Gradient Flows for Prediction and Control of Densities

Abhishek Halder

Department of Applied Mathematics
University of California, Santa Cruz
Santa Cruz, CA 95064

Joint work with Kenneth F. Caluya (UC Santa Cruz) and Tryphon T. Georgiou (UC Irvine)

What is density?

Probability Density Fn.

$$
x(t) \in \mathcal{X} \equiv \mathbb{R}^{2} \times \mathbb{S}^{1}
$$

Probability Density Fn.

$$
\begin{gathered}
x(t) \in \mathcal{X} \equiv \mathbb{R}^{2} \times \mathbb{S}^{1} \\
\rho(x, t): \mathcal{X} \times[0, \infty) \mapsto \mathbb{R}_{\geq 0} \\
\int_{\mathcal{X}} \rho \mathrm{d} x=1 \quad \text { for all } \quad t \in[0, \infty)
\end{gathered}
$$

Probability Density Fn.

Population Density Fn.

$$
\begin{gathered}
x(t) \in \mathcal{X} \equiv \mathbb{R}^{2} \times \mathbb{S}^{1} \\
\rho(x, t): \mathcal{X} \times[0, \infty) \mapsto \mathbb{R}_{\geq 0} \\
\int_{\mathcal{X}} \rho \mathrm{d} x=1 \quad \text { for all } \quad t \in[0, \infty)
\end{gathered}
$$

Why bother about densities?

Prediction Problem

Compute

 joint state PDF$$
\rho(x, t)
$$

Trajectory flow:

$$
\mathrm{d} \mathbf{X}(t)=\mathbf{f}(\mathbf{X}, t) \mathrm{d} t+\mathbf{g}(\mathbf{X}, t) \mathrm{d} \mathbf{w}(t), \quad \mathrm{d} \mathbf{w}(t) \sim \mathcal{N}(0, \mathbf{Q} \mathrm{~d} t)
$$

Density flow:

$$
\frac{\partial \rho}{\partial t}=\mathcal{L}_{\mathrm{FP}}(\rho):=-\nabla \cdot(\rho \mathbf{f})+\frac{1}{2} \sum_{i, j=1}^{n} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left(\left(\mathbf{g Q g}^{\top}\right)_{i j} \rho\right)
$$

Filtering Problem

Compute conditional joint state PDF

$\rho^{+} \equiv \rho(x, t \mid z(s), 0 \leq s \leq t)$

Trajectory flow:

$$
\begin{array}{ll}
\mathrm{d} \mathbf{X}(t)=\mathbf{f}(\mathbf{X}, t) \mathrm{d} t+\mathbf{g}(\mathbf{X}, t) \mathrm{d} \mathbf{w}(t), & \mathrm{d} \mathbf{w}(t) \sim \mathcal{N}(0, \mathbf{Q} \mathrm{~d} t) \\
\mathrm{d} \mathbf{Z}(t)=\mathbf{h}(\mathbf{X}, t) \mathrm{d} t+\mathrm{d} \mathbf{v}(t), & \mathrm{d} \mathbf{v}(t) \sim \mathcal{N}(0, \mathbf{R} \mathrm{~d} t)
\end{array}
$$

Density flow:

$$
\mathrm{d} \rho^{+}=\left[\mathcal{L}_{\mathrm{FP}} \mathrm{~d} t+\left(\mathbf{h}(\mathbf{x}, t)-\mathbb{E}_{\rho^{+}}\{\mathbf{h}(\mathbf{x}, t)\}\right)^{\top} \mathbf{R}^{-1}\left(\mathrm{~d} \mathbf{z}(t)-\mathbb{E}_{\rho^{+}}\{\mathbf{h}(\mathbf{x}, t)\} \mathrm{d} t\right)\right] \rho^{+}
$$

Control Problem

Steer joint state PDF via feedback control

$\underset{u \in \mathcal{U}}{\operatorname{minimize}} \mathbb{E}\left[\int_{0}^{1}\|u\|_{2}^{2} \mathrm{~d} t\right]$
subject to

$$
\begin{aligned}
& \mathrm{d} x=f(x, u, t) \mathrm{d} t+g(x, t) \mathrm{d} w \\
& x(t=0) \sim \rho_{0}, \quad x(t=1) \sim \rho_{1}
\end{aligned}
$$

