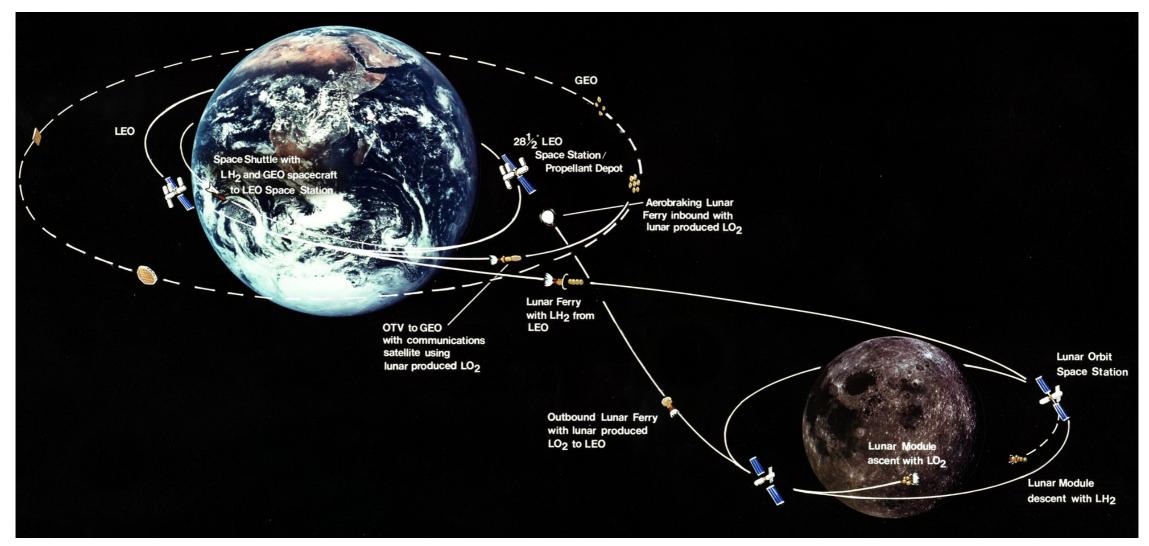
# Solution of the Probabilistic Lambert Problem: Optimal Transport Approach

Alexis M.H. Teter

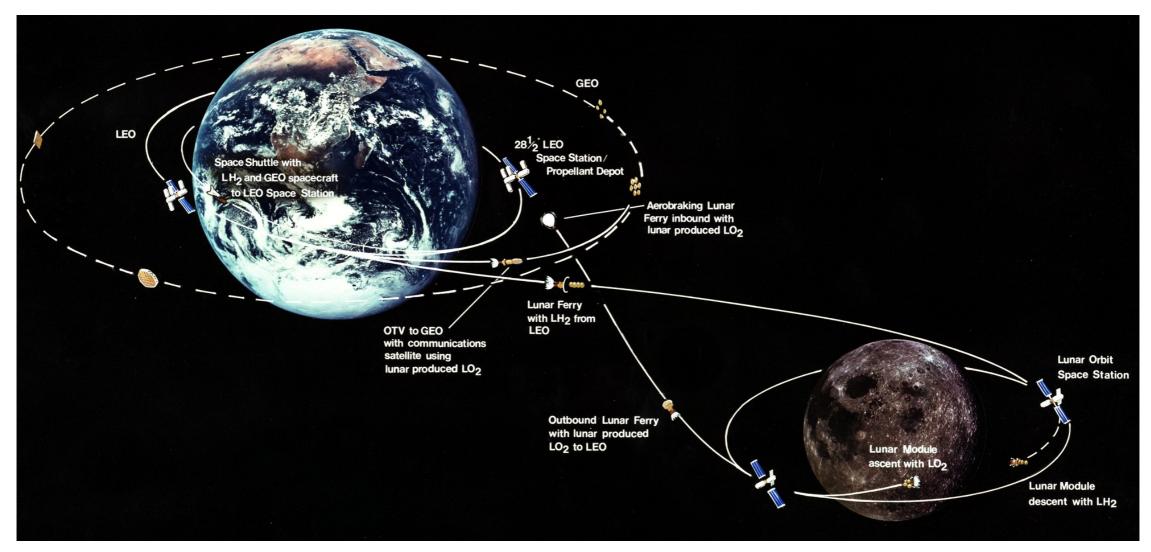

Department of Applied Mathematics University of California, Santa Cruz Santa Cruz, CA 95064

