sec. 2 (see also Table 1, second
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For each i 2 [n] and k 2 N0, we write the discrete version of (7) as

µk+1
i = proxW1

↵ (Fi(µi)+h⌫k
i ,µii)

�
⇣k
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= arg inf
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⇢
min

M2⇧N (µi,⇣k)
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, (18b)

⌫k+1
i = ⌫k

i + ↵
�
µk+1

i � ⇣k+1
�
, (18c)

wherein (18a)-(18b) used the discrete version of the squared Wasserstein distance (11).

Replacing the squared Wasserstein distance (11) in (7) by the Sinkhorn regularized squared Wasserstein distance (12),
modify the recursions (18) as

µk+1
i = proxW"

1
↵ (Fi(µi)+h⌫k

i ,µii)

�
⇣k
�

= arg inf
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, (19c)

where " > 0 is a regularization parameter. We next provide novel results and algorithmic details to numerically perform
the recursions (19).

4.1 The µ Update

The Sinkhorn regularized recursion (19a) allows us to get semi-analytical handle on the nested minimization via strong
duality. Specifically, consider the convex functions Fi, Gi : �N�1

7! R for all i 2 [n] where

Gi(µi) := Fi(µi) + h⌫k
i ,µii,

and denote the Legendre-Fenchel conjugate of Gi as G⇤
i . Following [27, Lemma 3.5], [14, Sec. III], the Lagrange dual

problem associated with (19a) is
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Using (20), the proximal updates in (19a) can then be recovered from the following proposition.
Proposition 1. ( [27, Lemma 3.5], [14, Theorem 1]) Given ↵, " > 0, the squared Euclidean distance matrix C 2 RN⇥N

,

and the probability vector ⇣k
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, k 2 N0. Let 0 denote the N ⇥ 1 vector of zeros. For i 2 [n], the vectors
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We point out that if Fi(µi) = ��1
hlogµi,µii where � > 0, then Proposition 1 reduces exactly to [14, Theorem

1] allowing further simplification of (21b). As we explained toward the end of Sec. 2 (see also Table 1, second
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For each i 2 [n] and k 2 N0, we write the discrete version of (7) as

µk+1
i = proxW1
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⌫k+1
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, (18c)

wherein (18a)-(18b) used the discrete version of the squared Wasserstein distance (11).

Replacing the squared Wasserstein distance (11) in (7) by the Sinkhorn regularized squared Wasserstein distance (12),
modify the recursions (18) as

µk+1
i = proxW"

1
↵ (Fi(µi)+h⌫k

i ,µii)

�
⇣k
�

= arg inf
µi2�N�1

⇢
min

M2⇧N (µi,⇣k)

⌧
1

2
C + " logM ,M

�
+

1

↵

�
Fi(µi) + h⌫k

i ,µii
��

, (19a)

⇣k+1 = arg inf
⇣2�N�1

⇢ nX

i=1

min
Mi2⇧N(µk+1

i ,⇣)

⌧
1

2
C + " logMi,Mi

�!
�

2

↵
h⌫k

sum, ⇣i

�
, (19b)

⌫k+1
i = ⌫k

i + ↵
�
µk+1
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where " > 0 is a regularization parameter. We next provide novel results and algorithmic details to numerically perform
the recursions (19).

4.1 The µ Update

The Sinkhorn regularized recursion (19a) allows us to get semi-analytical handle on the nested minimization via strong
duality. Specifically, consider the convex functions Fi, Gi : �N�1

7! R for all i 2 [n] where

Gi(µi) := Fi(µi) + h⌫k
i ,µii,

and denote the Legendre-Fenchel conjugate of Gi as G⇤
i . Following [27, Lemma 3.5], [14, Sec. III], the Lagrange dual

problem associated with (19a) is
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Using (20), the proximal updates in (19a) can then be recovered from the following proposition.
Proposition 1. ( [27, Lemma 3.5], [14, Theorem 1]) Given ↵, " > 0, the squared Euclidean distance matrix C 2 RN⇥N