PDFs in Mars Entry-Descent-Landing

Prediction Problem

Predict heating rate uncertainty

Filtering Problem
Control Problem

PDFs in Mars Entry-Descent-Landing

Prediction Problem

Filtering Problem

Supersonic parachute

Control Problem

Predict heating rate uncertainty

PDFs in Mars Entry-Descent-Landing

Prediction Problem

Filtering Problem

Supersonic parachute

Control Problem

Gale Crater (4.49S, 137.42E)

Predict heating rate uncertainty

Estimate state to deploy parachute

Steer state PDF to achieve desired landing footprint accuracy

Solving prediction problem as gradient flow

What's New?

Main idea: Solve $\frac{\partial \rho}{\partial t}=\mathcal{L}_{\mathrm{FP}} \rho, \rho(x, t=0)=\rho_{0}$ as gradient flow in $\mathcal{P}_{2}(\mathcal{X})$
Infinite dimensional variational recursion:

Proximal operator: $\varrho_{k}=\operatorname{prox}_{h \Phi}^{W^{2}}\left(\varrho_{k-1}\right):=\underset{\varrho \in \mathcal{P}_{2}(\mathcal{X})}{\arg \inf }\left\{\frac{1}{2} W^{2}\left(\varrho, \varrho_{k-1}\right)+h \Phi(\varrho)\right\}$
Optimal transport cost: $W^{2}\left(\varrho, \varrho_{k-1}\right):=\inf _{\pi \in \Pi\left(\varrho, e_{k-1}\right)} \int_{\mathcal{X} \times \mathcal{X}} c(x, y) \mathrm{d} \pi(x, y)$
Free energy functional: $\Phi(\varrho):=\int_{\mathcal{X}} \psi \varrho \mathrm{d} x+\beta^{-1} \int_{\mathcal{X}} \varrho \log \varrho \mathrm{d} x$

Gradient Flow

Gradient Flow in \mathcal{X}

$$
\frac{\mathrm{d} \boldsymbol{x}}{\mathrm{~d} t}=-\nabla \varphi(\boldsymbol{x}), \quad \boldsymbol{x}(0)=x_{0}
$$

Recursion:

$$
\begin{aligned}
\boldsymbol{x}_{k} & =\boldsymbol{x}_{k-1}-h \nabla \varphi\left(\boldsymbol{x}_{k}\right) \\
& =\underset{\boldsymbol{x} \in \mathcal{X}}{\arg \min }\left\{\frac{1}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{k-1}\right\|_{2}^{2}+h \varphi(\boldsymbol{x})\right\} \\
& =: \operatorname{prox}_{h \varphi}^{\|\cdot\|_{2}}\left(\boldsymbol{x}_{k-1}\right)
\end{aligned}
$$

Convergence:
$\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}(t=k h) \quad$ as $\quad h \downarrow 0$

Gradient Flow in $\mathcal{P}_{2}(\mathcal{X})$

$$
\frac{\partial \rho}{\partial t}=-\nabla^{w} \Phi(\rho), \quad \rho(\boldsymbol{x}, 0)=\rho_{0}
$$

Recursion:

$$
\begin{aligned}
\rho_{k} & =\rho(\cdot, t=k h) \\
& =\underset{\rho \in \mathcal{P}_{2}(\mathcal{X})}{\arg \min }\left\{\frac{1}{2} W^{2}\left(\rho, \rho_{k-1}\right)+h \Phi(\rho)\right\} \\
& =: \operatorname{prox}_{h \Phi}^{W^{2}}\left(\rho_{k-1}\right)
\end{aligned}
$$

Convergence:
$\rho_{k} \rightarrow \rho(\cdot, t=k h) \quad$ as $\quad h \downarrow 0$

Gradient Flow

Gradient Flow in \mathcal{X}

Gradient Flow in $\mathcal{P}_{2}(\mathcal{X})$

Algorithm: Gradient Ascent on the Dual Space

Uncertainty propagation via point clouds

No spatial discretization or function approximation

Algorithm: Gradient Ascent on the Dual Space

$$
\frac{\partial \rho}{\partial t}=\nabla \cdot(\nabla \psi \rho)+\beta^{-1} \Delta \rho
$$