Joint work with Iman Nodozi and Abhishek Halder

Session: Optimal Transport: Theory and Applications in Networks and Systems (II)

26th MTNS Conference, Cambridge, UK, August 22, 2024

#### Lambert's Problem

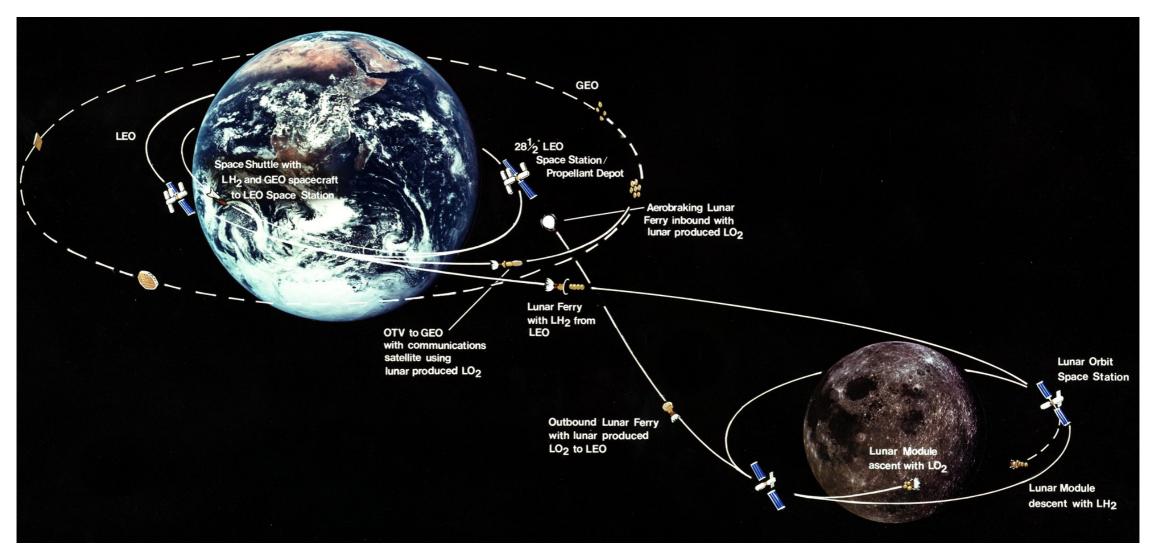



3D position coordinate 
$$m{r} := egin{pmatrix} x \ y \ z \end{pmatrix} \in \mathbb{R}^3$$

Find velocity control policy  $\dot{\boldsymbol{r}}:=\boldsymbol{v}(t,\boldsymbol{r})$  such that

$$\ddot{m{r}} = -
abla_{m{r}}V(m{r}), \ \ \left[m{r}(t=t_0) = m{r}_0( ext{ given }), \ \ \ m{r}(t=t_1) = m{r}_1( ext{ given })
ight]$$

#### Lambert's Problem



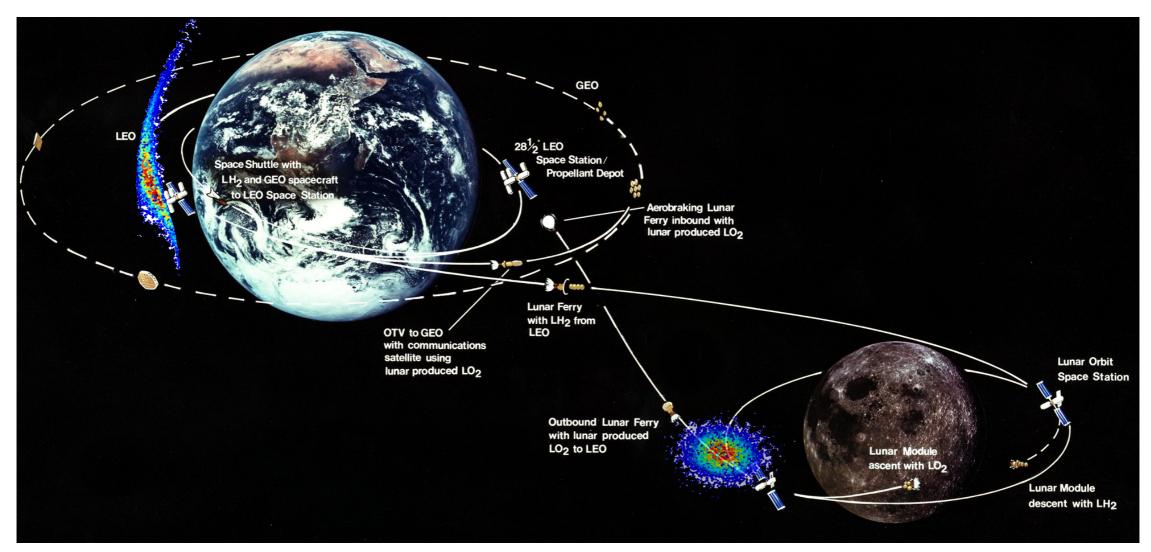

3D position coordinate 
$$m{r}:=egin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$
 ODE is 2nd order but endpoint boundary conditions are first order

Find velocity control policy  $\dot{\boldsymbol{r}} := \boldsymbol{v}(t,\boldsymbol{r})$  such that

$$\ddot{oldsymbol{r}} = -
abla_{oldsymbol{r}}V(oldsymbol{r}), \quad oldsymbol{r}(t=t_0) = oldsymbol{r}_0( ext{ given }), \quad oldsymbol{r}(t=t_1) = oldsymbol{r}_1( ext{ given })$$

#### Lambert's Problem




3D position coordinate 
$$m{r} := \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$
 ODE is 2nd order but endpoint boundary conditions are first order  $\Rightarrow$  partially specified TPBVP

→ partially specified TPBVP

Find velocity control policy  $\dot{\boldsymbol{r}} := \boldsymbol{v}(t,\boldsymbol{r})$  such that

$$\ddot{oldsymbol{r}} = -
abla_{oldsymbol{r}}V(oldsymbol{r}), \quad oldsymbol{r}(t=t_0) = oldsymbol{r}_0( ext{ given }), \quad oldsymbol{r}(t=t_1) = oldsymbol{r}_1( ext{ given })$$

#### Probabilistic Lambert's Problem

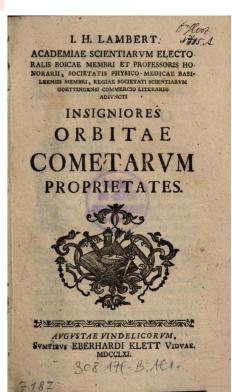


3D position coordinate 
$$m{r} := egin{pmatrix} x \ y \ z \end{pmatrix} \in \mathbb{R}^3$$

Find velocity control policy  $\dot{\boldsymbol{r}}:=\boldsymbol{v}(t,\boldsymbol{r})$  such that

$$\ddot{m{r}} = -
abla_{m{r}}V(m{r}), \ \left[m{r}(t=t_0) \sim 
ho_0 \ ext{(given)}, \ \ m{r}(t=t_1) \sim 
ho_1 \ ext{(given)}
ight]$$

## The Beginning of Lambert's Problem


Named after polymath Johann Heinrich Lambert (1728 - 1777)



- known for first proof of irrationality of  $\pi$ , W function, area of a hyperbolic triangle
- special cases solved by Euler in 1743
- Lambert mentions this problem in letter to Euler in 1761
- solves the problem for parabolic, elliptic and hyperbolic Keplerian arcs in 1761 book

$$V(\mathbf{r}) = -\frac{\mu}{|\mathbf{r}|}$$

- book receives high praise from Euler in 3 response letters
- alternative proofs by Lagrange (1780), Laplace (1798), Gauss (1809)



