Contraction and Reaction in
 Generalized Schrödinger Bridges

Alexis M.H. Teter

Department of Applied Mathematics
University of California, Santa Cruz
Santa Cruz, CA 95064

Advancement to Ph.D. candidacy
January 30, 2024

What is a Schrödinger Bridge Problem (SBP)

Most likely evolution between 2 distributional snapshots

This talk: Generalized SBP

Classical SBP $=$ minimum effort + Brownian prior
Generalized SBP (this talk)
More general prior

Additional state cost

Most likely evolution between 2 distributional snapshots

Motivating Application: Generalized SBP

Stochastic guidance and control of a spacecraft

Background

Optimal Mass Transport (OMT)

Static (Monge) formulation [1781]

$$
\begin{array}{ll}
\underset{\text { measurable } \boldsymbol{\tau}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}}{\arg \operatorname{E}} & \mathbb{E}_{\rho_{0}} \frac{1}{2}\left|\boldsymbol{x}_{0}-\boldsymbol{\tau}\left(\boldsymbol{x}_{0}\right)\right|^{2} \\
\text { subject to } & \boldsymbol{x}_{0} \sim \rho_{0}, \quad \boldsymbol{\tau}\left(\boldsymbol{x}_{0}\right) \sim \rho_{1}
\end{array}
$$

(a) Source and target

(b) Transport map

Optimal Mass Transport (OMT)

Static (Monge) formulation [1781]
$\underset{\text { urable } \boldsymbol{\tau}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}}{\operatorname{arginf}} \mathbb{E}_{\rho_{0}} \frac{1}{2}\left|\boldsymbol{x}_{0}-\boldsymbol{\tau}\left(\boldsymbol{x}_{0}\right)\right|^{2}$
measurable $\boldsymbol{\tau}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$
subject to $\quad \boldsymbol{x}_{0} \sim \rho_{0}, \quad \boldsymbol{\tau}\left(\boldsymbol{x}_{0}\right) \sim \rho_{1}$

(a) Source and target

(b) Transport map

Static (Kantorovich-Rubinstein) reformulation [1941]

$$
\begin{aligned}
& \underset{\pi \in \Pi\left(\rho_{0}, \rho_{1}\right)}{\arg \operatorname{Einf}} \mathbb{E}_{\pi} \frac{1}{2}\left|\boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right|^{2} \\
& \text { subject to } \quad \boldsymbol{x}_{0} \sim \rho_{0}, \quad \boldsymbol{x}_{1} \sim \rho_{1}
\end{aligned}
$$

Infinite dimensional linear program

Optimal Mass Transport (OMT)

Static (Monge) formulation [1781]
$\underset{\text { urable } \tau: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}}{\operatorname{arginf}} \mathbb{E}_{\rho_{0}} \frac{1}{2}\left|\boldsymbol{x}_{0}-\boldsymbol{\tau}\left(\boldsymbol{x}_{0}\right)\right|^{2}$
measurable $\boldsymbol{\tau}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$
subject to $\quad \boldsymbol{x}_{0} \sim \rho_{0}, \quad \boldsymbol{\tau}\left(\boldsymbol{x}_{0}\right) \sim \rho_{1}$

Static (Kantorovich-Rubinstein) reformulation [1941]

$$
\begin{aligned}
& \underset{\pi \in \Pi\left(\rho_{0}, \rho_{1}\right)}{\arg \inf } \mathbb{E}_{\pi} \frac{1}{2}\left|\boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right|^{2} \\
& \text { subject to } \quad \boldsymbol{x}_{0} \sim \rho_{0}, \quad \boldsymbol{x}_{1} \sim \rho_{1}
\end{aligned}
$$

$$
\pi \in \Pi\left(\rho_{0}, \rho_{1}\right) \quad \text { Infinite dimensional linear program }
$$

Dynamic (Benamou-Brenier) formulation [1999]

$$
\begin{aligned}
& \underset{(\rho, \boldsymbol{v}) \in \mathcal{P}_{01} \times \mathcal{V}}{\arg \inf } \int_{t_{0}}^{t_{1}} \int_{\mathbb{R}^{n}} \frac{1}{2}|\boldsymbol{v}|^{2} \rho(\boldsymbol{x}, t) \mathrm{d} \boldsymbol{x} \mathrm{~d} t \\
& \quad \frac{\partial \rho}{\partial t}+\nabla_{\boldsymbol{x}} \cdot(\rho \boldsymbol{v})=0, \\
& \rho\left(\boldsymbol{x}, t=t_{0}\right)=\rho_{0}, \quad \rho\left(\boldsymbol{x}, t=t_{1}\right)=\rho_{1}
\end{aligned}
$$

Stochastic optimal control problem

Classical SBP as Stochastic Optimal Control

$$
\begin{aligned}
& \underset{(\rho, \boldsymbol{v}) \in \mathcal{P}_{01} \times \mathcal{V}}{\operatorname{arginf}} \int_{t_{0}}^{t_{1}} \int_{\mathbb{R}^{n}} \frac{1}{2}|\boldsymbol{v}|^{2} \rho(\boldsymbol{x}, t) \mathrm{d} \boldsymbol{x} \mathrm{~d} t \\
& \frac{\partial \rho}{\partial t}+\nabla_{\boldsymbol{x}} \cdot(\rho \boldsymbol{v})=\varepsilon \Delta_{\boldsymbol{x}} \rho, \quad \varepsilon>0, \\
& \rho\left(\boldsymbol{x}, t=t_{0}\right)=\rho_{0}, \quad \rho\left(\boldsymbol{x}, t=t_{1}\right)=\rho_{1},
\end{aligned}
$$

Fokker-Planck-Kolmogorov PDE

Controlled sample path dynamics

$$
\mathrm{d} \boldsymbol{x}=\boldsymbol{v}(\boldsymbol{x}, t) \mathrm{d} t+\sqrt{2 \boldsymbol{\varepsilon}} \mathrm{~d} \boldsymbol{w}(t)
$$

Classical OMT vs. Classical SBP

Classical OMT

$$
\begin{aligned}
& \underset{(\rho, \boldsymbol{v}) \in \mathcal{P}_{01} \times \mathcal{V}}{\arg \inf } \int_{t_{0}}^{t_{1}} \int_{\mathbb{R}^{n}} \frac{1}{2}|\boldsymbol{v}|^{2} \rho(\boldsymbol{x}, t) \mathrm{d} \boldsymbol{x} \mathrm{~d} t \\
& \frac{\partial \rho}{\partial t}+\nabla_{\boldsymbol{x}} \cdot(\rho \boldsymbol{v})=0, \quad \text { Liouville PDE } \\
& \rho\left(\boldsymbol{x}, t=t_{0}\right)=\rho_{0}, \quad \rho\left(\boldsymbol{x}, t=t_{1}\right)=\rho_{1}
\end{aligned}
$$

Classical SBP

$$
\begin{aligned}
& \underset{(\rho, \boldsymbol{v}) \in \mathcal{P}_{01} \times \mathcal{V}}{\operatorname{arginf}} \int_{t_{0}}^{t_{1}} \int_{\mathbb{R}^{n}} \frac{1}{2}|\boldsymbol{v}|^{2} \rho(\boldsymbol{x}, t) \mathrm{d} \boldsymbol{x} \mathrm{~d} t \\
& \quad \frac{\partial \rho}{\partial t}+\nabla_{\boldsymbol{x}} \cdot(\rho \boldsymbol{v})=\varepsilon \Delta_{\boldsymbol{x}} \rho, \quad \varepsilon>0 \\
& \rho\left(\boldsymbol{x}, t=t_{0}\right)=\rho_{0}, \quad \rho\left(\boldsymbol{x}, t=t_{1}\right)=\rho_{1}
\end{aligned}
$$