』 Proximal Recursion

$$
\rho_{k}=\rho(\boldsymbol{x}, t=k h)=\underset{\rho \in \mathcal{P}_{2}\left(\mathbb{R}^{n}\right)}{\arg \inf }\left\{\frac{1}{2} W^{2}\left(\rho, \rho_{k-1}\right)+h \Phi(\rho)\right\}
$$

Algorithm: Gradient Ascent on the Dual Space

$$
\frac{\partial \rho}{\partial t}=\nabla \cdot(\nabla \psi \rho)+\beta^{-1} \Delta \rho
$$

』 Proximal Recursion

$$
\rho_{k}=\rho(\boldsymbol{x}, t=k h)=\underset{\rho \in \mathcal{P}_{2}\left(\mathbb{R}^{n}\right)}{\arg \inf }\left\{\frac{1}{2} W^{2}\left(\rho, \rho_{k-1}\right)+h \Phi(\rho)\right\}
$$

$$
\varrho_{k}=\underset{\varrho}{\arg \min }\left\{\begin{array}{l}
\text { Discrete Primal Formulation } \\
\left.\min _{\boldsymbol{M} \in \Pi\left(\boldsymbol{\varrho}_{k-1}, \varrho\right)} \frac{1}{2}\left\langle\boldsymbol{C}_{k}, \boldsymbol{M}\right\rangle+h\left\langle\boldsymbol{\psi}_{k-1}+\beta^{-1} \log \varrho, \varrho\right\rangle\right\}
\end{array}\right.
$$

Algorithm: Gradient Ascent on the Dual Space

$$
\frac{\partial \rho}{\partial t}=\nabla \cdot(\nabla \psi \rho)+\beta^{-1} \Delta \rho
$$

\Uparrow Proximal Recursion

$$
\begin{aligned}
& \rho_{k}=\rho(\boldsymbol{x}, t=k h)=\underset{\rho \in \mathcal{P}_{2}\left(\mathbb{R}^{n}\right)}{\arg \inf }\left\{\frac{1}{2} W^{2}\left(\rho, \rho_{k-1}\right)+h \Phi(\rho)\right\} \\
& \Downarrow \quad \text { Discrete Primal Formulation } \\
& \boldsymbol{\varrho}_{k}=\underset{\varrho}{\arg \min }\left\{\min _{\boldsymbol{M} \in \Pi\left(\boldsymbol{\varrho}_{k-1}, \varrho\right)} \frac{1}{2}\left\langle\boldsymbol{C}_{k}, \boldsymbol{M}\right\rangle+h\left\langle\boldsymbol{\psi}_{k-1}+\beta^{-1} \log \varrho, \boldsymbol{\varrho}\right\rangle\right\}
\end{aligned}
$$

$\Downarrow \quad$ Entropic Regularization

$$
\varrho_{k}=\underset{\varrho}{\arg \min }\left\{\min _{\boldsymbol{M} \in \Pi\left(\varrho_{k-1}, \varrho\right)} \frac{1}{2}\left\langle\boldsymbol{C}_{k}, \boldsymbol{M}\right\rangle+\epsilon \boldsymbol{H}(\boldsymbol{M})+h\left\langle\boldsymbol{\psi}_{k-1}+\beta^{-1} \log \boldsymbol{\varrho}, \boldsymbol{\varrho}\right\rangle\right\}
$$

Algorithm: Gradient Ascent on the Dual Space

$$
\frac{\partial \rho}{\partial t}=\nabla \cdot(\nabla \psi \rho)+\beta^{-1} \Delta \rho
$$