## Modern History of Lambert's Problem

- Sustained interests for spacecraft guidance, missile interception
- 20th century astrodynamics research: fast computational algorithm, J2 effect in *V*

$$egin{aligned} V(m{x}) = -rac{\mu}{|m{x}|} \left(1 + rac{J_2 R_{ ext{Earth}}^2}{2|m{x}|^2} \left(1 - rac{3z^2}{|m{x}|^2}
ight)
ight) & \longrightarrow & ext{Bounded and negative for } \ |m{x}|^2 \geq ext{R}_{ ext{Earth}}^2 \end{aligned}$$

- 21st century interests in aerospace community: probabilistic Lambert's problem
- Endpoint uncertainties due to estimation errors, statistical performance
- State-of-the-art: approx. dynamics (linearization) + approx. statistics (covariance)
- Our contribution: connections with OMT and SBP
- Formulation/computation: non-parametric, well-posedness, optimality certificate

## Connection with Optimal Control Problem (OCP)

Lambert Problem ⇔ Deterministic OCP

Idea: use classical Hamiltonian mechanics to reformulate as deterministic OCP

$$\ddot{m{r}} = -
abla_{m{r}}V(m{r}), \quad m{r}(t=t_0) = m{r}_0( ext{ given }), \quad m{r}(t=t_1) = m{r}_1( ext{ given })$$



$$rginf_{oldsymbol{v}}^{t_1}ig(rac{1}{2}\|oldsymbol{v}\|_2^2-oldsymbol{V(oldsymbol{r})}ig)\mathrm{d}t$$

Gravitational potential pushed from dynamics to Lagrangian

$$\dot{m{r}}=m{v},$$

$$\boldsymbol{r}(t=t_0)=\boldsymbol{r}_0$$
 (given),  $\boldsymbol{r}(t=t_1)=\boldsymbol{r}_1$  (given)

#### Lambertian OMT (L-OMT)

Probabilistic Lambert Problem ⇔ Generalized OMT

$$\ddot{\boldsymbol{r}} = - 
abla_{\boldsymbol{r}} V(\boldsymbol{r}), \quad \boldsymbol{r}(t=t_0) \sim 
ho_0 ext{ (given)}, \quad \boldsymbol{r}(t=t_1) \sim 
ho_1 ext{ (given)}$$



$$egin{array}{ll} \mathbf{arg\,inf} & \int_{t_0}^{t_1} \mathbb{E}_{
ho}igg[rac{1}{2}\|oldsymbol{v}\|_2^2 - oldsymbol{V}(oldsymbol{r})igg] \,\mathrm{d}t \ oldsymbol{\dot{r}} = oldsymbol{v}, & ext{Potential as state cost } (\emph{V} = 0 ext{ is OMT}) \ oldsymbol{r}(t=t_0) \sim 
ho_0 ext{ (given)}, & oldsymbol{r}(t=t_1) \sim 
ho_1 ext{ (given)} \end{array}$$

## L-OMT as Density Steering

$$egin{aligned} rg &\inf_{(
ho, oldsymbol{v})} \int_{t_0}^{t_1} \mathbb{E}_
hoigg[rac{1}{2}\|oldsymbol{v}\|_2^2 - V(oldsymbol{r})igg] \,\mathrm{d}t \ oldsymbol{\dot{r}} = oldsymbol{v}, \ oldsymbol{r}(t=t_0) \sim 
ho_0 ext{ (given)}, \quad oldsymbol{r}(t=t_1) \sim 
ho_1 ext{ (given)} \end{aligned}$$



$$egin{array}{c} lpha rg inf \ 
ho(
ho, oldsymbol{v}) & \int_{t_0}^{t_1} \mathbb{E}_
ho igg[ rac{1}{2} \| oldsymbol{v} \|_2^2 - V(oldsymbol{r}) igg] \, \mathrm{d}t \ & rac{\partial 
ho}{\partial t} + 
abla_{oldsymbol{r}} \cdot (
ho oldsymbol{v}) = 0, - ext{Liouville PDE} \ 
ho(t = t_0, \cdot) = 
ho_0, \quad 
ho(t = t_1, \cdot) = 
ho_1 \ & \end{array}$$

