Proximal Recursion for the Wonham Filter

Abhishek Halder (UC Santa Cruz)

&

Tryphon T. Georgiou (UC Irvine)

CDC, Nice, December 2019

State Estimation for Continuous Time Markov Chain

- $X(t) \sim \text{Markov}(\mathbf{Q})$ on some finite state space $\Omega = \{a_1, \dots, a_m\}.$
- The $m \times m$ transition rate matrix \mathbf{Q} satisfies $Q_{ij} \ge 0$ for $i \neq j$, $Q_{ii} = -\sum_{j \neq i} Q_{ij} < 0$.
- Assume: the Markov chain is time homogeneous, i.e., the transition probability matrix is $\exp(t\mathbf{Q})$, $\forall t \ge 0$.
- Given initial occupation probability row vector $\pi_0 \in \Delta^{m-1}$ (standard simplex in \mathbb{R}^m)

The Nonlinear Estimation Problem

Dynamics:

state model: $X(t) \sim \text{Markov}(\mathbf{Q})$, $\pi_0 \in \Delta^{m-1}$ observation model: $dZ(t) = h(X(t)) dt + \sigma_V(t) dt$

- $h(\cdot)$ is deterministic injective function of state.
- $\sigma_V(t) \in C^1$, bounded away from zero for all $t \ge 0$.
- Standard Wiener process V(t) is indep. of X(t).

The Nonlinear Estimation Problem

Dynamics:

state model: $X(t) \sim \operatorname{Markov}\left(old Q
ight)$, $\pi_0 \in \Delta^{m-1}$

observation model: $dZ(t) = h(X(t)) dt + \sigma_V(t) dt$

- $h(\cdot)$ is deterministic injective function of state.
- $\sigma_V(t) \in C^1$, bounded away from zero for all $t \ge 0$.
- Standard Wiener process V(t) is indep. of X(t).

Compute posterior probabilities (MMSE estimates):

$$\pi_i^+(t) := \mathbb{P}\{X(t) = a_i \mid Z(s), 0 \le s \le t\}, i = 1, \dots, m.$$

Exact Solution: Wonham Filter (1964-65)

J.SIAM CONTROL Ser. A, Vol. 2, No. 3 Printed in U.S.A., 1965

SOME APPLICATIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS TO OPTIMAL NONLINEAR FILTERING*

W. M. WONHAM†

Posterior prob.
$$\pi^+(t) := \{\pi_1^+(t), \dots, \pi_m^+(t)\}$$
 solves:
 $d\pi^+(t) = \pi^+(t)\mathbf{Q} dt + \frac{1}{(\sigma_V(t))^2}\pi^+(t)\left(\mathbf{H} - \hat{h}(t)\mathbf{I}\right) \times \left(dZ(t) - \hat{h}(t)dt\right)$

with initial condition $\pi^+(0) = \pi_0$.

$$H := \text{diag}(h(a_1), \dots, h(a_m)), \quad \hat{h}(t) := \sum_{i=1}^m h(a_i) \pi_i^+(t).$$

The Present Paper

New variational interpretation of the flow $\pi^+(t)$

The Present Paper

New variational interpretation of the flow $\pi^+(t)$

Main idea: stochastic flow \sim proximal recursion Construct gradient descent of a stochastic functional Φ :

$$\boldsymbol{p}_{k}(\lambda) = \underset{\boldsymbol{p} \in \Delta^{m-1}}{\operatorname{arg inf}} \frac{1}{2} d^{2} \left(\boldsymbol{p}, \boldsymbol{p}_{k-1} \right) + \lambda \Phi(\boldsymbol{p}), \, \boldsymbol{p}_{0} \equiv \boldsymbol{\pi}_{0}, \, k \in \mathbb{N}$$

$$\underset{\operatorname{prox}_{\lambda \Phi}^{d}(\boldsymbol{p}_{k-1})}{\operatorname{prox}_{\lambda \Phi}^{d}(\boldsymbol{p}_{k-1})}$$

 λ is the step-size

 $d(\cdot, \cdot)$ is a distance functional between prob. vectors $\Phi(\cdot)$ depends on the generator of the flow $\pi(t)$

Stochastic Flow ~ **Proximal Recursion**

$$p_{k}(\lambda) = \underset{p \in \Delta^{m-1}}{\operatorname{arg inf}} \frac{1}{2} d^{2} \left(p, p_{k-1} \right) + \lambda \Phi(p), p_{0} \equiv \pi_{0}, k \in \mathbb{N}$$

$$\underset{p \in \Delta^{m-1}}{\operatorname{prox}_{\lambda \Phi}^{d}(p_{k-1})}$$

Design (d, Φ) such that $p_k(\lambda) \to \pi(t = k\lambda)$ as $\lambda \downarrow 0$ a.s.