Generalized SBP

$$
\begin{array}{r}
\underset{(\rho, \boldsymbol{v}) \in \mathcal{P}_{01} \times \mathcal{V}}{\arg \inf } \quad \int_{t_{0}}^{t_{1}} \int_{\mathbb{R}^{n}}\left(\frac{1}{2}|\boldsymbol{v}|^{2}+q(\boldsymbol{x})\right) \rho(\boldsymbol{x}, t) d \boldsymbol{x} d t \\
\begin{array}{l}
\sum_{i, j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left(\left(\boldsymbol{g} g^{\top} i_{i j} \rho\right)\right. \\
\\
\frac{\partial \rho}{\partial t}+\nabla_{\boldsymbol{x}} \cdot(\rho \boldsymbol{f}(\boldsymbol{x}, t, \boldsymbol{v}))=\varepsilon\left\langle\text { Hess }, \boldsymbol{g} \boldsymbol{g}^{\top} \rho\right\rangle \\
\rho\left(\boldsymbol{x}, t=t_{0}\right)=\rho_{0}, \quad \rho\left(\boldsymbol{x}, t=t_{1}\right)=\rho_{1}
\end{array},
\end{array}
$$

Controlled sample path dynamics

$$
d \boldsymbol{x}=\boldsymbol{f}(\boldsymbol{x}, t, \boldsymbol{v}) d t+\sqrt{2 \varepsilon} \boldsymbol{g}(\boldsymbol{x}, t, \boldsymbol{v}) d \boldsymbol{w}(t)
$$

Linear SBP: Contraction Coefficient

Related works

Y. Chen, T. Georgiou, and M. Pavon, "Entropic and displacement interpolation: a computational approach using the Hilbert metric," SIAM Journal on Applied Mathematics, vol. 76, no. 6, pp. 2375-2396, 2016
M. Kuang and E. G. Tabak, "Preconditioning of optimal transport," SIAM Journal on Scientific Computing, vol. 39, no. 4, pp. A1793-A1810, 2017

Linear SBP

$$
\begin{aligned}
& \underset{(\rho, \boldsymbol{v}) \in \mathcal{P}_{01} \times \mathcal{V}}{\arg \inf } \int_{t_{0}}^{t_{1}} \int_{\mathbb{R}^{n}} \frac{1}{2}|\boldsymbol{v}|^{2} \rho(\boldsymbol{x}, t) d \boldsymbol{x} d t \\
& \frac{\partial \rho}{\partial t}+\nabla_{\boldsymbol{x}} \cdot(\rho(\boldsymbol{A}(t) \boldsymbol{x}+\boldsymbol{B}(t) \boldsymbol{v}))=\varepsilon\left\langle\text { Hess, } \boldsymbol{B}(t) \boldsymbol{B}(t)^{\top} \rho\right\rangle \\
& \quad \text { resp. compact supports } \mathcal{X}_{0}, \mathcal{X}_{1} \\
& \rho\left(\boldsymbol{x}, t=t_{0}\right)=\rho_{0}, \quad \rho\left(\boldsymbol{x}, t=t_{1}\right)=\rho_{1}
\end{aligned}
$$

Controlled sample path dynamics
$\mathrm{d} \boldsymbol{x}(t)=(\boldsymbol{A}(t) \boldsymbol{x}(t)+\boldsymbol{B}(t) \boldsymbol{v}(\boldsymbol{x}, t)) \mathrm{d} t+\sqrt{2 \boldsymbol{\varepsilon}} \boldsymbol{B}(t) \mathrm{d} \boldsymbol{w}(t)$
State transition matrix $\quad \mathbf{\Phi}_{t \tau}:=\mathbf{\Phi}(t, \tau) \quad \forall t_{0} \leq \tau \leq t \leq t_{1}$
Assume controllability: $\boldsymbol{M}_{10}:=\int_{t_{0}}^{t_{1}} \boldsymbol{\Phi}_{t_{1} \tau} \boldsymbol{B}(\tau) \boldsymbol{B}^{\top}(\tau) \boldsymbol{\Phi}_{t_{1} \tau}^{\top} \mathrm{d} \tau \succ \mathbf{0}$
Classical SBP is special case: $\boldsymbol{A}(t) \equiv \mathbf{0}, \boldsymbol{B}(t) \equiv \boldsymbol{I}$

Structure of the Solution for Linear SBP

Optimally controlled joint state PDF: $\rho_{\varepsilon}^{\mathrm{opt}}(\cdot, t)=\widehat{\varphi}_{\varepsilon}(\cdot, t) \varphi_{\varepsilon}(\cdot, t)$
Optimal control: $\boldsymbol{v}_{\varepsilon}^{\text {opt }}(\cdot, t)=2 \varepsilon \nabla_{\boldsymbol{x}} \log \varphi_{\varepsilon}(\cdot, t)$

Schrödinger factors
Define: $\widehat{\varphi}_{\varepsilon, 0}(\cdot):=\widehat{\varphi}_{\varepsilon}\left(\cdot, t=t_{0}\right), \quad \varphi_{\varepsilon, 1}(\cdot):=\varphi_{\varepsilon}\left(\cdot, t=t_{1}\right)$
Schrödinger system

$$
\begin{aligned}
& \rho_{0}(\boldsymbol{x})=\widehat{\varphi}_{\varepsilon, 0}(\boldsymbol{x}) \int_{\mathbb{R}^{n}} \begin{array}{l}
\text { Markov kernel } \\
k\left(t_{0}, \boldsymbol{x}, t_{1}, \boldsymbol{y}\right) \varphi_{\varepsilon, 1}(\boldsymbol{y}) \mathrm{d} \boldsymbol{y} \\
\rho_{1}(\boldsymbol{x})=\varphi_{\varepsilon, 1}(\boldsymbol{x}) \int_{\mathbb{R}^{n}} k\left(t_{0}, \boldsymbol{y}, t_{1}, \boldsymbol{x}\right) \widehat{\varphi}_{\varepsilon, 0}(\boldsymbol{y}) \mathrm{d} \boldsymbol{y}
\end{array} .=\text {. }
\end{aligned}
$$

Coupled nonlinear integral equations

Here

$$
\frac{\exp \left(-\frac{\left(\boldsymbol{\Phi}_{t_{1} t_{0}} \boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right)^{\top} \boldsymbol{M}_{1_{0}}^{-1}\left(\boldsymbol{\Phi}_{t_{1} t_{0}} \boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right)}{4 \varepsilon}\right)}{\sqrt{(4 \pi \varepsilon)^{n} \operatorname{det}\left(\boldsymbol{M}_{10}\right)}}
$$

Contractive Fixed Point Algorithm

Fixed point recursion over pair $\left(\varphi_{\varepsilon, 1}, \widehat{\varphi}_{\varepsilon, 0}\right)$

Guaranteed linear convergence with contraction rate $\kappa \in(0,1)$
But exact rate depends on problem data $\left(\mathcal{X}_{0}, \mathcal{X}_{1}, \varepsilon, \boldsymbol{A}(t), \boldsymbol{B}(t)\right)$
Worst case contraction coefficient $\gamma:=$

