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Abstract— This paper presents a probabilistic formulation of
the model validation problem. The proposed validation frame-
work is simple, intuitive, and can account both deterministic
and stochastic nonlinear systems in presence of parametric and
nonparametric uncertainties. Contrary to the hard invalidation
methods proposed in the literature, our formulation allows a
relaxed notion of validation in probability. The construction of
probabilistically robust validation certificates provides provably
correct guarantees. Computational complexities and numerical
examples are given to illustrate the method.

I. INTRODUCTION

Model validation problem refers to the quantification of
reliability to which a given model is consistent with the
physical observations. It has been argued in the literature
[1], [2] that the term ‘model validation’ is a misnomer since
it would take infinite number of experimental observations
to do so. Hence the term ‘model invalidation’ is preferred. In
this paper, instead of hard invalidation, we will consider the
validation/invalidation problem in a probabilistically relaxed
sense.

Given the experimental measurements of the physical
system in the form of a distribution, we aim is to compare the
shape of this measured output distribution with that predicted
by the model. At every instant of time, if the model-predicted
distribution matches with the experimental one “reasonably
well”, we conclude that the model is validated to be a good
candidate with some quantification of such “goodness”.

State 

dynamics

Output 

dynamics
Model

True system

Fig. 1. The proposed model validation framework compares experimentally
observed output pdf η (y, t) with the model-predicted one η̂ (y, t), the
comparison being made with respect to some suitable metric J (η, η̂).

Fig. 1 shows the outline of the proposed model validation
framework. The experiment is carried out with the physical
plant taking some initial distribution ξ0 (x̃). Given the data
for experimentally observed output distribution η (y, t), one
starts propagating the same initial state probability density

Abhishek Halder and Raktim Bhattacharya are with the Department of
Aerospace Engineering, Texas A&M University, College Station, TX 77843,
USA, {ahalder,raktim}@tamu.edu

function (PDF) through the proposed model’s state dynamics,
thereby computing instantaneous state PDF ξ (x̃, t) and from
it, obtains the output PDF η̂ (y, t) using the output dynamics
prescribed by the model. If the output PDFs η (y, t) and
η̂ (y, t) are “close” in the sense that a suitable distance metric
on the space of probability densities, J (η, η̂) remains small
(within the specified tolerance level) at all times t when the
experimental data are available, then it will be concluded
that the model is “close” to the physical plant with some
quantitative measure.

Since the basic idea relies on comparing the concentration
of output trajectories at each instant of experimental obser-
vation, one can think of three distinct segments of such a
model validation framework. These are

1) Uncertainty propagation: evolving state and output
PDF using the proposed model.

2) Distributional comparison: measuring distance be-
tween the experimentally observed and model-
predicted output PDFs and computing the margin by
which the model-prediction obeys/violates the speci-
fied tolerance level.

3) Construction of validation certificates: probabilistic
quantification of provably correct inference in this
framework and providing sample complexity bounds
for the same.

With respect to the literature, the contributions of this
paper are as follows.

1) Instead of interval-valued structured uncertainty (as
in H∞ control framework [1]–[4]) or moment based
uncertainty (as in parametric statistics framework [5]),
we deal with model validation in the sense of nonpara-
metric statistics by considering aleatoric uncertainty. In
other words, the uncertainty in the model is quantified
in terms of the PDFs of the associated random vari-
ables. We argue that such a formulation offers some
advantages. Firstly, we show that model uncertainty
in the parameters and initial states can be propagated
accurately by spatio-temporally evolving their joint
pdf. Since experimental data usually come in the form
of histograms, it’s a more natural quantification of
uncertainty than specifying sets [6] to which the trajec-
tories are contained at each instant of time. However, if
needed, such sets can be recovered from the supports
of the instantaneous pdfs. Secondly, as we’ll see in
Section IV, instead of simply invalidating a model, our
methodology allows to estimate the probability that a
proposed model is valid or invalid. This can help to
decide which specific aspects of the model need further
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refinement. Hard invalidation methods don’t cater such
constructive information. Thirdly, the framework can
handle both discrete-time and continuous-time nonlin-
ear models which need not be polynomial. Previous
work like [6] dealt with nonlinearities specified by
semialgebraic sets and relied on sum of squares (SOS)
decomposition [7] for computational tractability. From
an implementation point of view, the approach pre-
sented in this paper doesn’t require such conservatism.