,

and the probability vector ⇣k
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, k 2 N0. Let 0 denote the N ⇥ 1 vector of zeros. For i 2 [n], the vectors
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i in (19a) is given by
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We point out that if Fi(µi) = ��1
hlogµi,µii where � > 0, then Proposition 1 reduces exactly to [14, Theorem

1] allowing further simplification of (21b). As we explained toward the end of Sec. 2 (see also Table 1, second
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4.2 The ⇣ Update

The update (19b) can be seen as a problem of computing the Sinkhorn regularized Wasserstein barycenter with an
extra linear regularization. We next show that as in Sec. 4.1, dualization also helps to solve problems of this type. In
particular, the following Proposition from [22, Sec. 4.1], rephrased in our notation, will be useful in the sequel.
Proposition 2. ( [22, Proposition 1]) Let

W 2
",µi

(⇣) := min
Mi2⇧N (µi,⇣)

⌧
1

2
C + " logMi,Mi

�
, " > 0,

for given µi 2 �N�1
for all i 2 [n], and for a given squared Euclidean distance matrix C 2 RN⇥N

. Let the

superscript
⇤

denote the Legendre-Fenchel conjugate. Given weights w1, . . . , wn > 0, linear operator A, and a convex

real-valued function J , consider the variational problem

⇣opt = argmin
⇣2�N�1

nX

i=1

wiW
2
",µi

(⇣) + J (A⇣) . (28)

The dual problem of (28) is given by

�
uopt
1 , . . . ,uopt

n ,vopt
�
= argmin

(u1,...,un,v)2R(n+1)N

nX

i=1

wi

�
W 2

",µi

�⇤
(ui) + J⇤ (v)

subject to A
⇤v +

nX

i=1

wiui = 0, (29)

and the primal-dual relation giving the minimizer in (28) is

⇣opt = rui

�
W 2

",µi

�⇤ �
uopt
i

�
2 �N�1, for all i 2 [n]. (30)

We recast (19b) in the form (28) by setting the probability vectors µi ⌘ µk+1
i , the weights w1 = w2 = . . . = wn = 1,

the operator A as identity, and the function J(·) ⌘ h�
2
↵⌫

k
sum, ·i. Since J is linear, we have

J⇤(v) =

⇢
0 if v = �

2
↵⌫

k
sum,

+1 otherwise.
(31)

Also, A being the identity operator, we get A⇤v = v. Therefore, the dual problem (29) corresponding to (19b) becomes

�
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⇣
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i

⌘⇤
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2

↵
⌫k

sum. (32)

Consequently, the update (19b) can be performed by first solving the problem (32), and then evaluating the gradient of
the Legendre-Fenchel conjugate (30) at the minimizer of (32). Furthermore, taking advantage of the structure of these
Legendre-Fenchel conjugates allows us to deduce the following (proof in Appendix C).
Theorem 3. Given ↵, " > 0, the squared Euclidean distance matrix C 2 RN⇥N

, and the probability vectors

µk+1
i 2 �N�1

for all i 2 [n], k 2 N0, let � := exp (�C/2"). The dual problem (32) corresponding to (19b) can be

rewritten as
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↵

subject to
nX

i=1

ui =
2

↵
⌫k
sum. (33)

The update ⇣k+1
in (19b) is given by

⇣k+1 = exp
�
uopt
i /"

�
�
�
�
�
µk+1

i ↵
�
� exp

�
uopt
i /"

����
2 �N�1, for all i 2 [n]. (34)
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4.2 The ⇣ Update

The update (19b) can be seen as a problem of computing the Sinkhorn regularized Wasserstein barycenter with an
extra linear regularization. We next show that as in Sec. 4.1, dualization also helps to solve problems of this type. In
particular, the following Proposition from [22, Sec. 4.1], rephrased in our notation, will be useful in the sequel.
Proposition 2. ( [22, Proposition 1]) Let

W 2
",µi

(⇣) := min
Mi2⇧N (µi,⇣)

⌧
1

2
C + " logMi,Mi

�
, " > 0,

for given µi 2 �N�1
for all i 2 [n], and for a given squared Euclidean distance matrix C 2 RN⇥N

