The Ground Cost for Optimal Transport of Angular Velocity

Presenter:

Yongxin Chen, Georgia Institute of Technology

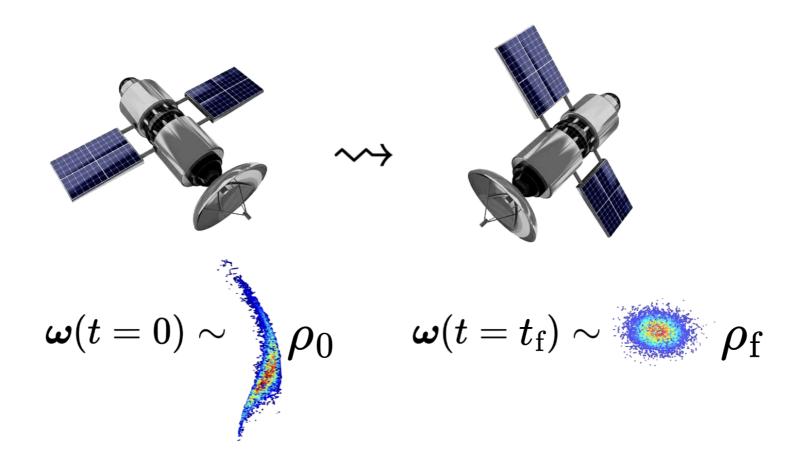
Authors:

Karthik Elamvazhuthi, Los Alamos National Lab Abhishek Halder, Iowa State University

Invited Session: ThA06: Optimal Transportation Methods for Estimation and Control II

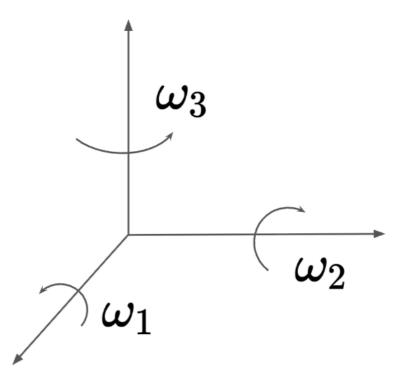
64th CDC 2025, Rio de Janeiro, Brazil, December 11, 2025

Problem: Minimum Effort Steering of Spin PDF



Motivation: stochastic spin stabilization over a given deadline

Initial and terminal PDF: estimation errors, desired statistical accuracy



Controlled Spin Dynamics: Euler Equations

Define (scaled) state
$$m{x} := m{J} \odot m{\omega}, \;\; ext{control} \;\; m{u} := m{ au}$$
 positive vector of vector of principal moments of inertia control torques

and parameters
$$lpha:=rac{1}{J_3}-rac{1}{J_2}, \quad eta:=rac{1}{J_1}-rac{1}{J_3}, \quad \gamma:=rac{1}{J_2}-rac{1}{J_1}$$

Note that
$$\alpha + \beta + \gamma = 0$$

Controlled ODE:
$$\dot{x}_1=lpha x_2x_3+u_1,$$
 $\dot{x}_2=eta x_3x_1+u_2,$ known to be controllable $\dot{x}_3=\gamma x_1x_2+u_3,$

Stochastic Optimal Control Problem

$$rg \inf_{(\xi, m{u})} \int_0^{t_{
m f}} \int_{\mathbb{R}^3} rac{1}{2} m{u}^ op m{u} m{\xi}(t, m{x}) {
m d} m{x} {
m d} t$$

subject to

$$\dot{x}_1=lpha x_2x_3+u_1, \ \dot{x}_2=eta x_3x_1+u_2, ext{ - controlled dynamical constraints} \ \dot{x}_3=\gamma x_1x_2+u_3,$$