2) Due to the uncertainties in initial conditions, param-
eters, process and measurement noise, one needs to
compare output ensembles instead of comparing in-
dividual output realizations. This requires a metric
to quantify closeness between the experimental data
and the model in the sense of distribution. We use
Wasserstein distance to compare the output pdfs and
argue why common information-theoretic quantities
like Kullback-Leibler (KL) divergence are not appro-
priate for this purpose.

3) We show that the uncertainty propagation through
continuous or discrete-time dynamics can be done in
a numerically efficient way, even when the model is
high-dimensional and strongly nonlinear. Moreover,
we outline how to compute the Wasserstein distance
from scattered data, in this multivariate setting. Fur-
ther, borrowing ideas from the analysis of randomized
algorithms, we give sample-complexity bounds for
probabilistically robust model validation.

The paper is organized as follows. Given a model, we
outline the uncertainty propagation methodologies in section
II. Section III describes how to compare the joint output
PDFs for model validation. Next, section IV provides a
constructive algorithm to compute probabilistically robust
validation certificates to guarantee provably correct deci-
sions. A numerical example is provided in section V to
illustrate the efficacy of the proposed formulation. Section
VI concludes the paper.

II. UNCERTAINTY PROPAGATION

A. Deterministic System

1) Continuous-time models: Consider the continuous-
time nonlinear system with state dynamics given by the ODE

ẋ = f (x, p) , (1)

where x (t) ∈ X ⊆ Rn is the state vector , p ∈ P ⊆ Rp
is the parameter vector, the dynamics f (., p) : X 7→ Rn
∀ p ∈ P and is at least locally Lipschitz . It can be put in an
extended state space form

˙̃x = f̃ (x̃) , (2)

by introducing x̃ :=
{
x
p

}
∈ X × P ⊆ Rn+p, and f̃ ={

fn×1

0p×1

}
. The output dynamics can be written as

y = h (x̃) , (3)

where y (t) ∈ Y ⊆ R` is the output vector and h : X ×P 7→
Y is a surjection. If uncertainties in the initial conditions
(x0 := x (0)) and parameters (p) are specified by the initial
joint PDF ξ0 (x̃), then the evolution of uncertainties subject
to the dynamics (1), can be described by evolving the joint
PDF ξ (x̃, t) over the extended state space. Such spatio-
temporal evolution of ξ (x̃, t) is governed by the Liouville
equation given by

∂ξ

∂t
= L ξ = D1ξ = −∇. (ξf) = −

n∑
i=1

∂

∂xi
(ξfi) ,(4)

which is a quasi-linear partial differential equation (PDE),
first order in both space and time. Notice that, the spatial
operator L is a drift operator D1 that describes the advection
of the PDF in extended state space. The output PDF η̂ (y, t)
can be computed from the state PDF as

η̂ (y, t) =
ν∑
j=1

ξ
(
x̃?j
)

|det
(
J
(
x̃?j
))
|

(5)

where x̃?j is the jth root of the inverse transformation of
(3) with j = 1, 2, . . . , ν. J is the Jacobian of this inverse
transformation and det(.) stands for the determinant.

2) Discrete-time models: We start with the following two
definitions.

Definition 1: Let X × P ⊆ Rn+p be a compact set and
let B (X × P) be the Borel-σ algebra defined on it. With
respect to the measure space (X × P,B, µ), a transformation
T : X × P 7→ X × P is called measurable if T −1 (B) ∈
B, ∀B ∈ B.