\| Proximal Recursion

$$
\rho_{k}=\rho(\boldsymbol{x}, t=k h)=\underset{\rho \in \mathcal{P}_{2}\left(\mathbb{R}^{n}\right)}{\arg \inf }\left\{\frac{1}{2} W^{2}\left(\rho, \rho_{k-1}\right)+h \Phi(\rho)\right\}
$$

$$
\varrho_{k}=\underset{\varrho}{\arg \min }\left\{\begin{array}{l}
\left.\Downarrow \min _{\boldsymbol{M} \in \Pi\left(\varrho_{k-1}, \varrho\right)} \frac{1}{2}\left\langle\boldsymbol{C}_{k}, \boldsymbol{M}\right\rangle+h\left\langle\boldsymbol{\psi}_{k-1}+\beta^{-1} \log \varrho, \varrho\right\rangle\right\}
\end{array}\right.
$$

\Downarrow Entropic Regularization

$$
\begin{aligned}
& \Uparrow \text { Dualization } \\
& \boldsymbol{\lambda}_{0}^{\text {opt }}, \boldsymbol{\lambda}_{1}^{\text {opt }}=\underset{\boldsymbol{\lambda}_{0}, \boldsymbol{\lambda}_{1} \geq 0}{\arg \max }\left\{\left\langle\boldsymbol{\lambda}_{0}, \boldsymbol{\varrho}_{k-1}\right\rangle-F^{\star}\left(-\boldsymbol{\lambda}_{1}\right)\right. \\
& \left.-\frac{\epsilon}{h}\left(\exp \left(\boldsymbol{\lambda}_{0}^{\top} h / \epsilon\right) \exp \left(-\boldsymbol{C}_{k} / 2 \epsilon\right) \exp \left(\boldsymbol{\lambda}_{1} h / \epsilon\right)\right)\right\}
\end{aligned}
$$

Fixed Point Recursion

$$
\boldsymbol{y}=e^{\frac{\lambda_{0}^{*}}{\epsilon}} \downarrow \downarrow \quad \downarrow \mathbf{z}=e^{\frac{\lambda_{1}^{*}}{\epsilon} h}
$$

Coupled Transcendental Equations in y and z

$$
\begin{aligned}
\boldsymbol{\Gamma}_{k}=e^{\frac{-\boldsymbol{C}_{k}}{2 \epsilon}} & \longrightarrow \\
\boldsymbol{\varrho}_{k-1} & \longrightarrow \boldsymbol{y} \odot \boldsymbol{\Gamma}_{k}=\varrho_{k-1} \\
\boldsymbol{\xi}_{k-1}=\frac{e^{-\beta \boldsymbol{u}_{k-1}}}{e} & \longrightarrow \boldsymbol{z} \odot \boldsymbol{\Gamma}_{k}^{\top} \boldsymbol{y}=\boldsymbol{\xi}_{k-1} \odot \boldsymbol{z}^{-\beta \epsilon / 2 h}
\end{aligned} \longrightarrow \boldsymbol{\varrho}_{k}=\boldsymbol{z} \odot \boldsymbol{\Gamma}_{k}^{\top} \boldsymbol{y}
$$

Theorem: Consider the recursion on the cone $\mathbb{R}_{\geq 0}^{n} \times \mathbb{R}_{\geq 0}^{n}$
$\boldsymbol{y} \odot\left(\boldsymbol{\Gamma}_{k} \boldsymbol{z}\right)=\varrho_{k-1}, \quad \boldsymbol{z} \odot\left(\boldsymbol{\Gamma}_{k}^{\top} \boldsymbol{y}\right)=\boldsymbol{\xi}_{k-1} \odot \boldsymbol{z}^{-\frac{\bar{\beta} \epsilon}{h}}$,
Then the solution $\left(\boldsymbol{y}^{*}, \boldsymbol{z}^{*}\right)$ gives the proximal update $\boldsymbol{\varrho}_{k}=\boldsymbol{z}^{*} \odot\left(\boldsymbol{\Gamma}_{k}^{\top} \boldsymbol{y}^{*}\right)$

Algorithmic Setup

Theorem: Block co-ordinate iteration of (\mathbf{y}, \mathbf{z}) recursion is contractive on $\mathbb{R}_{>0}^{n} \times \mathbb{R}_{>0}^{n}$.