. Let the

superscript
⇤

denote the Legendre-Fenchel conjugate. Given weights w1, . . . , wn > 0, linear operator A, and a convex

real-valued function J , consider the variational problem

⇣opt = argmin
⇣2�N�1

nX

i=1

wiW
2
",µi

(⇣) + J (A⇣) . (28)

The dual problem of (28) is given by

�
uopt
1 , . . . ,uopt

n ,vopt
�
= argmin

(u1,...,un,v)2R(n+1)N

nX

i=1

wi

�
W 2

",µi

�⇤
(ui) + J⇤ (v)

subject to A
⇤v +

nX

i=1

wiui = 0, (29)

and the primal-dual relation giving the minimizer in (28) is

⇣opt = rui

�
W 2

",µi

�⇤ �
uopt
i

�
2 �N�1, for all i 2 [n]. (30)

We recast (19b) in the form (28) by setting the probability vectors µi ⌘ µk+1
i , the weights w1 = w2 = . . . = wn = 1,

the operator A as identity, and the function J(·) ⌘ h�
2
↵⌫

k
sum, ·i. Since J is linear, we have

J⇤(v) =

⇢
0 if v = �

2
↵⌫

k
sum,

+1 otherwise.
(31)

Also, A being the identity operator, we get A⇤v = v. Therefore, the dual problem (29) corresponding to (19b) becomes

�
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1 , . . . ,uopt

n
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nX
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⇣
W 2

",µk+1
i

⌘⇤
(ui)

subject to
nX

i=1

ui =
2

↵
⌫k

sum. (32)

Consequently, the update (19b) can be performed by first solving the problem (32), and then evaluating the gradient of
the Legendre-Fenchel conjugate (30) at the minimizer of (32). Furthermore, taking advantage of the structure of these
Legendre-Fenchel conjugates allows us to deduce the following (proof in Appendix C).
Theorem 3. Given ↵, " > 0, the squared Euclidean distance matrix C 2 RN⇥N

, and the probability vectors
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the Legendre-Fenchel conjugate (30) at the minimizer of (32). Furthermore, taking advantage of the structure of these
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We observe that (33) has a separable sum objective where each summand is a weighted log-sum-exp (thus convex).
Denoting these summands as

fi(ui) :=
⌦
µk+1

i , log (� exp (ui/"))
↵
, ui 2 RN , for all i 2 [n], (35)

we write (33) in the scaled ADMM form (17):

u`+1
i = proxk·k2

1
⌧ fi

�
z`
i � e⌫`

i

�
, i 2 [n], (36a)

z`+1 = projC
�
u`+1 + e⌫`

�
, (36b)

e⌫`+1
i = e⌫`

i +
�
u`+1
i � z`+1

i

�
, i 2 [n], (36c)

where ` 2 N0 is the ADMM iteration index while holding the index k fixed, ⌧ > 0, and u` := (u`
1, . . . ,u

`
n) 2 RnN ,

z` := (z`
1, . . . , z

`
n) 2 RnN , e⌫` := (e⌫`

1, . . . , e⌫`
n) 2 RnN for all ` 2 N0. The constraint set C in (36b) corresponds to

the equality constraint in (33), i.e.,

C :=

⇢
(z1, . . . , zn) 2 RnN

| z1 + . . .+ zn =
2

↵
⌫k
sum

�
. (37)

To proceed further, we need the following Lemma (proof in Appendix D).
Lemma 1. For any v := (v1, . . . ,vn) 2 RnN

, where the subvectors vi 2 RN
for all i 2 [n], let v := 1

n

Pn
i=1 vi 2

RN
. Then the Euclidean projection of v onto C in (37) is

projC (v) =

✓
v1 � v +

2

n↵
⌫k
sum, . . . ,vn � v +

2

n↵
⌫k
sum

◆
2 RnN .