Definition 2: A measurable transformation T : X ×P 7→
X × P is said to be nonsingular on the measure space
(X × P,B, µ), if µ

(
T −1 (B)

)
= 0 ∀B ∈ B such that

µ (B) = 0.
Consider the discrete-time nonlinear system with state dy-
namics given by the vector recurrence relation

x̃k+1 = T (x̃k) , (6)

where T : X × P 7→ X × P is a measurable nonsingular
transformation and the time index k takes values from the
ordered index set of non-negative integers {0, 1, 2, . . .}. Then
the evolution of the joint pdf ξ (x̃k) is dictated by the Perron-
Frobenius operator P , given by∫

B

Pξ (x̃k) µ (dx̃k) =
∫
T −1(B)

ξ (x̃k) µ (dx̃k) (7)

for B ∈ B. Following properties [8] of the Perron-Frobenius
operator are important from computational standpoint.

Property 1: (Linearity) P (β1ξ1 + β2ξ2) = β1Pξ1 +
β2Pξ2, ∀ ξ1, ξ2 ∈ L1, β1, β2 ∈ R.

Property 2: (Non-negativity) ξ > 0⇒Pξ > 0.
Property 3: (Composition) If we denote Pk as the

Perron-Frobenius operator corresponding to the kth iterate of
the map T given by Tk = T ◦ . . . ◦ T (composed k times),
then Pk = Pk.

Property 4: (Change-of-variable) On the measure space
(X × P,B, µ), let T : X × P 7→ X × P be a measurable,
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invertible, nonsingular transformation (i.e. T −1 is nonsingu-
lar) and P be the Perron-Frobenius operator associated with
T . Then Pξ (x̃k) = ξ

(
T −1 (x̃k)

) ∣∣det
(
J−1 (x̃k)

) ∣∣ ∀ ξ ∈
L1 (Rn+p) where J−1 (x̃k) is the Jacobian of the inverse
map T −1 (x̃k).
It can be noted that (7) and the properties thereafter, ensure
that the evolution of ξ (x̃k) is Markov and it respects the
properties of a PDF. Further, assuming the output dynamics
as yk = h (x̃k), one can derive η̂ (yk) from ξ (x̃k) using the
discrete analogue of the transformation rule (5).

B. Stochastic System

1) Continuous-time models: Consider the continuous-
time nonlinear system with state dynamics given by the Itô
SDE

dx̃ = f̃ (x̃) dt+ g (x̃) dW, (8)

where W (t) ∈ Rω is the ω-dimensional Wiener process at
time t, and the noise coupling g : X × P 7→ Rn×ω . For the
Wiener process W (t), at all times

E [dWi] = 0, E [dWidWj ] = Qij = αi δij ∀ i, j = 1, . . . , ω,

where E [.] stands for the expectation operator and δij is
the Kronecker delta. Thus Q ∈ Rω×ω with αi > 0 ∀ i =
1, 2, . . . , ω, being the noise strength. The output dynamics
is still assumed to be given by (3). In such a setting,
the evolution of the state PDF ξ (x̃, t) subject to (8) is
governed by the Fokker-Planck equation, also known as
forward Kolmogorov equation

∂ξ

∂t
= L ξ = (D1 +D2) ξ

= −
n∑
i=1

∂

∂xi
(ξfi) +

n∑
i=1

n∑
j=1

∂2

∂xi∂xj

((
gQgT

)
ij
ξ
)
, (9)

which is a homogeneous parabolic PDE, second order in
space and first order in time. In this case, the spatial operator
L can be written as a sum of a drift operator (D1) and a
diffusion operator (D2). The diffusion term accounts for the
smearing of the PDF due to process noise. Once the state
PDF is computed through (9), the output PDF can again be
obtained from (5).

2) Discrete-time models: In this case, we consider the
nonlinear state space representation given by the stochastic
maps of general form

x̃k+1 = T (x̃k, ζk) , (10)

ỹk = h (x̃k, ζk) , (11)

where ζk ∈ Rω is the i.i.d. sample drawn from a known
distribution for the noise (stochastic perturbations). Here, the
dynamics T is not required to be a non-singular transforma-
tion [8]. Since T defines a Markov Chain on X ×P , it can

be shown that [9] evolution of the joint PDFs follow

ξk+1 := ξx̃k+1 (x̃) =
∫
X×P

KT (x̃|z) ξx̃k
(z) dz

=
∫
X×P

KT (x̃|z) ξk (z) dz, (12)

η̂k := η̂yk
(y) =

∫
X×P

Kh (y|z) ξx̃k
(z) dz

=
∫
X×P

Kh (y|z) ξk (z) dz, (13)

where KT (x̃|z) and Kh (y|z) are known as the stochastic
kernels for the maps T and h respectively. Eqn. (13) can be
seen as a special case of the Chapman-Kolmogorov equation
[10].

C. Computational Aspects

For deterministic flow, the Liouville PDE (4) can be solved
in exact arithmetic [11] via method-of-characteristics (MOC)
[12]. Since the characteristic curves for (4) are the trajecto-
ries in the extended state space, ξ (x̃, t) and hence η̂ (y, t)
can be computed directly along these characteristics. Unlike
Monte-Carlo, this is an “on-the-fly” computation and does
not involve any approximation, and hence offers a superior
performance [13]–[15] than Monte-Carlo in high dimensions.
For deterministic maps, cell-to-cell mapping [16] achieves
a finite dimensional approximation of the Perron-Frobenius
operator.

For stochastic flow, solving Fokker-Planck PDE (9) is nu-
merically challenging [17] but has seen some recent success
[18] in moderate (4 to 5) dimensions. For stochastic maps,
discretizations for stochastic kernels (10) and (11), can be
done through cell-to-cell mapping [16] resulting a random
transition probability matrix [19].

III. COMPARING OUTPUT PROBABILITY DENSITY
FUNCTIONS

Once the observed and model-predicted output PDFs
η (y, t) and η̂ (y, t), are obtained, we need a metric to
compare the shapes of these two PDFs at each time t, where
the measurement PDF η̂ (y, t) is available. We argue that the
suitable metric for this purpose is Wasserstein distance.

A. Choice of Metric

Distances on the space of probability distributions [20],
can be broadly categorized into two classes, viz. Csisźar’s
φ-divergence [21] and integral probability metrics [22]. The
first includes well-known distances like Kullback-Leibler
(KL) divergence, Hellinger distance, χ2 divergence etc. while
the latter includes Wasserstein distance, Dudley metric, max-
imum mean discrepancy etc. Total variation distance belongs
to both of these classes.

The choice of a suitable metric depends on application.
In our context of model validation, the objective is to mea-
sure the shape difference between two instantaneous output
PDFs. This is because a good model must emulate similar
concentration of trajectories as observed in the measurement
space. In other words, the respective joint PDFs η (y, t) and
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TABLE I
COMPARISON OF KL DIVERGENCE AND WASSERSTEIN DISTANCE FOR

MODEL VALIDATION

Validation reqirements KL divergence Wasserstein distance
Shape comparison No Yes

Metric No Yes
Support robustness No Yes

Sampling robustness No Yes
Consistency Yes Yes

Rate of convergence Arbitrarily slow Fast

η̂ (y, t), over the time-varying output supports, must match at
times whenever measurements are available. Before making
a comparative assessment of the Wasserstein distance with
the well-known KL divergence, we formally introduce the
Wasserstein distance below.

Let M be a complete, separable metric (Polish) space with
a pth order distance metric dp. For simplicity, we let M to
be Rn and take dp as the Lp norm. Then the Wasserstein
distance of order q, denoted as pWq , between two Borel
probability measures µ1 and µ2 on Rn is defined as

pWq (µ1, µ2) :=
[

inf
µ∈M(µ1,µ2)

∫
Rn×Rn

‖x− y‖qp dµ
(
x, y
)]1/q

(14)

where M (µ1, µ2) is the set of all probability measures on
Rn×Rn with first marginal µ1 and second marginal µ2. It’s
well known [23] that on the set of Borel measures on Rn
having finite second moments, pWq defines a metric.