Proximal Prediction: 1D Linear Gaussian

Proximal Prediction: 2D Linear Gaussian

25

Proximal Prediction: 2D Nonlinear Non-Gaussian

$-\quad \rho_{\infty \text { analytical }}=\frac{1}{Z} \exp \left(-\beta \psi\left(x_{1}, x_{2}\right)\right)$

- ○ $\rho_{\text {proximal }}$

Computational Time: 2D Nonlinear Non-Gaussian

Proximal Prediction: Satellite in Geocentric Orbit

Here, $\mathcal{X} \equiv \mathbb{R}^{6}$

$$
\begin{gathered}
\left(\begin{array}{c}
\mathrm{d}_{2} \\
\mathrm{~d} y \\
\mathrm{~d} z \\
\mathrm{~d} v_{x} \\
\mathrm{~d} v_{y} \\
\mathrm{~d} v_{z}
\end{array}\right)=\left(\begin{array}{c}
v_{y} \\
v_{z} \\
-\frac{\mu x}{r^{3}}+\left(f_{x}\right)_{\text {pert }}-\gamma v_{x} \\
-\frac{\mu y}{r^{3}}+\left(f_{y}\right)_{\text {pert }}-\gamma v_{y} \\
-\frac{\mu z}{r^{3}}+\left(f_{z}\right)_{\text {pert }}-\gamma v_{z}
\end{array}\right) \mathrm{d} t+\sqrt{2 \beta^{-1} \gamma}\left(\begin{array}{c}
0 \\
0 \\
0 \\
\mathrm{~d} w_{1} \\
\mathrm{~d} w_{2} \\
\mathrm{~d} w_{3}
\end{array}\right), \\
\left(\begin{array}{c}
f_{x} \\
f_{y} \\
f_{z}
\end{array}\right)_{\text {pert }}=\left(\begin{array}{ccc}
s \theta c \phi & c \theta c \phi & -s \phi \\
s \theta s \phi & c \theta s \phi & c \phi \\
c \theta & -s \theta & 0
\end{array}\right)\left(\begin{array}{c}
\frac{k}{2 r^{4}}\left(3(s \theta)^{2}-1\right) \\
-\frac{k}{r^{5}} s \theta c \theta \\
0
\end{array}\right), k:=3 J_{2} R_{\mathrm{E}}^{2}, \mu=\text { constant }
\end{gathered}
$$

Computational Time: Satellite in Geocentric Orbit

Extensions: Nonlocal interactions

PDF dependent sample path dynamics: $\mathrm{d} \mathbf{x}=-(\nabla U(\mathbf{x})+\nabla \rho * V) \mathrm{d} t+\sqrt{2 \beta^{-1}} \mathrm{~d} \mathbf{w}$

Mckean-Vlasov-Fokker-PlanckKolmogorov integro PDE:
$\frac{\partial \rho}{\partial t}=\nabla \cdot(\rho \nabla(U+\rho * V))+\beta^{-1} \Delta \rho$

Free energy:
$F(\rho):=\mathbb{E}_{\rho}\left[U+\beta^{-1} \rho \log \rho+\rho * V\right]$

Extensions: Nonlocal interactions (contd.)

$$
U(\cdot)=V(\cdot)=\|\cdot\|_{2}^{2}
$$

Extensions: Multiplicative Noise

Cox-Ingersoll-Ross: $\mathrm{d} x=a(\theta-x) \mathrm{d} t+b \sqrt{x} \mathrm{~d} w, 2 a>b^{2}, \theta>0$

Details on Proximal Prediction

- K.F. Caluya, and A.H., Proximal Recursion for Solving the Fokker-Planck Equation, ACC 2019.
- K.F. Caluya, and A.H., Gradient Flow Algorithms for Density Propagation in Stochastic Systems, under review in TAC.

Solving filtering problem as gradient flow

What's New?