γ in Classical SBP

Let

$$
\alpha_{\mathrm{B}}=\frac{\exp \left(-\tilde{\alpha}_{\mathrm{B}} /(4 \varepsilon)\right)}{\sqrt{(4 \pi \varepsilon)^{n}}}, \quad \beta_{\mathrm{B}}=\frac{\exp \left(-\tilde{\beta}_{\mathrm{B}} /(4 \varepsilon)\right)}{\sqrt{(4 \pi \varepsilon)^{n}}}
$$

where
$\tilde{\beta}_{\mathrm{B}}:=\min _{\boldsymbol{x}_{0} \in \mathcal{X}_{0}, \boldsymbol{x}_{1} \in \mathcal{X}_{1}}\left|\boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right|^{2} \quad$ and $\quad \tilde{\boldsymbol{\alpha}}_{\mathrm{B}}:=\max _{\boldsymbol{x}_{0} \in \mathcal{X}_{0}, \boldsymbol{x}_{1} \in \mathcal{X}_{1}}\left|\boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right|^{2}$

$$
\gamma_{\mathrm{B}}:=\tanh ^{2}\left(\frac{1}{2} \log \left(\frac{\beta_{\mathrm{B}}}{\alpha_{\mathrm{B}}}\right)\right) \in(0,1)
$$

Chen, Georgiou, Pavon, SIAM J. Applied Math, 2016

γ in Linear SBP

Thy. (informal)
Let
State transition matrix
Controllability Gramian

$$
\tilde{\boldsymbol{\alpha}}_{\mathrm{L}}:=\max _{\boldsymbol{x}_{0} \in \mathcal{X}_{0}, \boldsymbol{x}_{1} \in \mathcal{X}_{1}}\left(\boldsymbol{\Phi}_{t_{1} t_{0}} \boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right)^{\top} \boldsymbol{M}_{10}^{-1}\left(\boldsymbol{\Phi}_{t_{1} t_{0}} \boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right)
$$

$$
\tilde{\boldsymbol{\beta}}_{\mathrm{L}}:=\min _{\boldsymbol{x}_{0} \in \mathcal{X}_{0}, \boldsymbol{x}_{1} \in \mathcal{X}_{1}}\left(\boldsymbol{\Phi}_{t_{1} t_{0}} \boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right)^{\top} \boldsymbol{M}_{10}^{-1}\left(\boldsymbol{\Phi}_{t_{1} t_{0}} \boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right)
$$

Then

$$
\gamma_{\mathrm{L}}=\tanh ^{2}\left(\frac{\tilde{\alpha}_{\mathrm{L}}-\tilde{\beta}_{\mathrm{L}}}{8 \varepsilon}\right)
$$

γ in Linear SBP

Thy. (informal)
Let

$$
\begin{aligned}
& \tilde{\boldsymbol{\alpha}}_{\mathrm{L}}:=\max _{\boldsymbol{x}_{0} \in \mathcal{X}_{0}, \boldsymbol{x}_{1} \in \mathcal{X}_{1}}\left(\boldsymbol{\Phi}_{t_{1} t_{0}} \boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right)^{\top} \boldsymbol{M}_{10}^{-1}\left(\boldsymbol{\Phi}_{t_{1} t_{0}} \boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right) \\
& \tilde{\boldsymbol{\beta}}_{\mathrm{L}}:=\min _{\boldsymbol{x}_{0} \in \mathcal{X}_{0}, \boldsymbol{x}_{1} \in \mathcal{X}_{1}}\left(\boldsymbol{\Phi}_{t_{1} t_{0}} \boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right)^{\top} \boldsymbol{M}_{10}^{-1}\left(\boldsymbol{\Phi}_{t_{1} t_{0}} \boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right)
\end{aligned}
$$

Then

$$
\gamma_{\mathrm{L}}=\tanh ^{2}\left(\frac{\tilde{\alpha}_{\mathrm{L}}-\tilde{\beta}_{\mathrm{L}}}{8 \varepsilon}\right)
$$

Note:

$$
\begin{aligned}
& \boldsymbol{A}(t) \equiv \mathbf{0} \\
& \boldsymbol{B}(t) \equiv \boldsymbol{I}
\end{aligned} \leadsto \begin{aligned}
& \boldsymbol{\Phi}_{t_{1} t_{0}}=\boldsymbol{I} \\
& \boldsymbol{M}_{10}=\frac{1}{t_{1}-t_{0}} \boldsymbol{I}
\end{aligned} \leadsto\left\{\begin{array}{l}
\tilde{\alpha}_{\mathrm{B}}:=\max _{\boldsymbol{x}_{0} \in \mathcal{X}_{0}, \boldsymbol{x}_{1} \in \mathcal{X}_{1}} \frac{1}{t_{1}-t_{0}}\left|\boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right|^{2} \\
\tilde{\beta}_{\mathrm{B}}:=\min _{\boldsymbol{x}_{0} \in \mathcal{X}_{0}, \boldsymbol{x}_{1} \in \mathcal{X}_{1}} \frac{1}{t_{1}-t_{0}}\left|\boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right|^{2}
\end{array}\right.
$$

Control-theoretic Interpretation for γ_{L}

$$
\begin{gathered}
\tilde{\boldsymbol{\alpha}}_{\mathrm{L}}:=\max _{\boldsymbol{x}_{0} \in \mathcal{X}_{0}, \boldsymbol{x}_{1} \in \mathcal{X}_{1}}\left(\boldsymbol{\Phi}_{t_{1} t_{0}} \boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right)^{\top} \boldsymbol{M}_{10}^{-1}\left(\boldsymbol{\Phi}_{t_{1} t_{0}} \boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right) \\
\tilde{\boldsymbol{\beta}}_{\mathrm{L}}:=\min _{\boldsymbol{x}_{0} \in \mathcal{X}_{0}, \boldsymbol{x}_{1} \in \mathcal{X}_{1}}\left(\boldsymbol{\Phi}_{\left.t_{1} t_{0} \boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right)^{\top} \boldsymbol{M}_{10}^{-1}\left(\boldsymbol{\Phi}_{t_{1} t_{0}} \boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right)}\right. \\
\quad \underset{\operatorname{minimum}_{\boldsymbol{v}}}{ } \int_{t_{0}}^{t_{1}} \frac{1}{2}|\boldsymbol{v}|^{2} d t \\
\text { subject to } \quad \begin{array}{l}
\dot{\boldsymbol{x}}=\boldsymbol{A}(t) \boldsymbol{x}+\boldsymbol{B}(t) \boldsymbol{v} \\
\boldsymbol{x}\left(t=t_{0}\right)=\boldsymbol{x}_{0}, \boldsymbol{x}\left(t=t_{1}\right)=\boldsymbol{x}_{1}
\end{array}
\end{gathered}
$$

Minimum cost for deterministic OCP

Control-theoretic Interpretation for γ_{L}

$$
\gamma_{\mathrm{L}}=\tanh ^{2}\left(\frac{\tilde{\alpha}_{\mathrm{L}}-\tilde{\beta}_{\mathrm{L}}}{8 \varepsilon-}\right) \text { Range of optimal state transfer cost }
$$

Conforms with intuition:

$$
\tilde{\alpha}_{\mathrm{L}}-\tilde{\beta}_{\mathrm{L}} \uparrow \quad \Rightarrow \quad \gamma_{\mathrm{L}} \uparrow
$$

$$
\varepsilon \uparrow \quad \Rightarrow \quad \gamma_{\mathrm{L}} \downarrow
$$