As summarized in Table I, contrary to Wasserstein dis-
tance, KL divergence is only a pseudo-metric. The lack
of symmetry and triangle inequality makes KL diver-
gence inadequate for validation purpose. While transport-
theoretic Wasserstein distance measures shape discrepancy,
information-theoretic KL divergence computes relative en-
tropy. Since sample distance is not encoded in KL di-
vergence, it can’t measure shape anomaly. Also, the KL
divergence may be undefined for mutually disjoint supports;
Wasserstein distance does not suffer from such limitation.
From a computational point of view, the Wasserstein distance
may be computed between two joint PDFs represented by
different number of samples. This offers practical advantages
for model validation as simulated model-predictions are often
cheaper than measurements. Although the finite sample com-
putations of both KL divergence and Wasserstein distance
are consistent in the sense that the empirical estimates have
almost sure convergence to the true value, it has been
shown that [24], [25] the KL estimate may have arbitrarily
slow convergence while Wasserstein estimate converge much
faster [26].

B. Computing Quadratic Wasserstein Distance: LP Formu-
lation

Computing Wasserstein distance from (14) calls for solv-
ing Monge-Kantorovich optimal transportation plan [23].
In this formulation, the difference in shape between two
statistical distributions is quantified by the minimum amount

of work required to convert a shape to the other. The ensuing
optimization, known as Hitchcock-Koopmans problem [27]–
[29], can be cast as a linear program (LP), as described next.

Consider a complete, weighted, directed bipartite graph
Km,n (U ∪ V,E) with # (U) = m and # (V ) = n. If ui ∈
U, i = 1, . . . ,m, and vj ∈ V, j = 1, . . . , n, then the edge
weight cij :=‖ ui − vj ‖2`2 denotes the cost of transporting
unit mass from vertex ui to vj . Then, according to (14),
computing 2W

2
2 translates to

minimize
m∑
i=1

n∑
j=1

cij ϕij (15)

subject to the constraints
n∑
j=1

ϕij = αi, ∀ ui ∈ U, (C1)

m∑
i=1

ϕij = βj , ∀ vj ∈ V, (C2)

ϕij > 0, ∀ (ui, vj) ∈ U × V. (C3)

The objective of the LP is to come up with an optimal mass
transportation policy ϕij := ϕ (ui → vj) associated with
cost cij . Clearly, in addition to constraints (C1)–(C3), (15)
must respect the necessary feasibility condition

m∑
i=1

αi =
n∑
j=1

βj (C0)

denoting the conservation of mass. In our context of mea-
suring the shape difference between two PDFs η (y, t) and
η̂ (y, t), we treat their joint probability mass function (PMF)
vectors αi and βj to be the marginals of some unknown joint
PMF ϕij supported over the product space U × V . Since
determining joint with given marginals is not unique, (15)
strives to find that particular joint PMF which minimizes
the total cost for transporting the probability mass while
respecting the normality condition.

C. Computational Complexity

For m = n, the LP formulation (15), (C1)–(C3) requires
solving for n2 unknowns subject to

(
n2 + 2n

)
constraints.

Since the LP has only linear dependence on dimensions d
and for a fixed dimension, it can be solved [30], [31] in
O
(
n2.5 log n

)
operations, the total runtime complexity for

(15) is O
(
d n2.5 log n

)
.

IV. PROBABILISTICALLY ROBUST VALIDATION
CERTIFICATES

Often in practice, the exact initial density is not known
to facilitate our model validation framework; instead a class
of densities may be known. For example, it may be known
that the initial density is symmetric unimodal but it’s exact
shape (e.g. normal, semi-circular etc.) may not be known.
Even when the distribution-type is known (e.g. normal), it’s
often difficult to pinpoint the parameter values describing the
initial density function. To account such scenarios, consider
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a random variable ∆ : Ω → E, that induces a probability
triplet (Ω,F ,P) on the space of initial densities. Here E ⊂ Ω
and # (E) = 1. The random variable ∆ can be thought of
as a categorical random variable which picks up an initial
density from the collection of admissible initial densities
Ω := {ξ(1)0 (x̃) , ξ(2)0 (x̃) , . . .} according to the law of ∆.
For example, if we know ξ0 ∼ N

