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Problem: Optimal Steering of Stochastic State

Distributional regulation of stochastic spin over given horizon length 

Motivational application #1
Stochastic state:
Angular velocity



Problem: Optimal Steering of Stochastic State

Data-driven controlled colloidal self-assembly for precision (sub nm scale) manufacturing 

Motivational application #2

Stochastic state:
Measure of crystallinity order  

                            Steinhart bond order parameters



Generalized Optimal Mass Transport (GOMT)

Liouville PDE

Stochastic Optimal Control Problem:



Generalized Optimal Mass Transport (GOMT)

Classical OMT (Benamou-Brenier, 1999):

Sample path dynamics associated with the Liouville PDE:

Stochastic Optimal Control Problem:

Liouville PDE



Generalized Schrödinger Bridge Problem (GSBP)
Stochastic Optimal Control Problem:

Fokker-Planck-Kolmogorov (FPK) PDE



Generalized Schrödinger Bridge Problem (GSBP)
Stochastic Optimal Control Problem:

Fokker-Planck-Kolmogorov (FPK) PDE

Sample path dynamics associated with the FPK PDE:

Diffusion tensor

Classical SBP (Schrödinger, 1931-32):



Solution Structure for Minimum Energy Generalized 
Schrödinger Bridge Problem (MEGSBP)

Conditions for Optimality: 3 coupled PDEs + endpoint BCs

GSBP with Let

HJB PDE

FPK PDE

Policy PDE



Existing Literature on Solving MEGSBP
● [Caluya, Halder TAC 2022] Control affine + gradient/mixed conservative-dissipative drift

● [Caluya, Halder ACC 2021] Ditto + hard path constraints

● [Cauya, Halder ACC 2020, Haddad et. al. L-CSS 2020] Full state feedback linearizable

● [Nodozi, Halder CDC 2022] Control affine 1st/2nd order nonuniform Kuramoto drift

● [Nodozi et. al. ACC 2023] Control non-affine model-based colloidal self-assembly

No existing works on: control non-affine drift and diffusion, model free setting



Contribution of this Work

Neural Schrödinger Bridge: computational framework to learn the solution of MEGSBP

High level idea:

Train PINNs to learn the solution of 3 coupled PDEs + endpoint BCs

PINNs work …

Challenges:



Contribution of this Work

Neural Schrödinger Bridge: computational framework to learn the solution of MEGSBP

High level idea:

Train PINNs to learn the solution of 3 coupled PDEs + endpoint BCs

Our BCs enforce exact PDF constraints: MSE between PDFs makes less sense 

Challenges:

PINNs work … with carefully set up simulation



● Squared Wasserstein metric:

● But PINN training with Wasserstein loss requires differentiating through large 
scale LP

● Entropy regularized squared Wasserstein distance a.k.a. Sinkhorn divergence:

● As          we have

Idea: Regularized Wasserstein Losses for BCs



● Solution via Sinkhorn iteration (iterative matrix scaling):

Let 

Then

Iterate (guaranteed linear convergence): 

Sinkhorn Divergence: Discrete Version
Euclidean distance matrix



● Solution via Sinkhorn iteration (iterative matrix scaling):

Let 

Then

Iterate (guaranteed linear convergence): 

Sinkhorn Divergence: Discrete Version
Euclidean distance matrix

Can compute via autodiff:



Case Study #1

Optimal Steering of 
Angular Velocity Distribution



Recap: Optimal Steering of Stochastic State

Distributional regulation of stochastic spin over given horizon length 

Stochastic state:
Angular velocity



Euler Equation: Deterministic Controlled Dynamics

Control torquePrincipal moment 
of inertia matrix

Rewrite as: 

where



MEGSBP with Euler Drift, without State Cost

Thm. The minimizing tuple for this problem exists and is unique



Conditions of Optimality for MEGSBP with Euler Drift

Optimal policy is explicit in terms of 
the value function 



Training Architecture

● HJB PDE loss:
● FPK PDE loss:
● Sinkhorn regularized losses:        +



Numerical Simulation

●
● 3 hidden layers, 70 neurons in each, tanh activation, Glorot normal 

initialization, adam SGD w/ lr = 10^-3
● 80k epochs, 100k domain samples (mini-batched 35k every 40k epochs) + 1250 

boundary condition samples
● Sinkhorn loss entropic regularizer 
● Principal moments of inertia:

● Final time
●  PINN space-time collocation domain: 



Training Residuals, 80k Epochs



50 Optimally Controlled Closed-loop State Sample Paths

● Euler-maruyama integration
○ Noise strength 0.1



Univariate Marginals of the Optimally Controlled Joint

● Four snapshots
● Uncontrolled (--) vs controlled (       ) for 



Case Study #2

Data-driven Controlled Colloidal 
Self-assembly



Recap: Optimal Steering of Stochastic State

Data-driven controlled colloidal self-assembly for precision (sub nm scale) manufacturing 

Stochastic state:
Measure of crystallinity order  

                            Steinhart bond order parameters



MEGSBP with Data-driven Drift and Diffusion 

As two NN approximants from the 
Molecular Dynamics (MD) simulation data 
[in collaboration with Prof. Mesbah’s group 
at UC Berkeley]



Conditions of Optimality for MEGSBP



Block Diagram



Training Architecture



Numerical Simulation

●
● 3 hidden layers, 70 neurons in each, tanh activation, Glorot normal 

initialization, adam SGD w/ lr = 10^-3
● 100k epochs, 100k domain samples (mini-batched 3k every 20k epochs) + 968 

boundary condition samples
● Sinkhorn loss on entropic regularization 
● Steering Gaussian to Gaussian
● Final time T = 200s



Training Residuals



Optimally Controlled Joint and Value Function



Optimal Control Policy 



Necessary Training Tricks

● Since PINN's activations function is (necessarily)          , its output tensors 
could be negative, positive, trivial, take on any distribution shape, and may 
not be a valid PDF during training.

○ To teach the network in a ‘nice / convex’ way:
■ Counting is not a convex way to ask
■ p1 = -torch.sum(y_pred[y_pred < 0])

○ To encourage a NN to prioritize a criteria and get it BEFORE another, weight it more
■ y_pred = torch.where(y_pred < 0, 0, y_pred)
■ dist, _, _ = sinkhorn(C, y_pred.reshape(-1), rho_tensor)
■ 10 * p1 + dist

○ To preserve numerical stability for computing Sinkhorn regularized Wasserstein distance 
when input is not a valid distribution, use log-sum-exp(LSE) trick



Numerical Experiment Takeaways

● 3 things in tension:
○ Correctness and completeness, numerical stability etc., minimal time and space complexity / 

mini-batching requirement

● PINN convergence on residuals alone does NOT imply good control policy
○ Correct training dataset density and distribution pseudorandomness seems necessary / related to 

good control

● HJB PDE clamping to a sum or trapz or any other clamping will result in a 
trivial control policy, so we only care about Sinkhorn distance

● Shape of training: PINN solves a trivial solution for FPK PDE / HJB PDE, but 
then to solve the boundary conditions, is forced to find a nontrivial solution. 
PDE ‘W’ shape.



Thank you!