This is gradient descent of Φ w.r.t. distance *d*

Familiar in \mathbb{R}^n : **Grad Descent** $\leftrightarrow \rightarrow$ **Prox**

$$egin{aligned} \mathbf{x}_k &= \mathbf{x}_{k-1} - \lambda
abla \phi(\mathbf{x}_{k-1}) \ & \& \ \mathbf{x}_k &= \mathrm{prox}_{\lambda\phi}^{\|\cdot\|_2}\left(\mathbf{x}_{k-1}
ight) \ & := rgmin_{\mathbf{x}\in\mathbb{R}^n} \left\{ rac{1}{2} \|\mathbf{x}-\mathbf{x}_{k-1}\|_2^2 + \lambda\phi(\mathbf{x})
ight\} \end{aligned}$$

Familiar in \mathbb{R}^n **: Grad Descent** $\leftrightarrow \rightarrow$ **Prox**

This is nice because

- argmin of $\phi \equiv$ fixed point of prox. operator
- prox. is smooth even when ϕ is not

reveals metric structure of gradient descent

Back to the Estimation Problem

Idea: posterior flow \sim composition of prox. operators

$$\begin{array}{c} \boldsymbol{p}_{k-1}^{+}(\lambda) & & & & \\ prox_{\lambda\Phi^{-}}^{d^{-}}(\cdot) & & & & \\ \end{array} \end{array} \xrightarrow{\boldsymbol{p}_{k}^{+}(\lambda)} & & & & & \\ prox_{\lambda\Phi^{+}}^{d^{+}}(\cdot) & & & & \\ \end{array} \xrightarrow{\boldsymbol{p}_{k}^{+}(\lambda)} & & & & \\ \end{array}$$

 $(\boldsymbol{p}_k^-, \boldsymbol{p}_k^+) = (\text{approx. prior, approx. posterior})$

 $\begin{array}{c} \text{solves Wonham SDE} \\ \downarrow \\ \text{Design} (d^{\pm}, \Phi^{\pm}) \text{ s.t. } p_k^+(\lambda) \rightarrow \pi^+(t = k\lambda) \text{ as } \lambda \downarrow 0 \text{ a.s.} \end{array}$

Main Results

Proximal recursion for the posterior

Main Results

Proximal recursion for the prior

Theorem unique stationary prob. detailed balance: $\pi_{\infty} \in \text{interior} (\Delta^{m-1})$ $\pi_{\infty}(i)Q_{ij} = \pi_{\infty}(j)Q_{ji}$ Assume X(t) is irreducible and reversible . Def. inner product $\langle p, q \rangle_{\pi_{\infty}} := \sum_{i} \frac{p(i)q(i)}{\pi_{\infty}(i)}, p, q \in \Delta^{m-1}$. Then, $d^{-} = ||p - p_{k-1}^{+}||_{\pi_{\infty}}$, and $\Phi^{-}(p) = -\frac{1}{2} \langle pQ, p \rangle_{\pi_{\infty}}$.

Other inner products work too: $\langle p, q \rangle_{\pi_{\infty}} := \sum_{i} p(i)q(i)\pi_{\infty}(i)$

If not reversible, then $p_k^-(\lambda) = p_{k-1}^+(\lambda)(I - \lambda Q)^{-1} + o(\lambda)$

Quick Recap

$$egin{aligned} p_k^-(\lambda) &= \mathrm{prox}_{\lambda\Phi^-}^{d^-}\left(p_{k-1}^+
ight) & [\mathrm{prior\ update}] \ &= rginf_{p\in\Delta^{m-1}} & rac{1}{2} \|p-p_{k-1}^+\|_{\pi_\infty}^2 - rac{\lambda}{2} \langle pQ,p
angle_{\pi_\infty} \end{aligned}$$

$$p_{k}^{+}(\lambda) = \operatorname{prox}_{\lambda\Phi^{+}}^{d^{+}}(p_{k}^{-})$$

$$= \underset{p \in \Delta^{m-1}}{\operatorname{arg inf}} D_{\mathrm{KL}}(p \parallel p_{k}^{-}) + \frac{\lambda}{2(\sigma_{V}(t_{k-1}))^{2}} \mathbb{E}_{p}\left[(Y_{k-1} - h)^{2}\right]$$

Numerical Results

Example 1:

X(t) reversible on $\Omega = \{-1, 0, 1\}, h(X(t)) = 0.01X(t),$

rate matrix
$$\mathbf{Q} = \begin{bmatrix} -1 & 1/2 & 1/2 \\ 2 & -2 & 0 \\ 3 & 0 & -3 \end{bmatrix}$$
, $\sigma_V = 0.01$.

Example 2:

X(t) non-reversible on $\Omega = \{-1, 0, 1\}, h(X(t)) = 0.01X(t),$

rate matrix
$$\mathbf{Q} = \begin{bmatrix} -5 & 3 & 2 \\ 4 & -10 & 6 \\ 3 & 4 & -7 \end{bmatrix}$$
, $\sigma_V = 0.01$.

Numerical Results: Example 1

Numerical Results: Example 2

Summary

- General idea: nonlinear filtering as gradient descent
- This work: recovers Wonham filter as composition of prox. operators
- Our prior work: recovered Kalman-Bucy filter (CDC 2017, ACC 2018) as composition of prox. operators
- Future work: computation for nonlinear filtering

Thank You