Thanks to Lemma 1, we can parallelize (36b) as

z`+1
i =

 
u`+1
i �

1

n

nX

i=1

u`+1
i

!
+

 
e⌫`
i �

1

n

nX

i=1

e⌫`
i

!
+

2

n↵
⌫k
sum, i 2 [n]. (38)

Therefore, (33) can be solved in a distributed manner:

u`+1
i = proxk·k2

1
⌧ fi

�
z`
i � e⌫`

i

�
, i 2 [n], (39a)

z`+1
i =

 
u`+1
i �

1

n

nX

i=1

u`+1
i

!
+

 
e⌫`
i �

1

n

nX

i=1

e⌫`
i

!
+

2

n↵
⌫k
sum, i 2 [n], (39b)

e⌫`+1
i = e⌫`

i +
�
u`+1
i � z`+1

i

�
, i 2 [n]. (39c)

The proximal update (39a) does not admit an analytical solution. To compute (39a), we take advantage of the structured
Hessian (see Appendix E) of the proximal objective and implement the Newton’s method with variable step size
computed by backtracking line search. The diagonal plus sum of rank one structured Hessian in Appendix D makes the
per iteration complexity for the Newton’s method to be O(N2) flops instead of O(N3) flops–the latter would be the
case for Cholesky factorization-based solution of the associated linear system. Fig. 2 shows that the typical convergence
for the Newton’s method occurs in approx. 5 iterations, much faster than gradient descent (see Fig. 2 caption for
details).

In the following (Section 4.3), we outline the overall implementation of our distributed computational framework to
solve (19) and (39). first for each agent, we update µ1

i with proxW"
1
↵�

(.) and generate samples from the known initial
distribution. Then, with a random value for ⇣0 and ⌫0

i , and

4.3 The Overall Algorithm

Considering Sec. 4.1 and 4.2, we now restructure the block diagram given in Fig. 1 in full detail here. As shown in Fig.
3, in the central processor, we update ⇣k+1 via analytic equation (34). µk+1

i updates via proxW"
1
↵�i

in the outer layer

ADMM and the minimizer of the inner layer ADMM, which is uopt
i , is obtained via (39).

Note that in the inner layer ADMM, to update zi, we need 1
n

nX

i=1

u`+1
i from the other distributed processors and the

pipeline below the diagram gathers these data from all distributed processors and feeds (39b) with it. The outline of the
algorithm is as follows.
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Hessian (see Appendix E) of the proximal objective and implement the Newton’s method with variable step size
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for the Newton’s method occurs in approx. 5 iterations, much faster than gradient descent (see Fig. 2 caption for
details).

In the following (Section 4.3), we outline the overall implementation of our distributed computational framework to
solve (19) and (39). first for each agent, we update µ1

i with proxW"
1
↵�

(.) and generate samples from the known initial
distribution. Then, with a random value for ⇣0 and ⌫0

i , and

4.3 The Overall Algorithm

Considering Sec. 4.1 and 4.2, we now restructure the block diagram given in Fig. 1 in full detail here. As shown in Fig.
3, in the central processor, we update ⇣k+1 via analytic equation (34). µk+1

i updates via proxW"
1
↵�i

in the outer layer

ADMM and the minimizer of the inner layer ADMM, which is uopt
i , is obtained via (39).

Note that in the inner layer ADMM, to update zi, we need 1
n

nX

i=1

u`+1
i from the other distributed processors and the

pipeline below the diagram gathers these data from all distributed processors and feeds (39b) with it. The outline of the
algorithm is as follows.
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Figure 5: Wasserstein distance between the solution
of (41a) i.e. µk

1 and the solution of (41b) i.e. µk
2 .

The resulting evolution of µ1 and µ2 are shown in Fig. 6; it
can be seen that after 5000 iterations of the outer layer ADMM
(19), both µ1 and µ2, tend to the known stationary solution µ1
given in Fig. 4. The Wasserstein distance between the solution
of (41a) i.e. µk

1 and the solution of (41b) i.e. µk
2 is shown in

5. Because we start from the same initial distribution for µ1

and µ2, W (µk
1 ,µ

k
2) at k = 0 is zero. We solve (39a) via the

gradient descent method with a fixed step size as 0.001. The
number of iterations of the inner layer ADMM given in (39)
is 3. The average time in five simulations is 323.51 sec. It is
remarkable that all simulations are performed on a same MacBook Air with Intel Core i5 CPU, 1.1 GHz, and 8 GB
RAM.

(a) Contour plots of the transient solution of the joint measure µ1

(b) Contour plots of the transient solution of the joint measure µ2

Figure 6: Evolution of the solution to the linear Fokker–Planck equation (40), with V (x1, x2) = 1
4

�
1 + x4

1

�
+ 1

2

�
x2
2 � x2

1

�
. The

computational domain is [�2, 2]⇥ [�2, 2]. The color denotes the value of the plotted variable; see colorbar (dark red = high, light
yellow = low).

5.2 Aggregation Drift Equation

Next we consider a aggregation-drift equations of the form

@µ

@t
= r · (µrU �⇤ µ) +r · (µrV ) (42)

where U(x) = |x|2/2� ln(|x|) and V (x) = �
1
4 ln(|x|). As shown in [20], the stationary measure, µ1(x), is a torus

with the inner and outer radius of Ri =
q

1
4 , and Ro =

q
1
4 + 1, respectively. As explained in [18], to avoid the

possible overshoot at the boundary, an artificial diffusion term as ��1�µ2 is added to the RHS of (42).

So, in this example we have three terms (interaction, drift, and diffusion). We choose to split (42) with the extra artificial
diffusion term to two as follow

@tµ = r · (µrU �⇤ µ)| {z }
i=1

+r · (µrV ) + ��1�µ2

| {z }
i=2

.

So, n = 2 and by looking at Table 1, we chose

F1(µ) = hUkµ,µi (43a)

F2(µ) =
⌦
Vk + ��11>µ,µ

↵
(43b)
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Figure 3: Schematic of the proposed distributed computational framework.

@µ

@t
= r · (µrV ) + ��1�µ, µ(x, 0) = µ0(x) (40)

where V (x1, x2) =
1
4

�
1 + x4

1

�
+ 1

2

�
x2
2 � x2

1

�
and x = (x1, x2) 2 [�2, 2]2. As shown in [14], the stationary measure

is µ1(x) / exp(��V (x))dx, which for our choice of V , is bimodal (see Fig. 4).

Figure 4: The analytical stationary solution
for the FPK equation (40), given by µ1 =
1
Z exp

�
��

�
(1 + x4

1)/4 + (x2
2 � x2

1)/2
��

dx, where
Z is the normalization constant.

Here, n = 2 and by looking at Table 1, we chose

F1(µ) = hVk,µi (41a)

F2(µ) =
⌦
��1 logµ,µ

↵
(41b)

where the drift potential vector Vk 2 RN is given by Vk(i) :=
V
�
xi
k

�
, i = 1, . . . , N . Then, we artificially relabeled the

argument of the functionals F1 and F2 as µ1 and µ2, re-
spectively. Because F1 is linear in µ1, we use (23) with
�1(µ) = hVk�1+⌫k

1 ,µi to analytically compute the proximal
update µk+1

1 . The simulation parameters are considered to be
↵ = 12, ⌧ = 150, � = 1, and " = 5 ⇥ 10�2. We define
G2(µ2) := F2(µ2)+ h⌫k

2 ,µ2i = h��1 logµ2 +⌫k
2 ,µ2i, and

compute the proximal update µk+1
2 by (22). In this case, we

use the PROXRECUR algorithm from [14, Sec. III-B.1] with
algorithmic parameters, � = 10�4, � = 1, and L = 20 to solve
(22). Note that here instead of %k�1 as the first argument of the PROXRECUR algorithm in [14, Sec. III-B.1], we have
⇣k. For doing so, we generate N = 1681 samples from the initial distribution

µ0 =
1

5
N (m1,⌃) +

1

5
N (m2,⌃) +

1

5
N (m3,⌃) +

1

5
N (m4,⌃) +

1

5
N (m5,⌃)

with m1 = (1, 1)>, m2 = (�1,�1)>,m3 = (1,�1)>, m4 = (�1, 1)>, m5 = (0, 0)>, and ⌃ = 0.1I2. We use
N (m,⌃) to denote a multivariate Gaussian distribution with mean vector m and covariance matrix ⌃.
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and x = (x1, x2) 2 [�2, 2]2. As shown in [14], the stationary measure
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Figure 4: The analytical stationary solution
for the FPK equation (40), given by µ1 =
1
Z exp

�
��

�
(1 + x4

1)/4 + (x2
2 � x2

1)/2
��

dx, where
Z is the normalization constant.

Here, n = 2 and by looking at Table 1, we chose

F1(µ) = hVk,µi (41a)

F2(µ) =
⌦
��1 logµ,µ

↵
(41b)

where the drift potential vector Vk 2 RN is given by Vk(i) :=
V
�
xi
k

�
, i = 1, . . . , N . Then, we artificially relabeled the

argument of the functionals F1 and F2 as µ1 and µ2, re-
spectively. Because F1 is linear in µ1, we use (23) with
�1(µ) = hVk�1+⌫k

1 ,µi to analytically compute the proximal
update µk+1

1 . The simulation parameters are considered to be
↵ = 12, ⌧ = 150, � = 1, and " = 5 ⇥ 10�2. We define
G2(µ2) := F2(µ2)+ h⌫k

2 ,µ2i = h��1 logµ2 +⌫k
2 ,µ2i, and

compute the proximal update µk+1
2 by (22). In this case, we

use the PROXRECUR algorithm from [14, Sec. III-B.1] with
algorithmic parameters, � = 10�4, � = 1, and L = 20 to solve
(22). Note that here instead of %k�1 as the first argument of the PROXRECUR algorithm in [14, Sec. III-B.1], we have
⇣k. For doing so, we generate N = 1681 samples from the initial distribution

µ0 =
1

5
N (m1,⌃) +
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1
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with m1 = (1, 1)>, m2 = (�1,�1)>,m3 = (1,�1)>, m4 = (�1, 1)>, m5 = (0, 0)>, and ⌃ = 0.1I2. We use
N (m,⌃) to denote a multivariate Gaussian distribution with mean vector m and covariance matrix ⌃.
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for the FPK equation (40), given by µ1 =
1
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dx, where
Z is the normalization constant.

Here, n = 2 and by looking at Table 1, we chose

F1(µ) = hVk,µi (41a)

F2(µ) =
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��1 logµ,µ

↵
(41b)

where the drift potential vector Vk 2 RN is given by Vk(i) :=
V
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xi
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, i = 1, . . . , N . Then, we artificially relabeled the

argument of the functionals F1 and F2 as µ1 and µ2, re-
spectively. Because F1 is linear in µ1, we use (23) with
�1(µ) = hVk�1+⌫k

1 ,µi to analytically compute the proximal
update µk+1

1 . The simulation parameters are considered to be
↵ = 12, ⌧ = 150, � = 1, and " = 5 ⇥ 10�2. We define
G2(µ2) := F2(µ2)+ h⌫k
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2 ,µ2i, and

compute the proximal update µk+1
2 by (22). In this case, we

use the PROXRECUR algorithm from [14, Sec. III-B.1] with
algorithmic parameters, � = 10�4, � = 1, and L = 20 to solve
(22). Note that here instead of %k�1 as the first argument of the PROXRECUR algorithm in [14, Sec. III-B.1], we have
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F1(µ) = hVk,µi (41a)

F2(µ) =
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compute the proximal update µk+1
2 by (22). In this case, we

use the PROXRECUR algorithm from [14, Sec. III-B.1] with
algorithmic parameters, � = 10�4, � = 1, and L = 20 to solve
(22). Note that here instead of %k�1 as the first argument of the PROXRECUR algorithm in [14, Sec. III-B.1], we have
⇣k. For doing so, we generate N = 1681 samples from the initial distribution

µ0 =
1

5
N (m1,⌃) +

1

5
N (m2,⌃) +

1

5
N (m3,⌃) +

1

5
N (m4,⌃) +

1

5
N (m5,⌃)

with m1 = (1, 1)>, m2 = (�1,�1)>,m3 = (1,�1)>, m4 = (�1, 1)>, m5 = (0, 0)>, and ⌃ = 0.1I2. We use
N (m,⌃) to denote a multivariate Gaussian distribution with mean vector m and covariance matrix ⌃.

12

Wasserstein Consensus ADMM A PREPRINT

Figure 5: Wasserstein distance between the solution
of (41a) i.e. µk

1 and the solution of (41b) i.e. µk
2 .