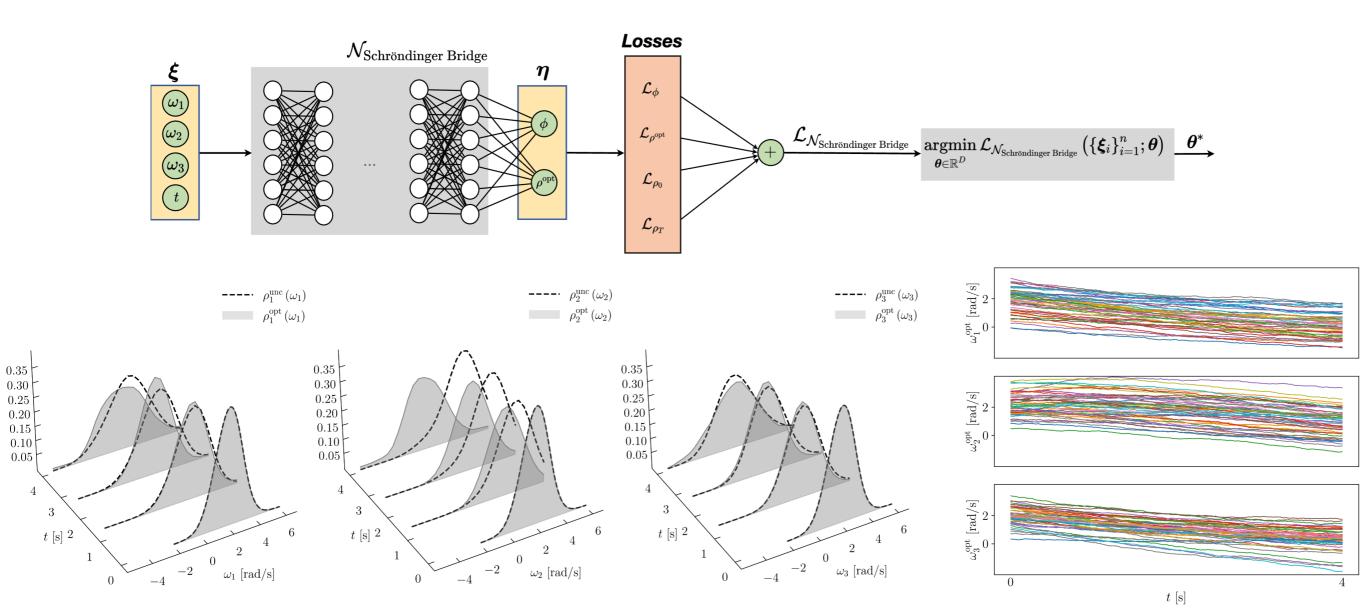
$$m{x}_0 \sim \xi_0 := rac{
ho_0(m{x} \oslash m{J})}{J_1 J_2 J_3}, \quad m{x}_{\mathrm{f}} \sim \xi_{\mathrm{f}} := rac{
ho_{\mathrm{f}}(m{x} \oslash m{J})}{J_1 J_2 J_3}$$

initial and terminal statistics constraints

Prior Results in Yan et al., CDC23

Thm. Existence-uniqueness of minimizer $(\xi^{\text{opt}}(t, \boldsymbol{x}), \boldsymbol{u}^{\text{opt}}(t, \boldsymbol{x}))$ is guaranteed if the endpoint PDFs have finite second moments

Numerics. Solved conditions of optimality (coupled PDEs) using a custom Physics Informed Neural Network (PINN)



Goal of this Work

Better understand connections with optimal mass transport (OMT)

Our Stochastic Optimal Control Problem is an Instance of Generalized OMT (GOMT)

