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State Estimation for Continuous Time
Markov Chain

- X(t) ∼ Markov (Q) on some finite state space
Ω = {a1, . . . , am}.

- The m×m transition rate matrix Q satisfies Qij ≥ 0
for i 6= j, Qii = −∑j 6=i Qij < 0.

- Assume: the Markov chain is time homogeneous, i.e.,
the transition probability matrix is exp (tQ) , ∀t ≥ 0.

- Given initial occupation probability row vector
π0 ∈ ∆m−1 (standard simplex in Rm)



The Nonlinear Estimation Problem
Dynamics:

state model: X(t) ∼ Markov (Q) , π0 ∈ ∆m−1

observation model: dZ(t) = h (X(t))dt + σV(t) dt

- h(·) is deterministic injective function of state.

- σV(t) ∈ C1, bounded away from zero for all t ≥ 0.

- Standard Wiener process V(t) is indep. of X(t).

Compute posterior probabilities (MMSE estimates):

π+
i (t) := P{X(t) = ai | Z(s), 0 ≤ s ≤ t}, i = 1, . . . , m.
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Exact Solution: Wonham Filter (1964-65)
J.SIAM Cono.
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SOME APPLICATIONS OF STOCHASTIC DIFFERENTIAL
EQUATIONS TO OPTIMAL NONLINEAR FILTERING*

W. M. WONHAM

1. Introduction. A current problem in control theory is that of estimat-
ing the dynamical sate of a physical system, on the basis of data perturbed
by noise. Solution of the estimation problem is usuully immediate if one
knows the probability distribution of the system state at each instant of
time, eondiLionM on the data available up o that instant. It is therefore
of interest o ask how this posterior probability distribution evolves with
time, and if possible to specify the dynamical structure of a filter (i.e.,
analog device) which generates the posterior distribution when is input
is the time function actually observed.

In the present paper, filters of this type ure defined by means of stochastic
differential equations for the posterior distribution in which the observed
time function appears as a forcing term. Differential equations for this
purpose were introduced in 1960 by Stratonovi5 [1], who also indicated
their application to stochastic control problems [2]. When the dynamical
system under observation is linear and the noise is white Gaussian it hs
been shown [3] that StratonoviS’s equation cn be solved formally to yield
the sLoehusLic differential equation of the optimal (linear) filter. When
the function o be estimated is a Markov step process and the noise is
while Gaussia the optimal (non,linear) filter equations were stated in
[4]. The latter equations are discussed in more detail in 3, below; they
differ from those of SLratonovi5 in a sense to be noted in the sequel. For
one example, discussed in 3, performance of the optimal nonlinear filter
is evaluated numerically and is found to be somewhat better than that of
the simpler Wiener filter, particularly when the noise intensity is low.

In 4, the equations of 3 are generalized heuristically to the ease where
the state space of the step process is continuous, and iu 5 some tentative
remarks are made on the form of the solutions.
Some parallel work on noisy observation of a diffusion process has been

reported by Kushner in recent pper [5].

* Received by the editors April 30, 1964, and in revised form November 3, 1964.
Center for Control Theory, RIAS, BMtimore, Maryland. Now at Divisiol of

Applied Mathemutics, Center for Dynamical Systems, Brown University, Prov.i-
dence, Rhode Island. This research was supported in prt by the United States Air
Force through the Air Force Office of Scientific lZeserch, under Contract No. AF
49(638)-1206, nd in prt by the National Aeronautics and Spce Administration
under Contract No. NASw-845.

A brief review of stochastic differential equations is given in Appendix 1.
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Posterior prob. π+(t) := {π+
1 (t), . . . , π+

m (t)} solves:

dπ+(t) = π+(t)Q dt + 1
(σV(t))

2 π+(t)
(

H − ĥ(t)I
)
×(

dZ(t)− ĥ(t)dt
)

with initial condition π+(0) = π0.

H := diag (h(a1), . . . , h(am)) , ĥ(t) :=
m

∑
i=1

h(ai)π
+
i (t).



The Present Paper

New variational interpretation of the flow π+(t)

Main idea: stochastic flow ∼ proximal recursion
Construct gradient descent of a stochastic functional Φ:

pk(λ) = arg inf
p∈∆m−1

1
2

d2 (p, pk−1
)
+ λΦ(p)︸ ︷︷ ︸

proxd
λΦ(pk−1)

, p0≡π0, k ∈N

λ is the step-size
d(·, ·) is a distance functional between prob. vectors
Φ(·) depends on the generator of the flow π(t)
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Stochastic Flow ∼ Proximal Recursion

pk(λ) = arg inf
p∈∆m−1

1
2

d2 (p, pk−1
)
+ λΦ(p)︸ ︷︷ ︸

proxd
λΦ(pk−1)

, p0≡π0, k ∈N

Design (d, Φ) such that pk(λ)→ π(t = kλ) as λ ↓ 0 a.s.

This is gradient descent of Φ w.r.t. distance d



Familiar in Rn: Grad Descent ! Prox

xk = xk−1− λ∇φ(xk−1)
m

xk = prox‖·‖2
λφ (xk−1)

:= argmin
x∈Rn

{1
2‖x− xk−1‖2

2 + λφ(x)}

This is nice because
- argmin of φ ≡ fixed point of prox. operator

- prox. is smooth even when φ is not

-
reveals metric structure of gradient descent
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Back to the Estimation Problem
Idea: posterior flow ∼ composition of prox. operators

(
p−k , p+

k

)
= (approx. prior, approx. posterior)

Design (d±, Φ±) s.t. p+
k (λ)→

solves Wonham SDE

π+(t = kλ) as λ↓0 a.s.



Main Results

Proximal recursion for the posterior

Theorem

Let tk−1 := (k− 1)λ, k ∈N, and Zk−1 := Z(t = tk−1).

Also, let Yk−1 := (Zk − Zk−1)/λ.

Then, 1
2(d

+)
2
=

Kullback-Leibler
divergence

DKL
(
p ‖ p−k

)
:=

m

∑
i=1

pi log

(
p(i)

p−k (i)

)
,

and Φ+(p) = 1
2(σV(tk−1))

2 Ep

[
(Yk−1 − h)2

]
.



Main Results
Proximal recursion for the prior

Theorem

Assume X(t) is

unique stationary prob.
π∞∈ interior

(
∆m−1)

irreducible and

detailed balance:
π∞(i)Qij=π∞(j)Qji

reversible .

Def. inner product 〈p, q〉π∞ := ∑i
p(i)q(i)
π∞(i) , p, q ∈ ∆m−1.

Then, d−= ‖p− p+
k−1‖π∞ , and Φ−(p) = −1

2〈pQ, p〉π∞ .

Other inner products work too: 〈p, q〉π∞ := ∑i p(i)q(i)π∞(i)

If not reversible, then p−k (λ) = p+
k−1(λ)(I− λQ)−1 + o(λ)



Quick Recap

p−k (λ) = proxd−
λΦ−

(
p+

k−1

)
[prior update]

= arg inf
p∈∆m−1

1
2
‖p− p+

k−1‖
2
π∞
− λ

2
〈pQ, p〉π∞

p+
k (λ) = proxd+

λΦ+

(
p−k
)

[posterior update]

= arg inf
p∈∆m−1

DKL
(
p ‖ p−k

)
+

λ

2 (σV(tk−1))
2 Ep

[
(Yk−1 − h)2

]



Numerical Results

Example 1:

X(t) reversible on Ω = {−1, 0, 1}, h(X(t)) = 0.01X(t),

rate matrix Q =

−1 1/2 1/2
2 −2 0
3 0 −3

, σV = 0.01.

Example 2:

X(t) non-reversible on Ω = {−1, 0, 1}, h(X(t)) = 0.01X(t),

rate matrix Q =

−5 3 2
4 −10 6
3 4 −7

, σV = 0.01.



Numerical Results: Example 1



Numerical Results: Example 1 (contd.)



Numerical Results: Example 2



Numerical Results: Example 2 (contd.)



Summary

– General idea: nonlinear filtering as gradient descent

– This work: recovers Wonham filter as composition of
prox. operators

– Our prior work: recovered Kalman-Bucy filter (CDC
2017, ACC 2018) as composition of prox. operators

– Future work: computation for nonlinear filtering



Thank You