(
µ, σ2

)
with a given joint

distribution over the µ σ2 space, then in our model validation
framework, one sample from this space will return one
distance measure between the instantaneous output PDFs.
How many such

(
µ, σ2

)
samples are necessary to guarantee

the robustness of the model validation oracle? The Chernoff
bound [32] provides such an estimate for finite sample
complexity.

At time step k, let the validation probability be p (γk) :=
P (2W2 (ηk (y) , η̂k (y)) 6 γk). Here γk ∈ R+ is the
instantaneous tolerance level (margin of safety). If the
model validation is performed by drawing finite N sam-
ples from Ω, then the empirical validation probability is

p̂N (γk) :=
1
N

N∑
i=1

χ
V

(i)
k

where V
(i)
k := {η̂(i)

k (y) :

2W2

(
η
(i)
k (y) , η̂(i)

k (y)
)

6 γk}. Consider ε, δ ∈ (0, 1) as
the desired accuracy and confidence, respectively.

Lemma 1: (Chernoff bound) [33] For any ε, δ ∈ (0, 1),

if N > Nch :=
1

2ε2
log

2
δ

, then P (|p (γk)− p̂N (γk) |< ε) >
1− δ.
The above lemma allows us to construct probabilistically
robust validation certificate (PRVC) p̂N (γk) through the
algorithm below. The PRVC vector, with ε accuracy, returns
the probability that the model is valid at time k, in the
sense that the instantaneous output PDFs are no distant
than the required tolerance level γk. Lemma 1 lets the
user control the accuracy ε and the confidence δ, with
which the preceding statement can be made. In practice,
{γk}Tk=1 is often specified as percentage tolerance. Since

2W2

(
η
(i)
k (y) , η̂(i)

k (y)
)
∈ [0, diam (Dk)], where Dk :=

Dexperiment
k × Dmodel

k , is the product of the experimental and
model output space at time step k, a normalized Wasserstein

distance 2W2

diam (Dk)
can be employed for comparison pur-

poses. Thus the framework enables us to compute a provably
correct validation certificate on the face of uncertainty with
finite sample complexity.

V. NUMERICAL EXAMPLE

Consider a nonlinear system originally governed by

ẋ1 = −x2,

ẋ2 = sinx1, (16)

with outputs y1 = x1, y2 = x2. However, this true dynamics
is not known to the modeler; only the y1 and y2 data are
observed over time and recorded as the joint histogram over
the y1y2 space. Suppose the following is proposed as a

Algorithm 1 Construct PRVC
Require: ε, δ ∈ (0, 1), T , ν, law of ∆, experimental data
{ηk (y)}Tk=1, model, tolerance vector {γk}Tk=1

1: N ← Nch (ε, δ) . Using lemma 1
2: Draw random functions ξ(1)0 (x̃) , ξ(2)0 (x̃) , . . . , ξ(N)

0 (x̃)
according to the law of ∆

3: for k = 1 to T do . Index for time step
4: for i = 1 to N do . Index for initial density
5: for j = 1 to ν do. Samples drawn from ξ

(i)
0 (x̃)

6: Propagate states using dynamics
7: Propagate measurements
8: end for
9: Propagate state pdf . Use (4), (9), (7) or (13)

10: Compute instantaneous output pdf
11: Compute 2W2

(
η
(i)
k (y) , η̂(i)

k (y)
)

.

Distributional comparison by solving LP (15) subject to
(C0)–(C3)

12: sum ← 0 . Initialize
13: if 2W2

(
η
(i)
k (y) , η̂(i)

k (y)
)

6 γk then
14: sum ← sum + 1
15: else
16: do nothing
17: end if
18: end for
19: p̂N (γk)← sum

N
. Construct PRVC vector

20: end for

candidate model.