The resulting evolution of µ1 and µ2 are shown in Fig. 6; it
can be seen that after 5000 iterations of the outer layer ADMM
(19), both µ1 and µ2, tend to the known stationary solution µ1
given in Fig. 4. The Wasserstein distance between the solution
of (41a) i.e. µk

1 and the solution of (41b) i.e. µk
2 is shown in

5. Because we start from the same initial distribution for µ1

and µ2, W (µk
1 ,µ

k
2) at k = 0 is zero. We solve (39a) via the

gradient descent method with a fixed step size as 0.001. The
number of iterations of the inner layer ADMM given in (39)
is 3. The average time in five simulations is 323.51 sec. It is
remarkable that all simulations are performed on a same MacBook Air with Intel Core i5 CPU, 1.1 GHz, and 8 GB
RAM.

(a) Contour plots of the transient solution of the joint measure µ1

(b) Contour plots of the transient solution of the joint measure µ2

Figure 6: Evolution of the solution to the linear Fokker–Planck equation (40), with V (x1, x2) = 1
4

�
1 + x4

1

�
+ 1

2

�
x2
2 � x2

1

�
. The

computational domain is [�2, 2]⇥ [�2, 2]. The color denotes the value of the plotted variable; see colorbar (dark red = high, light
yellow = low).

5.2 Aggregation Drift Equation

Next we consider a aggregation-drift equations of the form

@µ

@t
= r · (µrU �⇤ µ) +r · (µrV ) (42)

where U(x) = |x|2/2� ln(|x|) and V (x) = �
1
4 ln(|x|). As shown in [20], the stationary measure, µ1(x), is a torus

with the inner and outer radius of Ri =
q

1
4 , and Ro =

q
1
4 + 1, respectively. As explained in [18], to avoid the

possible overshoot at the boundary, an artificial diffusion term as ��1�µ2 is added to the RHS of (42).

So, in this example we have three terms (interaction, drift, and diffusion). We choose to split (42) with the extra artificial
diffusion term to two as follow

@tµ = r · (µrU �⇤ µ)| {z }
i=1

+r · (µrV ) + ��1�µ2

| {z }
i=2

.

So, n = 2 and by looking at Table 1, we chose

F1(µ) = hUkµ,µi (43a)

F2(µ) =
⌦
Vk + ��11>µ,µ

↵
(43b)
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Figure 3: Schematic of the proposed distributed computational framework.

@µ

@t
= r · (µrV ) + ��1�µ, µ(x, 0) = µ0(x) (40)

where V (x1, x2) =
1
4

�
1 + x4

1

�
+ 1

2

�
x2
2 � x2

1

�
and x = (x1, x2) 2 [�2, 2]2. As shown in [14], the stationary measure

is µ1(x) / exp(��V (x))dx, which for our choice of V , is bimodal (see Fig. 4).

Figure 4: The analytical stationary solution
for the FPK equation (40), given by µ1 =
1
Z exp

�
��

�
(1 + x4

1)/4 + (x2
2 � x2

1)/2
��

dx, where
Z is the normalization constant.

Here, n = 2 and by looking at Table 1, we chose

F1(µ) = hVk,µi (41a)

F2(µ) =
⌦
��1 logµ,µ

↵
(41b)

where the drift potential vector Vk 2 RN is given by Vk(i) :=
V
�
xi
k

�
, i = 1, . . . , N . Then, we artificially relabeled the

argument of the functionals F1 and F2 as µ1 and µ2, re-
spectively. Because F1 is linear in µ1, we use (23) with
�1(µ) = hVk�1+⌫k

1 ,µi to analytically compute the proximal
update µk+1

1 . The simulation parameters are considered to be
↵ = 12, ⌧ = 150, � = 1, and " = 5 ⇥ 10�2. We define
G2(µ2) := F2(µ2)+ h⌫k

2 ,µ2i = h��1 logµ2 +⌫k
2 ,µ2i, and

compute the proximal update µk+1
2 by (22). In this case, we

use the PROXRECUR algorithm from [14, Sec. III-B.1] with
algorithmic parameters, � = 10�4, � = 1, and L = 20 to solve
(22). Note that here instead of %k�1 as the first argument of the PROXRECUR algorithm in [14, Sec. III-B.1], we have
⇣k. For doing so, we generate N = 1681 samples from the initial distribution