## Existence-Uniqueness of L-OMT Solution

**Thm.** (informal)

Existence-uniqueness guaranteed for V bounded  $C^1$ , and  $\rho_0, \rho_1$  with finite second moments

#### Proof idea.

Figalli's theory for OMT with Tonelli Lagrangians that are induced by action integrals

### Connection to SBP with state cost

$$egin{aligned} & rg \inf_{(
ho, m{v}) \in \mathcal{P}_{01} imes \mathcal{V}} \int_{t_0}^{t_1} \int_{\mathbb{R}^n} \left( rac{1}{2} |m{v}|^2 - m{V}(m{x}) 
ight) 
ho(m{x}, t) \, dm{x} dt \ & rac{\partial 
ho}{\partial t} + 
abla_{m{r}} \cdot (
ho m{v}) = 0, \, ext{-Liouville PDE} \ & 
ho(t = t_0, \cdot) = 
ho_0, \quad 
ho(t = t_1, \cdot) = 
ho_1 \end{aligned}$$

**Lambertian SBP (L-SBP)** 

$$\arg\inf_{(\rho, \boldsymbol{v}) \in \mathcal{P}_{01} \times \mathcal{V}} \int_{t_0}^{t_1} \int_{\mathbb{R}^n} \left(\frac{1}{2} |\boldsymbol{v}|^2 - \boldsymbol{V}(\boldsymbol{x})\right) \rho(\boldsymbol{x}, t) \, d\boldsymbol{x} dt$$

$$\frac{\mathsf{Regularization} > 0}{\frac{\partial \rho}{\partial t} + \nabla_{\boldsymbol{r}} \cdot (\rho \boldsymbol{v}) = \varepsilon} \Delta_{\boldsymbol{r}} \rho, -\mathsf{Fokker\text{-}Planck\text{-}Kolmogorov\ PDE}$$

$$\rho(t = t_0, \cdot) = \rho_0, \quad \rho(t = t_1, \cdot) = \rho_1$$

#### L-SBP Solution

Thm. (informal) Existence and uniqueness of L-SBP is guaranteed

$$V(m{x}) = -rac{\mu}{|m{x}|} \left(1 + rac{J_2 R_{ ext{Earth}}^2}{2|m{x}|^2} \left(1 - rac{3z^2}{|m{x}|^2}
ight)
ight) \quad \longrightarrow \quad ext{Bounded and negative for} \ |m{x}|^2 \geq \mathrm{R}_{ ext{Earth}}^2$$

#### Thm. (Necessary conditions of optimality for L-SBP)

$$egin{aligned} rac{\partial \psi_arepsilon}{\partial t} + rac{1}{2} |
abla_{m{x}} \psi_arepsilon|^2 + arepsilon \Delta_{m{x}} \psi_arepsilon = -V(m{x}) \ & rac{\partial 
ho_arepsilon^{
m opt}}{\partial t} + 
abla_{m{x}} \cdot \left(
ho_arepsilon^{
m opt} 
abla_{m{x}} \psi_arepsilon
ight) = arepsilon \Delta_{m{x}} 
ho_arepsilon^{
m opt} \ & 
ho_arepsilon^{
m opt} (t=t_0,\cdot) = 
ho_0, \quad 
ho_arepsilon^{
m opt} (t=t_1,\cdot) = 
ho_1 \end{aligned}$$

#### L-SBP Solution

Thm. (Hopf-Cole a.k.a. Fleming's log transform)

Change of variable  $(\rho_{\varepsilon}^{\mathrm{opt}}, \psi) \mapsto (\widehat{\varphi}, \varphi)$ — Schrödinger factors

$$egin{aligned} \widehat{arphi}(t,m{r}) &= 
ho_arepsilon^{ ext{opt}}(t,m{r}) \expiggl(-rac{\psi(t,m{r})}{2arepsilon}iggr) \ arphi(t,m{r}) &= \expiggl(rac{\psi(t,m{r})}{2arepsilon}iggr) \end{aligned}$$

results in a boundary-coupled system of forward-backward reaction-diffusion PDEs

$$egin{aligned} rac{\partial \widehat{arphi}}{\partial t} &= (arepsilon \Delta_{m{r}} + V(m{r})) \widehat{arphi} igwedge - \mathcal{L}_{ ext{forward}} \widehat{oldsymbol{arphi}} \ rac{\partial arphi}{\partial t} &= -(arepsilon \Delta_{m{r}} + V(m{r})) oldsymbol{arphi} igoplus_{ ext{backward}} oldsymbol{arphi} \ \widehat{arphi}(t = t_0, \cdot) oldsymbol{arphi}(t = t_0, \cdot) = 
ho_0, \quad \widehat{arphi}(t = t_1, \cdot) oldsymbol{arphi}(t = t_1, \cdot) = 
ho_1 \end{aligned}$$