Main idea: Solve the Kushner-Stratonovich SPDE
$\mathrm{d} \rho^{+}=\left[\mathcal{L}_{\mathrm{FP}} \mathrm{d} t+\mathcal{L}\left(\mathrm{d} z, \mathrm{~d} t, \rho^{+}\right)\right] \rho^{+}, \rho(x, t=0)=\rho_{0}$ as gradient flow in $\mathcal{P}_{2}(\mathcal{X})$

Recursion of \{deterministic o stochastic\} proximal operators:

Convergence: $\varrho_{k}^{+}(h) \rightarrow \rho^{+}(x, t=k h) \quad$ as $\quad h \downarrow 0$
For prior, as before: $\quad d^{-} \equiv W^{2}, \quad \Phi^{-} \equiv \mathbb{E}_{\varrho}\left[\psi+\beta^{-1} \log \varrho\right]$
For posterior: $d^{+} \equiv d_{\mathrm{FR}}^{2}$ or $D_{\mathrm{KL}}, \quad \Phi^{+} \equiv \frac{1}{2} \mathbb{E}_{\varrho^{+}}\left[\left(y_{k}-h(x)\right)^{\top} R^{-1}\left(y_{k}-h(x)\right)\right]$

Explicit Recovery of Kalman-Bucy Filter

Model:

$$
\begin{array}{ll}
\mathrm{d} \mathbf{x}(t)=\mathbf{A} \mathbf{x}(t) \mathrm{d} t+\mathbf{B} \mathrm{d} \mathbf{w}(t), & \mathrm{d} \mathbf{w}(t) \sim \mathcal{N}(0, \mathbf{Q} \mathrm{~d} t) \\
\mathrm{d} \mathbf{z}(t)=\mathbf{C} \mathbf{x}(t) \mathrm{d} t+\mathrm{d} \mathbf{v}(t), & \mathrm{d} \mathbf{v}(t) \sim \mathcal{N}(0, \mathbf{R} \mathrm{~d} t)
\end{array}
$$

Given $\mathbf{x}(0) \sim \mathcal{N}\left(\mu_{0}, \mathbf{P}_{0}\right)$, want to recover:

$$
\begin{aligned}
\mathrm{d} \mu^{+}(t) & =\mathbf{A} \mu^{+}(t) \mathrm{d} t+\quad \mathbf{P}^{+} \mathbf{C R}^{-1} \\
\dot{\mathbf{P}}^{+}(t) & \left(\mathrm{d} \mathbf{z}(t)-\mathbf{C} \mu^{+}(t) \mathrm{d} t\right) \\
& =\mathbf{A} \mathbf{P}^{+}(t)+\mathbf{P}^{+}(t) \mathbf{A}^{\top}+\mathbf{B} \mathbf{Q} \mathbf{B}^{\top}-\mathbf{K}(t) \mathbf{R K}(t)^{\top}
\end{aligned}
$$

- A.H. and T.T. Georgiou, Gradient Flows in Uncertainty Propagation and Filtering of Linear Gaussian Systems, CDC 2017.
— A.H. and T.T. Georgiou, Gradient Flows in Filtering and Fisher-Rao Geometry, ACC 2018.

Explicit Recovery of Wonham Filter

Model:

$x(t) \sim \operatorname{Markov}(Q)$,
$\mathrm{d} z(t)=h(x(t)) \mathrm{d} t+\sigma_{v}(t) \mathrm{d} v(t)$
State space: $\Omega:=\left\{a_{1}, \ldots, a_{m}\right\}$
Posterior $\pi^{+}(t):=\left\{\pi_{1}^{+}(t), \ldots, \pi_{m}^{+}(t)\right\}$ solves the nonlinear SDE:
$\mathrm{d} \pi^{+}(t)=\pi^{+}(t) Q \mathrm{~d} t+\frac{1}{\left(\sigma_{v}(t)\right)^{2}} \pi^{+}(t)(H-\widehat{h}(t) I)(\mathrm{d} z(t)-\widehat{h}(t) \mathrm{d} t)$,
where $H:=\operatorname{diag}\left(h\left(a_{1}\right), \ldots, h\left(a_{m}\right)\right), \quad \widehat{h}(t):=\sum_{i=1}^{m} h\left(a_{i}\right) \pi_{i}^{+}(t)$,
Initial condition: $\pi^{+}(t=0)=\pi_{0}$,
By defn. $\pi^{+}(t)=\mathbb{P}\left(x(t)=a_{i} \mid z(s), 0 \leq s \leq t\right)$
A.H. and T.T. Georgiou, Proximal Recursion for the Wonham Filter, CDC 2019, under review.

