Uncertainties and Feedback Control in Mars Entry-Descent-Landing

Abhishek Halder
Dept. of Applied Mathematics
University of California, Santa Cruz

ahalder@ucsc.edu

Mars

Mars

Earth to Mars distance ≈ 234 million miles

Why explore Mars

Why explore Mars

1 Mars day ≈ 1.0275 Earth day [24 hr 39 min 36 s]

1 Mars year ≈ 1.8808 Earth year [687 Earth days]

Terrestial planet with rocky core

Water ice caps at its North and South poles

Very strong evidence that liquid water existed in the past

Travel time approx. 7 months

However, landing on Mars is challenging

Mars atmosphere:
$95 \% \mathrm{CO}_{2}$
2.8\% Nitrogen

2\% Argon
rest O_{2} and Carbon Monoxide

Very thin ($<1 \%$ of Earth)

Earth atmosphere:
78% Nitrogen
$21 \% \mathrm{O}_{2}$
1% Argon and other inert gases $0.04 \% \mathrm{CO}_{2}$

However, landing on Mars is challenging

Sol 2075

Frequent dust storms

Whole planet-level dust storm in every 3 Mars years

Past NASA landings on Mars

Perseverance [2021]

Mars Entry-Descent-Landing (EDL)

Mars EDL

EDL duration ≈ 7 minutes [" 7 minutes of terror"]

Radio signal travel time ≈ 14 minutes during Martian Summer

Requires on-board autonomy and decision making capabilities

Mars EDL: 2021

Uncertainties in Mars EDL

Uncertainties in Mars EDL: prediction, estimation and control

Supersonic parachute

Gale Crater (4.49S, 137.42E)

Uncertainty prediction: joint probability density functions (PDFs)

Nonlinear Dynamics with
Monte Carlo on Samples

Linear Dynamics with
Gaussian Uncertainty

Uncertainty prediction: joint probability density functions (PDFs)

Nonlinear Dynamics with
Monte Carlo on Samples

Too expensive for EDL simulation

Linear Dynamics with
Gaussian Uncertainty

Too ideal for EDL simulation

Uncertainty prediction: how bad is the Gaussian fit

Source: Golombek et. al., J. Geophys. Research. 2003
Credit: NASA JPL, Univ. Washington, St. Louis, JHU APL, Univ. Arizona.

Uncertainty prediction: a new nonparametric method

A.H., and R. Bhattacharya, Beyond Monte Carlo: a computational framework for uncertainty
propagation in planetary entry, descent and landing, AIAA GNC, 2010

Uncertainty control: an emerging direction in control research

Uncontrolled joint PDF evolution:

Optimal controlled joint PDF evolution:

K.F. Caluya, and A.H., Wasserstein proximal algorithms for the Schroedinger bridge problem: density control with nonlinear drift, IEEE Transactions on Automatic Control, 2021

Uncertainty control: an emerging direction in control research

has applications in Earth too

Risk management for safe automated driving in multi-lane highways
S. Haddad, K.F. Caluya, A.H., and B. Singh, Prediction and optimal feedback steering of probability density functions for safe automated driving, IEEE Control Systems Letters, 2020

Terrain relative navigation: 2021 landing

Summary

Uncertainties are unavoidable in Mars EDL

Feedback control enables high performance EDL in the presence of uncertainties

Will see more advanced control algorithms for future high payload missions

Beyond Mars: many more challenges - landing in Titan, Europa, Enceladus

Thank You

Support:

