Uncertainties and Feedback Control in Mars Entry-Descent-Landing

Dept. of Applied Mathematics University of California, Santa Cruz

ahalder@ucsc.edu

Abhishek Halder

Why explore Mars

Why explore Mars

1 Mars day \approx 1.0275 Earth day [24 hr 39 min 36 s]

1 Mars year \approx 1.8808 Earth year [687 Earth days]

Terrestial planet with rocky core

Water ice caps at its North and South poles

Very strong evidence that liquid water existed in the past

Travel time approx. 7 months

However, landing on Mars is challenging

Mars atmosphere:

95% CO₂
2.8% Nitrogen
2% Argon
rest O₂ and Carbon Monoxide

Very thin (< 1% of Earth)

Earth atmosphere:

78% Nitrogen
21% O₂
1% Argon and other inert gases
0.04% CO₂

<section-header><section-header>

However, landing on Mars is challenging

Sol 2075

Image Credit: Curiosity rover's mast camera, NASA, 2018

Frequent dust storms

Whole planet-level dust storm in every 3 Mars years

Past NASA landings on Mars

Mars Entry-Descent-Landing (EDL)

Spacecraft's speed \approx 2-5x speed of sound

Entry (E)

EDL duration \approx 7 minutes ["7 minutes of terror"]

Radio signal travel time ≈ 14 minutes during Martian Summer

Requires on-board autonomy and decision making capabilities

Mars EDL: 2021

Uncertainties in Mars EDL

Uncertainties in Mars EDL: prediction, estimation and control

Supersonic parachute

Gale Crater (4.49S, 137.42E)

Uncertainty prediction: joint probability density functions (PDFs)

Nonlinear Dynamics with Monte Carlo on Samples

Linear Dynamics with **Gaussian Uncertainty**

Uncertainty prediction: joint probability density functions (PDFs)

Nonlinear Dynamics with Monte Carlo on Samples

Too expensive for EDL simulation

Linear Dynamics with **Gaussian Uncertainty**

Too ideal for EDL simulation

Uncertainty prediction: how bad is the Gaussian fit

Source: Golombek et. al., J. Geophys. Research. 2003

Credit: NASA JPL, Univ. Washington, St. Louis, JHU APL, Univ. Arizona.

Uncertainty prediction: a new nonparametric method

A.H., and R. Bhattacharya, Beyond Monte Carlo: a computational framework for uncertainty propagation in planetary entry, descent and landing, AIAA GNC, 2010

Uncertainty control: an emerging direction in control research

Uncontrolled joint PDF evolution:

Optimal controlled joint PDF evolution:

K.F. Caluya, and A.H., Wasserstein proximal algorithms for the Schroedinger bridge problem: density control with nonlinear drift, IEEE Transactions on Automatic Control, 2021

s a myriad of engineering d mass significantly larger the delivery accuracy and e stringent. In August of itmosphere with the largest ne first guided lifting entry onic lift-to-drag ratio than celerate behind the largest d at Mars. The MSL EDL ever, softly land Curiosity plo700he pla800 surfa900 ure (Pa)

 Ψ_n

againstormuserse servers the ballistic and forest the organization of the server and the server

Terrain relative navigation: 2021 landing

MARS 2020 ROVER NEW LANDING TECHNIQUE

Take descent photos
 Compare to orbital map
 Divert if necessary

Credit: NASA

Uncertainties are unavoidable in Mars EDL

Beyond Mars: many more challenges — landing in Titan, Europa, Enceladus

Feedback control enables high performance EDL in the presence of uncertainties

Will see more advanced control algorithms for future high payload missions

Thank You