Optimally controlled joint state PDF:  $ho_{arepsilon}^{\mathrm{opt}}(t,m{r})=\widehat{arphi}(t,m{r})arphi(t,m{r})$ 

Optimal control:  $oldsymbol{v}_{arepsilon}^{ ext{opt}}(t,oldsymbol{r}) = 2arepsilon 
abla_{oldsymbol{r}} \log arphi(t,oldsymbol{r})$ 

## L-SBP Computation via Schrödinger Factors

Recursion over pair  $(\varphi_1,\hat{\varphi}_0)$ 

$$ho_arepsilon^{
m opt}(t=t_0,\cdot)=
ho_0, \quad 
ho_arepsilon^{
m opt}(t=t_1,\cdot)=
ho_1$$

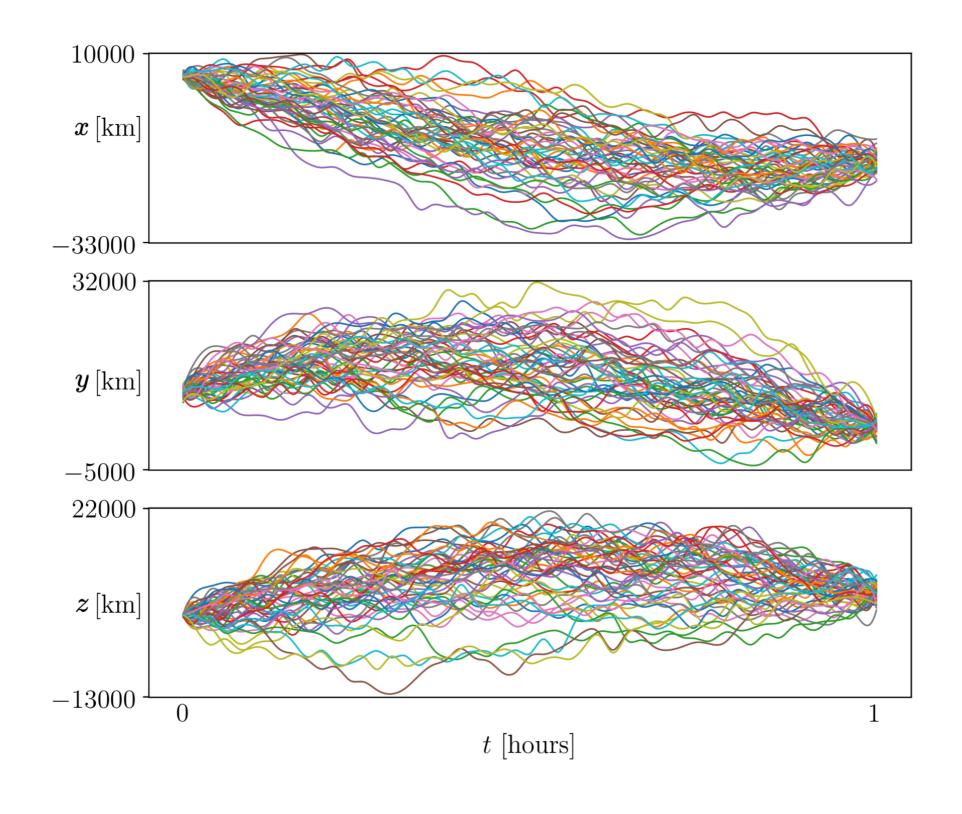