Support Functions

The support function $h_{\mathcal{K}}(\cdot)$ for closed convex set \mathcal{K} is

$$
h_{\mathcal{K}}(\boldsymbol{y}):=\sup _{\boldsymbol{x} \in \mathcal{K}}\langle\boldsymbol{y}, \boldsymbol{x}\rangle, \quad \boldsymbol{y} \in \mathbb{R}^{n}
$$

e.g., distance from the origin to a supporting hyperplane of \mathcal{K} with normal in direction of \boldsymbol{y}

γ in Linear SBP

$$
\gamma_{\mathrm{L}}=\tanh ^{2}\left(\frac{\tilde{\alpha}_{\mathrm{L}}-\tilde{\beta}_{\mathrm{L}}}{8 \varepsilon}\right)
$$

Thm. (informal)
With support functions of \mathcal{X}_{0} and \mathcal{X}_{1}, and Euclidean unit sphere \mathcal{S}^{n-1}

$$
\begin{aligned}
& \tilde{\alpha}_{\mathrm{L}}=\left\{\max _{\boldsymbol{y} \in \mathcal{S}^{n-1}}\left(h_{\mathcal{X}_{0}}\left(\boldsymbol{\Phi}_{t_{1} t_{0}}^{\top} \boldsymbol{M}_{10}^{-1 / 2} \boldsymbol{y}\right)+h_{\mathcal{X}_{1}}\left(-\boldsymbol{M}_{10}^{-1 / 2} \boldsymbol{y}\right)\right)\right\}^{2} \\
& \tilde{\beta}_{\mathrm{L}}=\left\{\min _{\boldsymbol{y} \in \mathcal{S}^{n-1}}\left(h_{\mathcal{X}_{0}}\left(\boldsymbol{\Phi}_{t_{1} t_{0}}^{\top} \boldsymbol{M}_{10}^{-1 / 2} \boldsymbol{y}\right)+h_{\mathcal{X}_{1}}\left(-\boldsymbol{M}_{10}^{-1 / 2} \boldsymbol{y}\right)\right)\right\}^{2}
\end{aligned}
$$

γ in Linear SBP

$$
\gamma_{\mathrm{L}}=\tanh ^{2}\left(\frac{\tilde{\alpha}_{\mathrm{L}}-\tilde{\beta}_{\mathrm{L}}}{8 \varepsilon}\right)
$$

Thy. (informal)
With support functions of \mathcal{X}_{0} and \mathcal{X}_{1}, and Euclidean unit sphere \mathcal{S}^{n-1}

$$
\begin{aligned}
& \tilde{\alpha}_{\mathrm{L}}=\left\{\max _{\boldsymbol{y} \in \mathcal{S}^{n-1}}\left(h_{\mathcal{X}_{0}}\left(\boldsymbol{\Phi}_{t_{1} t_{0}}^{\top} \boldsymbol{M}_{10}^{-1 / 2} \boldsymbol{y}\right)+h_{\mathcal{X}_{1}}\left(-\boldsymbol{M}_{10}^{-1 / 2} \boldsymbol{y}\right)\right)\right\}^{2} \\
& \tilde{\beta}_{\mathrm{L}}=\left\{\min _{\boldsymbol{y} \in \mathcal{S}^{n-1}}\left(h_{\mathcal{X}_{0}}\left(\boldsymbol{\Phi}_{t_{1} t_{0}}^{\top} \boldsymbol{M}_{10}^{-1 / 2} \boldsymbol{y}\right)+h_{\mathcal{X}_{1}}\left(-\boldsymbol{M}_{10}^{-1 / 2} \boldsymbol{y}\right)\right)\right\}^{2}
\end{aligned}
$$

Note:

$$
\begin{aligned}
& \boldsymbol{\Phi}_{t_{1} t_{0}}=\boldsymbol{I} \\
& \boldsymbol{M}_{10}=\frac{1}{t_{1}-t_{0}} \boldsymbol{I}
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{\alpha}_{\mathrm{B}}=\frac{1}{t_{1}-t_{0}}\left\{\max _{\boldsymbol{y} \in \mathcal{S}^{n-1}}\left(h_{\mathcal{X}_{0}}(\boldsymbol{y})+h_{\mathcal{X}_{1}}(-\boldsymbol{y})\right\}^{2}\right. \\
& \tilde{\alpha}_{\mathrm{B}}=\frac{1}{t_{1}-t_{0}}\left\{\min _{\boldsymbol{y} \in \mathcal{S}^{n-1}}\left(h_{\mathcal{X}_{0}}(\boldsymbol{y})+h_{\mathcal{X}_{1}}(-\boldsymbol{y})\right\}^{2}\right.
\end{aligned}
$$

Geometric Interpretation for γ_{L}

$$
\gamma_{\mathrm{L}}=\tanh ^{2}\left(\frac{\tilde{\alpha}_{\mathrm{L}}-\tilde{\beta}_{\mathrm{L}}}{8 \varepsilon}\right)
$$

Geometric interpretation:
$\tilde{\alpha}_{\mathrm{L}}$ and $\tilde{\beta}_{\mathrm{L}}$ can be considered the maximum and minimal separation of
$M_{10}^{-1 / 2} \boldsymbol{\Phi}_{t_{1} t_{0}} \mathcal{X}_{0}$ and $M_{10}^{-1 / 2} \mathcal{X}_{1}$

Applications to Preconditioning:

Preconditioning to improve optimal transport algorithms
~ Kuang and Tabak, SIAM J. Scientific Computing, 2017

Example: Linear SBP: $\quad \varepsilon=0.5$

$$
\begin{aligned}
& d \boldsymbol{x}(t)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \boldsymbol{x}(t) d t+\sqrt{2 \varepsilon}\left[\begin{array}{l}
0 \\
1
\end{array}\right] d \boldsymbol{w}(t) \\
& \boldsymbol{\Phi}_{t_{1} t_{0}}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad \boldsymbol{M}_{10}^{-1}=\left[\begin{array}{cc}
12 & -6 \\
-6 & 4
\end{array}\right] .
\end{aligned}
$$

Applications to Preconditioning:

Preconditioning to improve optimal transport algorithms
~ Kuang and Tabak, SIAM J. Scientific Computing, 2017

Example: Linear SBP: $\quad \varepsilon=0.5$

$$
d \boldsymbol{x}(t)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \boldsymbol{x}(t) d t+\sqrt{2 \varepsilon}\left[\begin{array}{l}
0 \\
1
\end{array}\right] d \boldsymbol{w}(t)
$$

$$
\boldsymbol{\Phi}_{t_{1} t_{0}}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad \boldsymbol{M}_{10}^{-1}=\left[\begin{array}{cc}
12 & -6 \\
-6 & 4
\end{array}\right]
$$

No Preconditioning:

$$
\begin{aligned}
& \tilde{\alpha}_{\mathrm{L}}=2+2 \sqrt{3} \\
& \tilde{\beta}_{\mathrm{L}}=-2+2 \sqrt{3}
\end{aligned} \longrightarrow \quad \gamma_{\mathrm{L}}=\tanh ^{2}(1) \approx 0.580
$$

Applications to Preconditioning:

Preconditioning to improve optimal transport algorithms
~ Kuang and Tabak, SIAM J. Scientific Computing, 2017