Numerical Results for Wonham Filter

- A.H. and T.T. Georgiou, Proximal Recursion for the Wonham Filter, CDC 2019, under review.

Solving density steering using gradient flow

Finite Horizon Feedback Density Steering

$\underset{u \in \mathcal{U}}{\operatorname{minimize}} \mathbb{E}\left[\int_{0}^{1}\|u\|_{2}^{2} \mathrm{~d} t\right]$ subject to $\mathrm{d} x=f(x, u, t) \mathrm{d} t+g(x, t) \mathrm{d} w$, $x(t=0) \sim \rho_{0}, \quad x(t=1) \sim \rho_{1}$

Consider simple case: $f(x, u, t) \equiv f(x, t)+u, \quad g=\sqrt{2 \epsilon}$
Coupled Nonlinear PDE system (Fokker-Planck + Hamilton-Jacobi-Bellman):

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}=-\nabla \cdot(\rho(f+\nabla \psi))+\epsilon \Delta \rho \\
& \frac{\partial \psi}{\partial t}=-\langle f, \nabla \psi\rangle-\frac{\|\nabla \psi\|_{2}^{2}}{2}-\epsilon \Delta \psi
\end{aligned}
$$

LTV case is solved (boundary coupled system of Riccati ODEs):
Y. Chen, T.T. Georgiou, and M. Pavon, Optimal Transport Over a Linear Dynamical System, TAC 2017 [George S. Axelby Outstanding Paper Award]

Solution via Schrödinger Bridge

Schrödinger's (until recently) forgotten papers:

ÜBER DIE UMKEHRUNG DER NATURGESETZE
von
E. SCHRÖDINGER

SÓNDERAUSGABE AUS DEN SItzungsberichten
DER PREUSSISCHEN AKADEMIE DER WISSENSCHAFTEN PHYS.MATH KLASSE: 1931. IX

C)

E. SCHRÖDINGER

-

I. - Introduction

J'ai l'intention d'exposer dans ces conférences diverses idées concer nant la mécanique quantique et l'interprétation qu'on en donne géné ralement à l'heure actuelle ; je parlerai principalement de la théorie ralement à Yeure actuelle; je parlerai principalement de la theorie
quantique relativiste du mouvement de l'électron. Autant que nous quantique relativiste du mouvement de 'electron. Autant que nous pouvons nous en rendre compte aujourd hui, il semble a peu pres
sûr que la mécanique quantique de l'electron, sous sa forme idéale, que nous ne possédons pas encore, doit former un jour la base de toute la physique. A cet intérêt tout à fait général, s'ajoute, ici à Paris, un intérêt particulier: vous savez tous que les bases de la théorie moderne de l'électron ont été posées à Paris par votre célèbre compatriote Louis de Broglie.

Schrödinger's contribution:
2 coupled nonlinear PDEs \rightarrow boundary-coupled linear PDEs!!
For $f=-\nabla U$:

$$
\begin{aligned}
& \frac{\partial \widehat{\varphi}}{\partial t}=\nabla \cdot(\widehat{\varphi} \nabla U)+\epsilon \Delta \widehat{\varphi}, \quad \widehat{\varphi}(x, t=0)=\widehat{\varphi}_{0} \\
& \frac{\partial \varphi}{\partial t}=\nabla U \cdot \nabla \varphi-\epsilon \Delta \varphi, \widehat{\varphi}(x, t=1)=\varphi_{1}
\end{aligned}
$$

Optimal controlled joint state PDF: $\quad \rho^{*}(x, t)=\widehat{\varphi}(x, t) \varphi(x, t)$

Feedback Density Steering: Proximal Algorithms

Details on Feedback Density Control for Nonlinear Systems

- K.F. Caluya, and A.H., Finite Horizon Density Control for Static State Feedback Linearizable Systems, under review in TAC.
- K.F. Caluya, W. Li, and A.H., Schrodinger Bridge with Nonlinear Drift, working draft.

Take Home Message

Emerging systems-control theory of PDFs

Three problems involving PDFs: prediction, filtering, control

One unifying framework: proximal recursion on the manifold of PDFs

Many applications:

Thank You