## **Numerical Case Study**

Prescribed time horizon  $[t_0, t_1] \equiv [0,1]$  hours

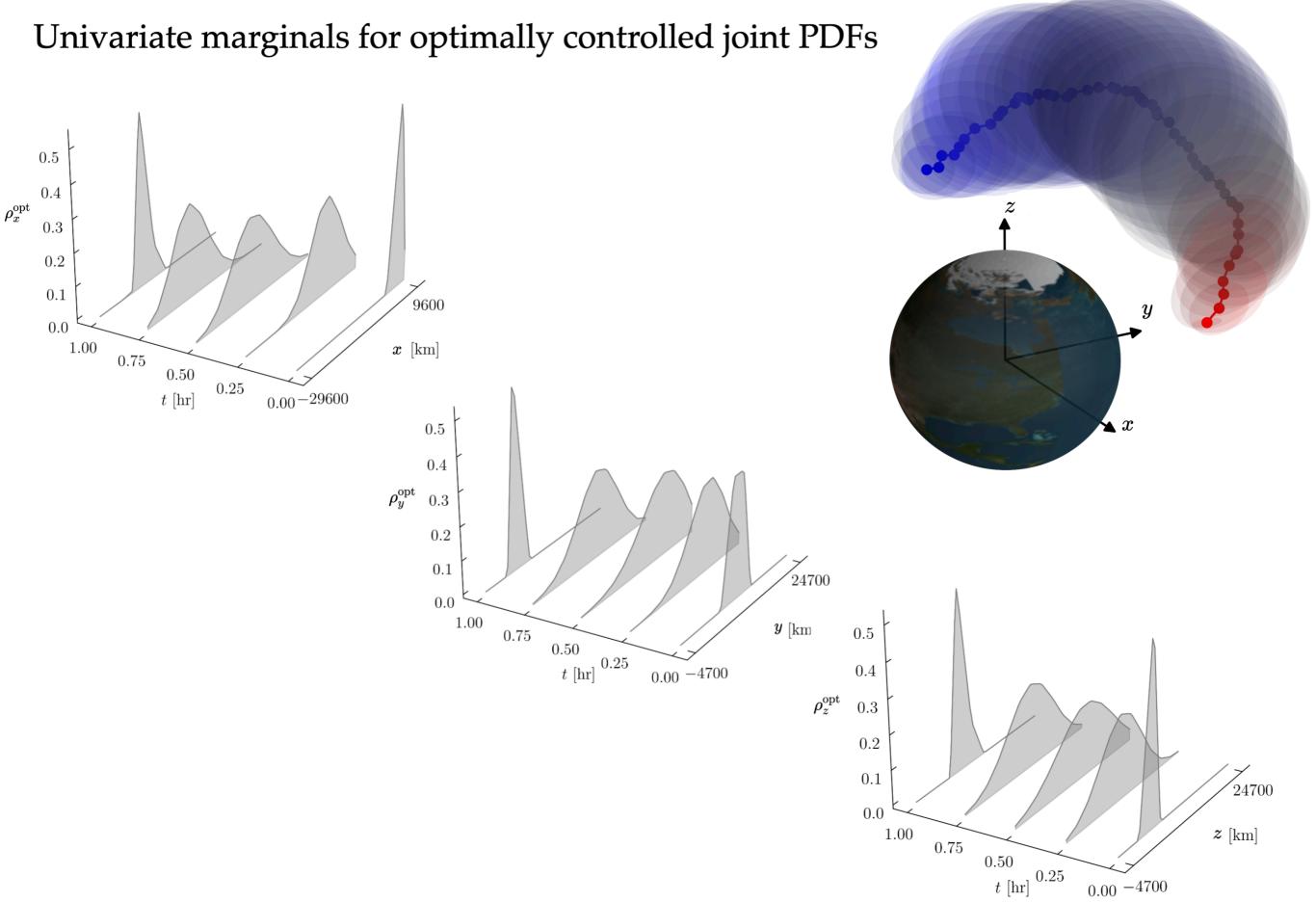
**Endpoint joint PDFs** 

$$oldsymbol{x}_0 \sim \mathcal{N}(\mu_0, \Sigma_0)$$

$$oldsymbol{x}_1 \sim \mathcal{N}(\mu_1, \Sigma_1)$$


where

$$\mu_0 = egin{pmatrix} 5000 \ 10000 \ 2100 \end{pmatrix}, \quad \mu_1 = egin{pmatrix} -14600 \ 2500 \ 7000 \end{pmatrix}$$


$$\Sigma_0=rac{1}{100}\mathrm{diag}ig(\mu_0^2ig),\quad \Sigma_1=rac{1}{100}\mathrm{diag}ig(\mu_1^2ig),$$