	OMT	Our problem
Dynamic version	$egin{align} rg \inf_{(ar{\xi},oldsymbol{u})} \int_0^{t_{ m f}} \int_{\mathbb{R}^3} rac{1}{2} oldsymbol{u}^ op oldsymbol{u} ar{\xi}(t,oldsymbol{x}) \mathrm{d}oldsymbol{x} \; \mathrm{d}t \ \dot{oldsymbol{x}} &= oldsymbol{u}, \ oldsymbol{x}_0 \sim ar{\xi}_0 , \;\; oldsymbol{x}_{ m f} \sim ar{\xi}_{ m f} \ \end{aligned}$	$egin{array}{l} rg \inf_{(\xi,oldsymbol{u})} \int_0^{t_{\mathrm{f}}} \int_{\mathbb{R}^3} rac{1}{2} oldsymbol{u}^{ op} oldsymbol{u} \xi(t,oldsymbol{x}) \mathrm{d}oldsymbol{x} \mathrm{d}t \ \dot{oldsymbol{x}}_1 = lpha oldsymbol{x}_2 oldsymbol{x}_3 + u_1, \ \dot{oldsymbol{x}}_2 = eta oldsymbol{x}_3 oldsymbol{x}_1 + u_2, \ \dot{oldsymbol{x}}_3 = \gamma oldsymbol{x}_1 oldsymbol{x}_2 + u_3, \ oldsymbol{x}_0 \sim oldsymbol{\xi}_0 , oldsymbol{x}_{\mathrm{f}} \sim oldsymbol{\xi}_{\mathrm{f}} \end{array}$
Static	$rg \inf_{\pi \in \Pi_2(\xi_0, \xi_{\mathrm{f}})} \int_{\mathbb{R}^3 imes \mathbb{R}^3} rac{1}{2t_{\mathrm{f}}} \ m{x}_0 - m{x}_{\mathrm{f}}\ _2^2 \mathrm{d}\pi (m{x}_0, m{x}_{\mathrm{f}})$ Here ground cost is scaled Euclidean distance squared, straight lines are minimal geodesics	$rg \inf_{\pi \in \Pi_2(\xi_0, \xi_{\mathrm{f}})} \int_{\mathbb{R}^3 imes \mathbb{R}^3} \frac{c(m{x}_0, m{x}_{\mathrm{f}})}{c(m{x}_0, m{x}_{\mathrm{f}})} \mathrm{d}\pi(m{x}_0, m{x}_{\mathrm{f}})$ What can be said about this ground cost ?

Static Version is Appealing because It

Gives optimal coupling between the initial and terminal stochastic states

Is a linear program

All these are possible if we know the ground cost *c*

History. OT static version is due to Kantorovich (1941-42)

1975 Nobel Prize in Economics for this work

Finding Our Ground Cost c

Need to compute length of the minimal sub-Riemannian geodesic

Difficult to apply Pontryagin's min principle to analytically compute:

$$c(oldsymbol{x}_0,oldsymbol{x}_{\mathrm{f}}) = \min_{oldsymbol{u}} \min_{oldsymbol{u}} \int_0^{t_{\mathrm{f}}} rac{1}{2} \|oldsymbol{u}\|_2^2 \; \mathrm{d}t$$

subject to

$$\dot{x}_1 = \alpha x_2 x_3 + u_1,$$

$$\dot{x}_2=eta x_3x_1+u_2,$$

$$\dot{x}_3=\gamma x_1x_2+u_3,$$

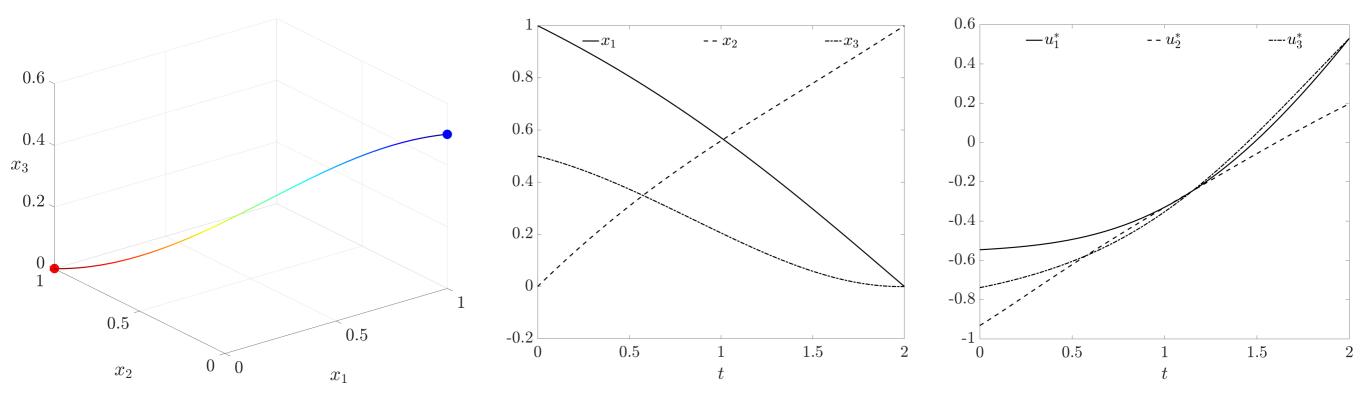
$$\boldsymbol{x}(t=0) = \boldsymbol{x}_0 \; ext{(given)}, \quad \boldsymbol{x}(t=t_{ ext{f}}) = \boldsymbol{x}_{ ext{f}} \; ext{(given)}$$