Example: Linear SBP: $\quad \varepsilon=0.5$

$$
d \boldsymbol{x}(t)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \boldsymbol{x}(t) d t+\sqrt{2 \varepsilon}\left[\begin{array}{l}
0 \\
1
\end{array}\right] d \boldsymbol{w}(t)
$$

$$
\mathbf{\Phi}_{t_{1} t_{0}}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad \boldsymbol{M}_{10}^{-1}=\left[\begin{array}{cc}
12 & -6 \\
-6 & 4
\end{array}\right]
$$

With Preconditioning:

$\tilde{\alpha}_{\mathrm{L}}^{\text {precond }}=2, \tilde{\beta}_{\mathrm{L}}^{\text {precond }}=0 \quad \longrightarrow \quad \gamma_{\mathrm{L}}^{\text {precond }}=\tanh ^{2}(0.5)=0.214$

SBP with State Cost

Related works

Dawson, D., Gorostiza, L., and Wakolbinger, A., "Schrödinger processes and large deviations," Journal of mathematical physics, Vol. 31, No. 10, 1990, pp. 2385-2388. https: / / doi.org/10.1063/1.528840

Aebi, R., and Nagasawa, M., "Large deviations and the propagation of chaos for Schrödinger processes," Probability Theory and Related Fields, Vol. 94, No. 1, 1992, pp. 53-68. https: / / doi.org/ 10.1007/BF01222509

SBP with State Cost

$$
\begin{aligned}
\underset{(\rho, \boldsymbol{v}) \in \mathcal{P}_{01} \times \mathcal{V}}{\arg \inf } & \int_{t_{0}}^{t_{1}} \int_{\mathbb{R}^{n}}\left(\frac{1}{2}|\boldsymbol{v}|^{2}+q(\boldsymbol{x})\right) \rho(\boldsymbol{x}, t) d \boldsymbol{x} d t \\
& \frac{\partial \rho}{\partial t}+\nabla_{\boldsymbol{x}} \cdot(\rho \boldsymbol{v})=\varepsilon \Delta_{\boldsymbol{x}} \rho \\
& \boldsymbol{x}\left(t=t_{0}\right) \sim \rho_{0} \text { (given) }, \quad \boldsymbol{x}\left(t=t_{1}\right) \sim \rho_{1} \text { (given) }
\end{aligned}
$$

Controlled sample path dynamics

$$
\mathrm{d} \boldsymbol{x}=\boldsymbol{v}(\boldsymbol{x}, t) \mathrm{d} t+\sqrt{2 \varepsilon} \mathrm{~d} \boldsymbol{w}(t)
$$

Solution for the SBP with State Cost

Thm. (informal)

SBP with state cost admits a unique solution

Proof idea:

Reformulate as Kullback-Leibler minimization over path space:

large deviation principle

Conditions for Optimality

Necessary conditions of optimality for the SBP with state cost
The pair $\left(\rho_{\varepsilon}^{\text {opt }}, \boldsymbol{v}_{\varepsilon}^{\text {opt }}\right)$ solves the coupled nonlinear PDEs

$$
\begin{aligned}
& \frac{\partial \psi_{\varepsilon}}{\partial t}+\frac{1}{2}\left|\nabla_{\boldsymbol{x}} \psi_{\varepsilon}\right|^{2}+\varepsilon \Delta_{\boldsymbol{x}} \psi_{\varepsilon}=q(\boldsymbol{x}) \\
& \frac{\partial \rho_{\varepsilon}^{\mathrm{opt}}}{\partial t}+\nabla_{\boldsymbol{x}} \cdot\left(\rho_{\varepsilon}^{\mathrm{opt}} \nabla_{\boldsymbol{x}} \psi_{\varepsilon}\right)=\varepsilon \Delta_{\boldsymbol{x}} \rho_{\varepsilon}^{\mathrm{opt}}
\end{aligned}
$$

with boundary conditions

$$
\begin{aligned}
& \rho_{\varepsilon}^{\mathrm{opt}}\left(\boldsymbol{x}, t=t_{0}\right)=\rho_{0}(\boldsymbol{x}) \\
& \rho_{\varepsilon}^{\mathrm{opt}}\left(\boldsymbol{x}, t=t_{1}\right)=\rho_{1}(\boldsymbol{x})
\end{aligned}
$$

Structure of the solution for SBP with State Cost

Boundary-coupled system of linear PDEs for the Schrödinger factors

$$
\begin{aligned}
& \frac{\partial \widehat{\varphi}_{\varepsilon}}{\partial t}=\left(\varepsilon \Delta_{\boldsymbol{x}}-\frac{1}{2 \varepsilon} q(\boldsymbol{x})\right) \widehat{\varphi}_{\varepsilon} \leftarrow \mathcal{L}_{\text {forward }} \widehat{\varphi} \\
& \frac{\partial \varphi_{\varepsilon}}{\partial t}=\left(-\varepsilon \Delta_{\boldsymbol{x}}+\frac{1}{2 \varepsilon} q(\boldsymbol{x})\right) \varphi_{\varepsilon} \leftarrow \mathcal{L}_{\text {backward }} \varphi \\
& \widehat{\varphi}_{\varepsilon}\left(\cdot, t=t_{0}\right) \varphi_{\varepsilon}\left(\cdot, t=t_{0}\right)=\rho_{0} \\
& \widehat{\varphi}_{\varepsilon}\left(\cdot, t=t_{1}\right) \varphi_{\varepsilon}\left(\cdot, t=t_{1}\right)=\rho_{1} .
\end{aligned}
$$

Optimally controlled joint state PDF

$$
\rho_{\varepsilon}^{o p t}(\cdot, t)=\hat{\varphi}_{\varepsilon}(\cdot, t) \varphi_{\varepsilon}(\cdot, t)
$$

Optimal control

$$
\boldsymbol{v}_{\varepsilon}^{\mathrm{opt}}(\cdot, t)=2 \varepsilon \nabla_{\boldsymbol{x}} \log \varphi_{\varepsilon}(\cdot, t)
$$

Algorithm

Fixed point recursion over pair $\left(\varphi_{\varepsilon, 1}, \widehat{\varphi}_{\varepsilon, 0}\right)$

$$
\begin{aligned}
& \widehat{\varphi}_{\varepsilon, 0}(\cdot) \\
& \rho_{0}(\cdot) / \varphi_{\varepsilon}\left(\cdot, t=t_{0}\right) \mid \int \mathcal{L}_{\text {forward }} \widehat{\varphi} \\
& \widehat{\varphi}_{\varepsilon}\left(\cdot, t=t_{1}\right) \\
& \varphi_{\varepsilon}\left(\cdot, t=t_{0}\right) \rho_{1}(\cdot) / \widehat{\varphi}_{\varepsilon}\left(\cdot, t=t_{1}\right) \\
& \int \mathcal{L}_{\text {backward }} \varphi
\end{aligned} \varphi_{\varepsilon, 1}(\cdot) \quad .
$$

Schrödinger system:

$$
\begin{aligned}
& \rho_{0}(\boldsymbol{x})=\widehat{\varphi}_{\varepsilon, 0}(\boldsymbol{x}) \int_{\mathbb{R}^{n}} k\left(t_{0}, \boldsymbol{x}, t_{1}, \boldsymbol{y}\right) \varphi_{\varepsilon, 1}(\boldsymbol{y}) \mathrm{d} \boldsymbol{y} \\
& \rho_{1}(\boldsymbol{x})=\varphi_{\varepsilon, 1}(\boldsymbol{x}) \int_{\mathbb{R}^{n}} k\left(t_{0}, \boldsymbol{y}, t_{1}, \boldsymbol{x}\right) \widehat{\varphi}_{\varepsilon, 0}(\boldsymbol{y}) \mathrm{d} \boldsymbol{y}
\end{aligned}
$$