## Numerical Case Study (cont.)

Optimally controlled closed loop state sample paths



## Numerical Case Study (cont.)

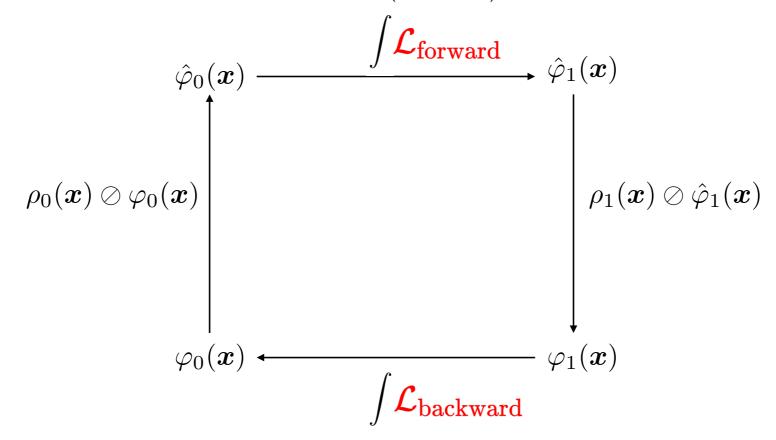


## **Ongoing Efforts**

- Find explicit Green's function for reaction-diffsion PDE with reaction rate equal to gravitational potential

- Connections with solution of time-dependent Schrödinger's equation in quantum mechanics for Hydrogen atom

- Preprint with L-OMT and L-SBP details: arXiv:2401.07961




## Thank You

# Backup Slides

## L-SBP Solution: Computation

**IDEA:** Fixed point recursion over pair  $(\varphi_1, \hat{\varphi}_0)$ 



Thm. (Existence-uniqueness-convergence) Proof by contraction mapping

Representation)

Thm. (Fredholm Integral Representation) 
$$\widehat{\varphi}(t, \boldsymbol{x}) = \frac{1}{\sqrt{(4\pi\varepsilon t)^3}} \int_{\mathbb{R}^3} \exp\left(-\frac{\|\boldsymbol{x}-\boldsymbol{y}\|_2^2}{4\varepsilon t}\right) \widehat{\varphi}_0(\boldsymbol{y}) \,\mathrm{d}\boldsymbol{y}$$

$$+\int_0^t rac{1}{\sqrt{(4\piarepsilon(t- au))^3}} \int_{\mathbb{R}^3} \expigg(-rac{\|oldsymbol{x}-oldsymbol{y}\|_2^2}{4arepsilon(t- au)}igg) V(oldsymbol{y}) \, \widehat{arphi}( au,oldsymbol{y}) \, \mathrm{d}oldsymbol{y} \, \mathrm{d}oldsymbol{ au}$$

term 2

term 1

Likewise for  $\varphi(t, \boldsymbol{x})$ 

## Solution: Computation

IDEA: Fixed point recursion over pair  $(\varphi_1, \hat{\varphi}_0)$ 

$$egin{aligned} &\int_{t_0}^{t_1} \int_{\mathbb{R}^n} f(\widetilde{m{x}},m{x}, au,t) d\widetilde{m{x}} d au \ &pprox \sum_{q=0}^{k-1} \sum_{m=0}^{N_x} \sum_{n=0}^{N_y} \sum_{j=0}^{N_z} f(\widetilde{m{x}}_{(m,n,j)},m{x},t_0+k\Delta t,t) \Delta z \Delta y \Delta x \Delta t \end{aligned}$$
 where  $\widetilde{m{x}}_{(m,n,j)} = (x_0+\Delta x,y_0+\Delta y,z_0+\Delta z)$