ẋ1 = −x2,

ẋ2 = x1, (17)

with outputs same as the states. Given this proposed model,
our job is to assess the goodness of it against the measured
histogram over the output space. We emphasize here that
in this example, the purpose of (16) is only to create the
synthetic data and to demonstrate the proof-of-concept. In a
realistic model validation, the data arrives from experimental
measurements, not from another model. To illustrate the
formulation, we consider another proposed model to be
validated, given by

ẋ1 = −x2,

ẋ2 = x1 −
x3

3!
+
x5

5!
, (18)

with outputs same as states. The phase portraits for (16),
(17) and (18) are shown in Fig. 2 and we intuitively expect
(18) to be closer to (16) than (17). Fig. 3 and 4 indeed
confirm these intuitions. Fig. 5 and 6 show that the respective
Wasserstein distances stay below the instantaneous diameter
of the product space Dk, as stated in section IV. The initial
joint PDF ξ0 (x1, x2) is taken to be uniform over [−1, 3]2.

Fig. 7 and 8 show the discrepancy in the mean vectors
between the measured and model-predicted output PDFs for
(16) and (17), and for (16) and (18), respectively. Similar
plots are shown in Fig. 9 and 10, for the discrepancy in
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Fig. 2. The phase portraits for (16) (left), (17) (middle) and (18) (right).
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Fig. 3. 2W2 (η (y, t) , η̂ (y, t)) vs. t for true data from (16) and model-
prediction from (17). The red curve results when the joint PMFs in LP
formulation (15), (C1)–(C3), are computed from the Liouville PDFs obtained
from a MOC implementation of (4). The blue curve results when the joint
PMFs are computed from MC histograms.
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Fig. 4. 2W2 (η (y, t) , η̂ (y, t)) vs. t for true data from (16) and model-
prediction from (18). The color conventions are same as Fig. 3. Notice that
2W2 for this case stays lower than that of Fig. 3, as we expect intuitively.

1 2 3 4 5 6

8

10

12

14

16

18

20

22

24

26

time

di
am

(D
k)

Fig. 5. Diameter of the product space Dk := Dexperiment
k × Dmodel

k for (16)
and (17). The green (magenta) curve corresponds to the blue (red) curve in
in Fig. 3.
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Fig. 6. Diameter of the product space Dk := Dexperiment
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k for (16)
and (18). The green (magenta) curve corresponds to the blue (red) curve in
in Fig. 4.

measured and model-predicted covariance matrices. These
plots reveal that moment-based parametric analysis may

not always capture the non-parametric shape discrepancy
between the PDFs. All moments are computed from the
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Fig. 9. Discrepancy between the covariance matrices of η (y, t) and η̂ (y, t)
for (16) and (17), as function of t. The color codes are σtrue

11 (red), σmodel
11

(magenta), σtrue
12 (blue), σmodel

12 (green), σtrue
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22 (cyan). The
bottom row shows the trajectory of maximum singular value of Σ :=
Σtrue −Σmodel, reflecting the maximum dispersion in covariance discrepancy.
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Fig. 10. Discrepancy between the covariance matrices of η (y, t) and η̂ (y, t)
for (16) and (18), as function of t. The color codes are same as in Fig. 9.

scattered data evolving under nonlinear dynamics, using
quasi-Monte Carlo (QMC) integration [34].

It is apparent that once 2W2 is computed, given a tolerance
vector {γk}Tk=1, one can immediately obtain the PRVC
following algorithm 1. Such a sample computation is omitted
for brevity.

VI. CONCLUSIONS

A probabilistic notion of model validation is introduced
in this paper that can account deterministic and stochastic
nonlinear systems on the face of uncertainties. The theoret-
ical underpinnings and implementation details are outlined
along with a simple example. An algorithm is provided to
construct a probabilistically robust validation certificate. The
authors plan to apply the framework to the validation of
large-scale physics-based models against experimental data
and controller V&V.
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