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Probabilistic Lambert’s Problem
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3D position coordinate r := | y | € R?

Find velocity control policy 7 := v(t,7) such that

# = -V, V(r),

r(t =ty) ~ po (given), =(t=1t1) ~ p; (given)




The Beginning of Lambert’s Problem

Named after polymath Johann Heinrich Lambert (1728 - 1777)
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- known for first proof of irrationality of 7, W function, area of a hyperbolic triangle

- special cases solved by Euler in 1743

- Lambert mentions this problem in letter to Euler in 1761

- solves the problem for parabolic, elliptic and hyperbolic Keplerian arcs in 1761 book
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- book receives high praise from Euler in 3 response letters ok prras

 COMETARVM
- PROPRIETATES.

- alternative proofs by Lagrange (1780), Laplace (1798), Gauss (1809)
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Modern History of Lambert’s Problem

- Sustained interests for spacecraft guidance, missile interception

- 20th century astrodynamics research: fast computational algorithm, J2 effect in V
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- 21st century interests in aerospace community: probabilistic Lambert’s problem

- Endpoint uncertainties due to estimation errors, statistical performance

- State-of-the-art: approx. dynamics (linearization) + approx. statistics (covariance)

- Our contribution: connections with OMT and SBP

- Formulation/computation: non-parametric, well-posedness, optimality certificate



Connection with Optimal Control Problem (OCP)
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Lambert Problem < Deterministic OCP
N y

Idea: use classical Hamiltonian mechanics to reformulate as deterministic OCP
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Gravitational potential pushed from dynamics to Lagrangian
=7,

r(t =ty) = ro (given), »(t=1%;) = r; (given)




Lambertian OMT (L-OMT)
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Probabilistic Lambert Problem < Generalized OMT
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#=-V,.V(r), r(t=ty) ~ po (given),
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r(t =t1) ~ p1 (given)
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r = v, Potential as state cost (V = 0 is OMT)

’I"(t — t()) ~ 00 (given), T‘(t — tl) ~ 01 (given) )
\



L-OMT as Density Steering
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Existence-Uniqueness of L-OMT Solution

Thm. (informal)
Existence-uniqueness guaranteed for V bounded C*,
and p,, p; with finite second moments

Proof idea.
Figalli’s theory for OMT with Tonelli Lagrangians that are
induced by action integrals



Connection to SBP with state cost
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L-SBP Solution

Thm. (informal) Existence and uniqueness of L-SBP is guaranteed
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L-SBP Solution

Thm. (Hopf-Cole a.k.a. Fleming’s log transform)

Change of variable (pgpt, ¢) — (P, ) — Schrodinger factors

?P(;::) )

(t,r) = p°P*(t,r) exp (—

p(t,) = exp ( w(;’;) )

results in a boundary-coupled system of forward-backward reaction-diffusion PDEs
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L-SBP Computation via Schrodinger Factors

Recursion over pair (qol, (,bo)




Numerical Case Study

Prescribed time horizon [to, tl] = [O,l] hours

Endpoint joint PDFs
zo ~ N (10, Xo)

L1 ~ N(Ml, 21)

where
5000 —14600
uo = | 10000 |, u=| 2500
2100 7000
By = —diag(il), 1 — ——diag(sid),
100 100



Numerical Case Study (cont.)

Optimally controlled closed loop state sample paths
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Numerical Case Study (cont.)

Univariate marginals for optimally controlled joint PDFs
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Ongoing Efforts

- Find explicit Green’s function for reaction-diffsion PDE with reaction
rate equal to gravitational potential

- Connections with solution of time-dependent Schrédinger’s equation in
quantum mechanics for Hydrogen atom

- Preprint with L-OMT and L-SBP details: arXiv:2401.07961
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L-SBP Solution: Computation

IDEA: Fixed point recursion over pair (qpl, @0)

/Eforward R
Po(x) . ¢1(x)
po(T) @ po(x) p1(z) @ p1(x)
po(x) p1(x)
/Ebackward

Thm. (Existence-uniqueness-convergence) Proof by contraction mapping

_ 1 |z —yllz |
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(Fredholm Integral \/ (4ret)? /R 4et

Representation) N y

Likewise for ¢(t, x) \ -



Solution: Computation

IDEA: Fixed point recursion over pair (qal, @0)
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