Fredholm Integral Equation of 2nd Kind

Thm. (informal)

Solution of linear reaction-diffusion PDE IVP with state-dependent reaction rate:

$$
\frac{\partial u}{\partial t}=a \Delta_{\boldsymbol{x}} u+q(\boldsymbol{x}) u, \quad \boldsymbol{x} \in \mathbb{R}^{n}, \quad u\left(\boldsymbol{x}, t=t_{0}\right)=u_{0}(\boldsymbol{x}) \text { given }
$$

admits space-time Fredholm integral representation

$$
\begin{aligned}
u(\boldsymbol{x}, t)= & \underbrace{\frac{1}{\sqrt{(4 \pi a t)^{n}}} \int_{\mathbb{R}^{n}} \exp \left(-\frac{|\boldsymbol{x}-\boldsymbol{y}|^{2}}{4 a t}\right) u_{0}(\boldsymbol{y}) d \boldsymbol{y}}_{\text {term } 1} \\
& +\underbrace{\int_{t_{0}}^{t} \frac{1}{\sqrt{(4 \pi a(t-\tau))^{n}}} \int_{\mathbb{R}^{n}} \exp \left(-\frac{|\boldsymbol{x}-\boldsymbol{y}|^{2}}{4 a(t-\tau)}\right) q(\boldsymbol{y}) u(\boldsymbol{y}, \tau) d \boldsymbol{y} d \tau}_{\text {term } 2}
\end{aligned}
$$

Case Study

Probabilistic Lambert's Problem

Lambert's Problem

3D position coordinate $\boldsymbol{x}:=\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3}$
Find velocity control policy $\dot{\boldsymbol{x}}:=\boldsymbol{v}(\boldsymbol{r}, t)$ such that
$\ddot{\boldsymbol{x}}=-\nabla_{\boldsymbol{x}} V(\boldsymbol{x}), \quad \boldsymbol{x}\left(t=t_{0}\right)=\boldsymbol{x}_{0}$ (given), $\boldsymbol{x}\left(t=t_{1}\right)=\boldsymbol{x}_{1}$ (given)

Probabilistic Lambert's Problem

Probabilistic Lambert's Problem

3D position coordinate $\boldsymbol{x}:=\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3}$
Find velocity control policy $\dot{\boldsymbol{x}}:=\boldsymbol{v}(\boldsymbol{r}, t)$ such that
$\ddot{\boldsymbol{x}}=-\nabla_{\boldsymbol{x}} V(\boldsymbol{x}), \quad \boldsymbol{x}\left(t=t_{0}\right) \sim \rho_{0}$ (given), $\boldsymbol{x}\left(t=t_{1}\right) \sim \rho_{1}$ (given)

Connection with OMT

Lambert Problem \Leftrightarrow Deterministic OCP

Reformulate Lambert's problem as deterministic OCP [Bando and Yamakawa, JGCD, 2010]

$$
\ddot{\boldsymbol{x}}=-\nabla_{\boldsymbol{x}} V(\boldsymbol{x}), \quad \boldsymbol{x}\left(t=t_{0}\right)=\boldsymbol{x}_{0}(\text { given }), \quad \boldsymbol{x}\left(t=t_{1}\right)=\boldsymbol{x}_{1} \text { (given) }
$$

I

$$
\begin{aligned}
& \underset{\boldsymbol{v}}{\arg \inf } \int_{t_{0}}^{t_{1}}\left(\frac{1}{2}|\boldsymbol{v}|^{2}-V(\boldsymbol{x})\right) d t \\
& \dot{\boldsymbol{x}}=\boldsymbol{v} \quad \text { Potential as state cost } \\
& \boldsymbol{x}\left(t=t_{0}\right)=\boldsymbol{x}_{0} \text { (given), } \boldsymbol{x}\left(t=t_{1}\right)=\boldsymbol{x}_{1} \text { (given) }
\end{aligned}
$$

Lambertian OMT (L-OMT)

Probabilistic Lambert's Problem \Leftrightarrow Generalized OMT

$$
\ddot{\boldsymbol{x}}=-\nabla_{\boldsymbol{x}} V(\boldsymbol{x}), \quad \boldsymbol{x}\left(t=t_{0}\right) \sim \rho_{0}(\text { given }), \quad \boldsymbol{x}\left(t=t_{1}\right) \sim \rho_{1} \text { (given) }
$$

$$
\begin{aligned}
& \underset{(\rho, \boldsymbol{v}) \in \mathcal{P}_{01} \times \mathcal{V}}{\arg \inf } \int_{t_{0}}^{t_{1}} \int_{\mathbb{R}^{n}}\left(\frac{1}{2}|\boldsymbol{v}|^{2}-V(\boldsymbol{x})\right) \rho(\boldsymbol{x}, t) d \boldsymbol{x} d t \\
& \quad V=0 \text { is OMT } \\
& \boldsymbol{x}=\boldsymbol{v} \\
& \boldsymbol{x}\left(t=t_{0}\right)=\boldsymbol{x}_{0} \text { (given), } \quad \boldsymbol{x}\left(t=t_{1}\right)=\boldsymbol{x}_{1} \text { (given) }
\end{aligned}
$$

Existence and Uniqueness of Solution for L-OMT

Thm. (informal)

L-OMT with negative potential admits a unique solution

Proof Idea:

Consider Lagrangian for L-OMT problem
Show that the Lagrangian is strictly convex and superlinear in \boldsymbol{v}
Use Figalli's theory for Tonelli Lagrangians induced by action integrals

Connection to SBP with state cost

$$
\begin{aligned}
& \underset{(\rho, \boldsymbol{v}) \in \mathcal{P}_{01} \times \mathcal{V}}{\arg \inf } \int_{t_{0}}^{t_{1}} \int_{\mathbb{R}^{n}}\left(\frac{1}{2}|\boldsymbol{v}|^{2}-V(\boldsymbol{x})\right) \rho(\boldsymbol{x}, t) d \boldsymbol{x} d t \\
& \frac{\partial \rho}{\partial t}+\nabla_{\boldsymbol{r}} \cdot(\rho \boldsymbol{v})=0, \\
& \rho\left(t=t_{0}, \cdot\right)=\rho_{0}, \quad \rho\left(t=t_{1}, \cdot\right)=\rho_{1}
\end{aligned}
$$

主 Lambertian SBP (L-SBP)

$$
\begin{aligned}
& \underset{(\rho, \boldsymbol{v}) \in \mathcal{P}_{01} \times \mathcal{V}}{\arg \inf } \int_{t_{0}}^{t_{1}} \int_{\mathbb{R}^{n}}\left(\frac{1}{2}|\boldsymbol{v}|^{2}-V(\boldsymbol{x})\right) \rho(\boldsymbol{x}, t) d \boldsymbol{x} d t \\
& \text { Regularization>0 } \\
& \frac{\partial \rho}{\partial t}+\nabla_{\boldsymbol{r}} \cdot(\rho \boldsymbol{v})=\stackrel{\varepsilon}{\varepsilon} \Delta_{\boldsymbol{r}} \rho, \\
& \rho\left(t=t_{0}, \cdot\right)=\rho_{0}, \quad \rho\left(t=t_{1}, \cdot\right)=\rho_{1}
\end{aligned}
$$