Main Results

Ground Cost Inequality.
$$c(\boldsymbol{x}_0, \boldsymbol{x}_{\mathrm{f}}) \leq \frac{\|\boldsymbol{x}_0\|_2^2}{t_{\mathrm{f}}} + \frac{\|\boldsymbol{x}_{\mathrm{f}}\|_2^2}{t_{\mathrm{f}}}$$

$$\textbf{A Feasible Controller.} \boldsymbol{u}^*(\boldsymbol{x}) := \left(-\frac{\left\|\boldsymbol{x}_0 - \boldsymbol{x}_{\mathrm{f}}\right\|_2}{t_{\mathrm{f}}} - \frac{\left\langle\boldsymbol{x} - \boldsymbol{x}_{\mathrm{f}}, \boldsymbol{A}(\boldsymbol{x} - \boldsymbol{x}_{\mathrm{f}}) + \boldsymbol{b}\right\rangle}{\|\boldsymbol{x} - \boldsymbol{x}_{\mathrm{f}}\|_2}\right) \frac{\boldsymbol{x} - \boldsymbol{x}_{\mathrm{f}}}{\|\boldsymbol{x} - \boldsymbol{x}_{\mathrm{f}}\|_2}$$

where
$$m{A} := egin{bmatrix} 0 & lpha x_{\mathrm{f3}} & lpha x_{\mathrm{f2}} \ eta x_{\mathrm{f3}} & 0 & eta x_{\mathrm{f1}} \ \gamma x_{\mathrm{f2}} & \gamma x_{\mathrm{f1}} & 0 \end{bmatrix}, \quad m{b} := egin{bmatrix} lpha x_{\mathrm{f2}} x_{\mathrm{f3}} \ eta x_{\mathrm{f3}} x_{\mathrm{f1}} \ \gamma x_{\mathrm{f1}} x_{\mathrm{f2}} \end{pmatrix}$$



$$\mathbf{x}_0 = (1, 0, 0.5)^{\top}$$
 to $\mathbf{x}_f = (0, 1, 0)^{\top}$ with $J_1 = 1, J_2 = 2, J_3 = 3$, over $[0, t_f] = [0, 2]$

When Constructed Feasible Controller is Optimal

For any translated norm invariant system, the GOMT ground cost

$$c\left(oldsymbol{x}_0, oldsymbol{x}_{\mathrm{f}}
ight) = rac{1}{2t_{\mathrm{f}}} \|oldsymbol{x}_0 - oldsymbol{x}_{\mathrm{f}}\|_2^2$$

even though geodesics are not straight lines in general.

Proof idea.

Key technique from Athans et al., TAC 1963

Creatively mix of different variants of Cauchy-Schwarz inequality

Take Home Messages

OMT and its generalizations are now part of a mature discipline

Less structural results for GOMT problem instances with nonlinear drift

State-of-the-art remains diffusion regularization and numerical solution

Future Work.

Stochastic steering of attitude-spin over tangent bundle $\mathcal{T}\mathrm{SO}(3)\simeq\mathrm{SO}(3) imes\mathbb{R}^3$

Thank You