µ0 =
1

5
N (m1,⌃) +

1

5
N (m2,⌃) +

1

5
N (m3,⌃) +

1

5
N (m4,⌃) +

1

5
N (m5,⌃)

with m1 = (1, 1)>, m2 = (�1,�1)>,m3 = (1,�1)>, m4 = (�1, 1)>, m5 = (0, 0)>, and ⌃ = 0.1I2. We use
N (m,⌃) to denote a multivariate Gaussian distribution with mean vector m and covariance matrix ⌃.
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2 by (22). Using (27), we
modify the PROXRECUR algorithm given in [14, Sec. III-B.1]
and solve the proximal recursion for the porous medium equation.

The resulting evolution of µ1 and µ2 are shown in Fig. 8; it can be seen that after 10000 iterations of the outer layer
ADMM (19), both µ1 and µ2, tend to the known stationary solution (torus with inner and outer radius of 0.5 and

q
5
4 ).

The Wasserstein distance between the solution of (43a) i.e. µk
1 and the solution of (43b) i.e. µk

2 is shown in Fig. 7. All
the simulation parameters and the initial distributions are the same as the previous example and the average time in five
simulations is 430.085 sec.

(a) Contour plots of the transient solution of the joint measure µ1

(b) Contour plots of the transient solution of the joint measure µ2

Figure 8: Evolution of the solution to the aggregation-drift equations (42), with U(x) = |x|2/2� ln(|x|) and V (x) = � 1
4 ln(|x|).

The computational domain is [�2, 2]⇥ [�2, 2]. The color denotes the value of the plotted variable; see colorbar (dark red = high,
light yellow = low).
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100 run for statistics each of the 4 ways of splitting: (  ways in general)2n − n − 1

av. runtime = 108.99 s 

av. runtime = 289.87 s 

av. runtime = 285.32 s 

av. runtime = 294.06 s 
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Figure 1: General schematic of the proposed distributed computational framework.

3 Background and Contributions

3.1 Preliminaries

Wasserstein distance and Sinkhorn regularization. The squared 2-Wasserstein distance between a pair of probability
measures µx, µy 2 P2

�
Rd

�
, is defined as

W 2 (µx, µy) := inf
⇡2⇧(µx,µy)

Z

R2d

c (x,y) d⇡(x,y), (11)

where ⇧ (µx, µy) is the set of joint probability measures or couplings over the product space R2d, having x marginal
µx, and y marginal µy. We use the ground cost c (x,y) := kx� yk22 (the squared Euclidean distance in Rd). With
slight abuse of nomenclature, we henceforth refer to (11) as the “squared Wasserstein distance” dropping the prefix 2. It
is well-known [37, Ch. 7] that the Wasserstein distance W defines a metric on P2

�
Rd

�
. The minimizer ⇡opt is referred

to as the optimal transportation plan, and if µ 2 P2,ac(Rd), then ⇡opt is supported on the graph of the optimal transport

map T opt pushing µx to µy .

Given a strictly convex regularizer R(·), and a reference probability measure ⇡0 over R2d, consider the regularized

squared Wasserstein distance

W 2
" (µx, µy) := inf

⇡2⇧(µx,µy)
⇡ is absolutely continuous w.r.t. ⇡0

Z

R2d

c (x,y) d⇡(x,y) + "

Z

R2d

R

✓
d⇡

d⇡0

◆
d⇡0(x,y) (12)

where " > 0 is a regularization parameter, and
d⇡

d⇡0
denotes the Radon-Nikodym derivative. Examples of ⇡0 include

the product measure µx(x)µy(y) [25] and the uniform measure [21]. In this paper, we consider the entropic regularizer

R(x) := x log x� x for x � 0, with the convention 0 log 0 = 0. (13)

The work in [21] considered the discrete version of (12) with an entropic regularizer R as above, and named it as
the Sinkhorn divergence. This entropy or Sinkhorn regularized squared Wasserstein distance has found widespread
applications in the computation and analysis of variational problems involving the Wasserstein distance (see e.g.,
[7, 17, 22, 33]), and will be useful in our development too.
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