L-SBP Solution

Thm. (informal) Existence and uniqueness of L-SBP is guaranteed

$$
V(\boldsymbol{x})=-\frac{\mu}{|\boldsymbol{x}|}\left(1+\frac{J_{2} R_{\text {Earth }}^{2}}{2|\boldsymbol{x}|^{2}}\left(1-\frac{3 z^{2}}{|\boldsymbol{x}|^{2}}\right)\right) \longrightarrow \begin{gathered}
\text { Bounded and } \\
\text { negative for } \\
|\boldsymbol{x}|^{2} \geq \mathrm{R}_{\text {Earth }}^{2}
\end{gathered}
$$

Thm. (Necessary conditions of optimality for L-SBP)

$$
\begin{gathered}
\frac{\partial \psi_{\varepsilon}}{\partial t}+\frac{1}{2}\left|\nabla_{\boldsymbol{x}} \psi_{\varepsilon}\right|^{2}+\varepsilon \Delta_{\boldsymbol{x}} \psi_{\varepsilon}=-V(\boldsymbol{x}) \\
\frac{\partial \rho_{\varepsilon}^{\mathrm{opt}}}{\partial t}+\nabla_{\boldsymbol{x}} \cdot\left(\rho_{\varepsilon}^{\mathrm{opt}} \nabla_{\boldsymbol{x}} \psi_{\varepsilon}\right)=\varepsilon \Delta_{\boldsymbol{x}} \rho_{\varepsilon}^{\mathrm{opt}} \\
\rho_{\varepsilon}^{\mathrm{opt}}\left(t=t_{0}, \cdot\right)=\rho_{0}, \quad \rho_{\varepsilon}^{\mathrm{opt}}\left(t=t_{1}, \cdot\right)=\rho_{1}
\end{gathered}
$$

L-SBP Computation via Schrödinger Factors

Recursion over pair $\left(\varphi_{1}, \hat{\varphi}_{0}\right)$

$$
\begin{aligned}
\hat{\varphi}_{\varepsilon, 0}(\cdot) & \stackrel{\int}{\int} \widehat{\varphi}_{\varepsilon}\left(\cdot, t=t_{1}\right) \\
\rho_{0}(\cdot) / \varphi_{\varepsilon}\left(\cdot, t=t_{0}\right) \mid & \rho_{1}(\cdot) / \widehat{\varphi}_{\varepsilon}\left(\cdot, t=t_{1}\right) \\
\varphi_{\varepsilon}\left(\cdot, t=t_{0}\right) & \stackrel{\varphi_{\varepsilon, 1}(\cdot)}{ } \\
\frac{\partial \widehat{\varphi}_{\varepsilon}}{\partial t} & =\left(\varepsilon \Delta_{\boldsymbol{x}}+\frac{1}{2 \varepsilon} V(\boldsymbol{x})\right) \widehat{\varphi}_{\varepsilon} \\
\frac{\partial \varphi_{\varepsilon}}{\partial t} & =-\left(\varepsilon \Delta_{\boldsymbol{x}}+\frac{1}{2 \varepsilon} V(\boldsymbol{x})\right) \varphi_{\varepsilon} \\
\rho_{\varepsilon}^{\mathrm{opt}}\left(t=t_{0}, \cdot\right) & =\rho_{0}, \quad \rho_{\varepsilon}^{\mathrm{opt}}\left(t=t_{1}, \cdot\right)=\rho_{1}
\end{aligned}
$$

L-SBP Computation via Schrödinger Factors

Recursion over pair $\left(\varphi_{1}, \hat{\varphi}_{0}\right)$

$$
\begin{aligned}
\widehat{\varphi}_{\varepsilon, 0}(\cdot) & \int \\
\rho_{0}(\cdot) / \varphi_{\varepsilon}\left(\cdot, t=t_{0}\right) \mid & \widehat{\varphi}_{\varepsilon}\left(\cdot, t=t_{1}\right) \\
\varphi_{\varepsilon}\left(\cdot, t=t_{0}\right) & \mid \rho_{1}(\cdot) / \widehat{\varphi}_{\varepsilon}\left(\cdot, t=t_{1}\right) \\
\int & \varphi_{\varepsilon, 1}(\cdot)
\end{aligned}
$$

Thm. (Fredholm Integral Representation)

$$
\begin{array}{r}
\widehat{\varphi}_{\varepsilon}(\boldsymbol{x}, t)=\frac{1}{\sqrt{(4 \pi \varepsilon t)^{3}}} \int_{\mathbb{R}^{3}} \exp \left(-\frac{|\boldsymbol{x}-\tilde{\boldsymbol{x}}|^{2}}{4 \varepsilon t}\right) \widehat{\varphi}_{\varepsilon, 0}(\tilde{\boldsymbol{x}}) d \tilde{\boldsymbol{x}} \\
-\int_{t_{0}}^{t} \frac{1}{2 \varepsilon \sqrt{(4 \pi \varepsilon(t-\tau))^{3}}} \int_{\mathbb{R}^{3}} \exp \left(-\frac{|\boldsymbol{x}-\tilde{\boldsymbol{x}}|^{2}}{4 \varepsilon(t-\tau)}\right) V(\tilde{\boldsymbol{x}}) \widehat{\varphi}_{\varepsilon}(\tilde{\boldsymbol{x}}, \tau) d \tilde{\boldsymbol{x}} d \tau
\end{array}
$$

Numerical Case Study

Prescribed time horizon $\left[t_{0}, t_{1}\right] \equiv[0,1]$ hours

Endpoint joint PDFs

$$
\begin{aligned}
& \boldsymbol{x}_{0} \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right) \\
& \boldsymbol{x}_{1} \sim \mathcal{N}\left(\mu_{1}, \Sigma_{1}\right)
\end{aligned}
$$

where

$$
\begin{gathered}
\mu_{0}=\left(\begin{array}{c}
5000 \\
10000 \\
2100
\end{array}\right), \quad \mu_{1}=\left(\begin{array}{c}
-14600 \\
2500 \\
7000
\end{array}\right) \\
\Sigma_{0}=\frac{1}{100} \operatorname{diag}\left(\mu_{0}^{2}\right), \quad \Sigma_{1}=\frac{1}{100} \operatorname{diag}\left(\mu_{1}^{2}\right),
\end{gathered}
$$

Solution: Computation

IDEA: Fixed point recursion over pair $\left(\varphi_{1}, \hat{\varphi}_{0}\right)$

\[

\]

Idea:
Left Riemann

$$
\begin{aligned}
& \int_{t_{0}}^{t_{1}} \int_{\mathbb{R}^{n}} f(\widetilde{\boldsymbol{x}}, \boldsymbol{x}, \tau, t) d \widetilde{\boldsymbol{x}} d \tau \\
& \approx \sum_{q=0}^{k-1} \sum_{m=0}^{N_{x}} \sum_{n=0}^{N_{y}} \sum_{j=0}^{N_{z}} f\left(\widetilde{\boldsymbol{x}}_{(m, n, j)}, \boldsymbol{x}, t_{0}+k \Delta t, t\right) \Delta z \Delta y \Delta x \Delta t
\end{aligned}
$$

Approximation
of Second Term
where $\widetilde{\boldsymbol{x}}_{(m, n, j)}=\left(x_{0}+\Delta x, y_{0}+\Delta y, z_{0}+\Delta z\right)$

Numerical Case Study (cont.)

Optimally controlled closed loop state sample paths

Numerical Case Study (cont.)

Numerical Case Study (cont.)

Univariate marginals for optimally controlled joint PDFs

Tentative Timeline for Research

Winter-Spring 2024: Further investigation of convergence guarantees for reactiondiffusion PDEs associated with SBPs with additive state costs.

Summer-Fall 2024: Deriving conditions for optimality of generalized SBPs.

Winter-Spring 2025: Publishing results, writing my dissertation.

Summer 2025: Ph.D. defense.

Publications

Alexis M.H. Teter, Yongxin Chen, Abhishek Halder
"On the contraction coefficient of the Schrödinger bridge for stochastic linear systems" IEEE Control Systems Letters, Vol. 7, pp. 3325-3330, 2023 doi: 10.1109 / LCSYS.2023.3326836
(also accepted for presentation at the 2024 American Control Conference)

Alexis M.H. Teter, Iman Nodozi, Abhishek Halder
"Probabilistic Lambert Problem: Connections with Optimal Transport, Schrödinger
Bridge and Reaction-Diffusion PDEs"
under review
arXiv:2401.07961, 2024

Alexis M.H. Teter, Iman Nodozi, Abhishek Halder "Proximal mean field learning in shallow neural networks"
Transactions on Machine Learning Research, 2024
URL: https: / / openreview.net/ forum?id=vyRBsqj5iG

Thank You

Backup Slides

γ in Linear SBP

Thm. (informal)

$$
\begin{aligned}
& \tilde{\alpha}_{\mathrm{L}}=\left\{\max _{\boldsymbol{y} \in \mathcal{S}^{n-1}}\left(h_{\mathcal{X}_{0}}\left(\boldsymbol{\Phi}_{t_{1} t_{0}}^{\top} \boldsymbol{M}_{10}^{-1 / 2} \boldsymbol{y}\right)+h_{\mathcal{X}_{1}}\left(-\boldsymbol{M}_{10}^{-1 / 2} \boldsymbol{y}\right)\right)\right\}^{2} \\
& \tilde{\beta}_{\mathrm{L}}=\left\{\min _{\boldsymbol{y} \in \mathcal{S}^{n-1}}\left(h_{\mathcal{X}_{0}}\left(\boldsymbol{\Phi}_{t_{1} t_{0}}^{\top} \boldsymbol{M}_{10}^{-1 / 2} \boldsymbol{y}\right)+h_{\mathcal{X}_{1}}\left(-\boldsymbol{M}_{10}^{-1 / 2} \boldsymbol{y}\right)\right)\right\}^{2}
\end{aligned}
$$

Proof idea:

$$
\begin{aligned}
& \tilde{\alpha}_{\mathrm{L}}=\max _{\boldsymbol{x}_{0} \in \mathcal{X}_{0}, \boldsymbol{x}_{1} \in \mathcal{X}_{1}}\left(\boldsymbol{\Phi}_{t_{1} t_{0}} \boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right)^{\top} \boldsymbol{M}_{10}^{-1}\left(\boldsymbol{\Phi}_{t_{1} t_{0}} \boldsymbol{x}_{0}-\boldsymbol{x}_{1}\right) \\
& \tilde{\alpha}_{\mathrm{L}}=\max _{\boldsymbol{x} \in \boldsymbol{M}_{10}^{-1 / 2} \boldsymbol{\Phi}_{10} \mathcal{X}_{0}-\boldsymbol{M}_{10}^{-1 / 2} \mathcal{X}_{1}}|\boldsymbol{x}|^{2}=\left\{\max _{\boldsymbol{x} \in \boldsymbol{M}_{10}^{-1 / 2} \boldsymbol{\Phi}_{10} \mathcal{X}_{0}-\boldsymbol{M}_{10}^{-1 / 2} \mathcal{X}_{1}}\left\langle\frac{\boldsymbol{x}}{|\boldsymbol{x}|}, \boldsymbol{x}\right\rangle\right\}^{2} \\
& \tilde{\boldsymbol{\alpha}}_{\mathrm{L}}=\left\{\max _{\boldsymbol{y} \in \mathbb{S}^{n-1}} h_{\boldsymbol{M}_{10}^{-1 / 2} \boldsymbol{\Phi}_{10} \mathcal{X}_{0}-\boldsymbol{M}_{10}^{-1 / 2} \mathcal{X}_{1}}(\boldsymbol{y})\right\}^{2}
\end{aligned}
$$

Solution to the Classical SBP

Thm. (Necessary conditions of optimality for the classical SBP):
The pair $\left(\rho_{\varepsilon}^{\text {opt }}, \boldsymbol{v}_{\varepsilon}^{\text {opt }}\right)$ solves the coupled PDEs
Value function

$$
\begin{aligned}
& \frac{\partial \psi_{\varepsilon}}{\partial t}+\frac{1}{2}\left|\nabla_{x} \psi_{\varepsilon}\right|^{2}+\varepsilon \Delta_{x} \psi_{\varepsilon}=0 \\
& \frac{\partial \rho_{\varepsilon}^{\mathrm{opt}}}{\partial t}+\nabla_{x} \cdot\left(\rho_{\varepsilon}^{\mathrm{opt}} \nabla_{x} \psi_{\varepsilon}\right)=\varepsilon \Delta_{x} \rho_{\varepsilon}^{\mathrm{opt}}
\end{aligned}
$$

with boundary conditions

$$
\begin{aligned}
& \rho_{\varepsilon}^{\mathrm{opt}}\left(\boldsymbol{x}, t=t_{0}\right)=\rho_{0}(\boldsymbol{x}) \\
& \rho_{\varepsilon}^{\mathrm{opt}}\left(\boldsymbol{x}, t=t_{1}\right)=\rho_{1}(\boldsymbol{x})
\end{aligned}
$$

Solution to the Classical SBP

Hopf-Cole transform

$$
\varphi_{\varepsilon}:=\exp \left(\frac{\psi_{\varepsilon}}{2 \varepsilon}\right), \widehat{\varphi}_{\varepsilon}:=\rho_{\varepsilon}^{\mathrm{opt}} \exp \left(-\frac{\psi_{\varepsilon}}{2 \varepsilon}\right)
$$

Schrödinger factors
results in

$$
\begin{gathered}
\frac{\partial \hat{\varphi}_{\varepsilon}}{\partial t}=\varepsilon \Delta_{x} \hat{\varphi}_{\varepsilon} \\
\frac{\partial \varphi_{\varepsilon}}{\partial t}=-\varepsilon \Delta_{x} \varphi_{\varepsilon} \\
\hat{\varphi}_{\varepsilon}\left(\boldsymbol{x}, t=t_{0}\right) \varphi_{\varepsilon}\left(\boldsymbol{x}, t=t_{0}\right)=\rho_{0}(\boldsymbol{x}) \\
\hat{\varphi}_{\varepsilon}\left(\boldsymbol{x}, t=t_{1}\right) \varphi_{\varepsilon}\left(\boldsymbol{x}, t=t_{1}\right)=\rho_{1}(\boldsymbol{x})
\end{gathered}
$$

Contraction Coefficient for Linear SBP

Thm. (informal)

$$
\gamma_{\mathrm{L}}=\tanh ^{2}\left(\frac{\tilde{\alpha}_{\mathrm{L}}-\tilde{\beta}_{\mathrm{L}}}{8 \varepsilon}\right)
$$

Proof Idea:

