A Control Framework for Demand Response of Thermal Inertial Loads

Abhishek Halder

Department of Electrical and Computer Engineering
Texas A\&M University
College Station, TX 77843

Joint work with X. Geng, G. Sharma, L. Xie, and P.R. Kumar

Demand Response: what, why, how

Traditional paradigm: demand is uncertain

Operational model: supply follows demand

Mechanism: operating reserve

Demand Response: what, why, how

New paradigm: both supply and demand are uncertain

Operational model: demand follows supply

Mechanism: demand response

Demand Response: what, why, how

New paradigm: both supply and demand are uncertain

Operational model: demand follows supply

Mechanism: demand response of thermal inertial loads

Dynamics of AC state $(s, \theta, \sigma) \in \mathbb{R}^{2} \times\{0,1\}$

Dynamics of AC state $(s, \theta, \sigma) \in \mathbb{R}^{2} \times\{0,1\}$

Newton's law of heating/cooling: $\dot{\theta}=-\alpha\left(\theta(t)-\theta_{a}(t)\right)-\beta P \sigma(t)$
ON/OFF mode switching: $\sigma(t)= \begin{cases}1 & \text { if } \theta(t) \geq U \\ 0 & \text { if } \theta(t) \leq L \\ \sigma\left(t^{-}\right) & \text {otherwise }\end{cases}$

Proposed architecture

Research scope

Objective: A theory of operation for the LSE

Challenges:

1. How to design the target consumption as a function of price?
2. How to control so as to preserve privacy of the loads' states?
3. How to respect loads' contractual obligations (e.g. comfort range width Δ)?

Problem types

Price type	Day ahead type	Real time
Single large commercial	\ldots	\ldots
Many homes	\ldots	\ldots

Let's focus on many homes + day ahead price

Two layer block diagram

First layer: planning optimal consumption
Second layer: setpoint control
: (Energy budget, Time horizon) $=(E, T)$

First layer: planning optimal consumption

 priceforecast
$\underset{\left\{u_{1}(t), \ldots, u_{N}(t)\right\} \in\{0,1\}^{N}}{\operatorname{minimize}} \int_{0}^{T} P \stackrel{\mid}{\pi(t)} \quad\left(u_{1}(t)+u_{2}(t)+\ldots+u_{N}(t)\right) \mathrm{d} t$ subject to
(1) $\quad \dot{\theta}_{i}=-\alpha\left(\theta_{i}(t)-\widehat{\theta}_{a}(t)\right)-\beta P u_{i}(t) \quad \forall i=1, \ldots, N$,
(2) $\int_{0}^{T}\left(u_{1}(t)+u_{2}(t)+\ldots+u_{N}(t)\right) \mathrm{d} t=\tau \doteq \frac{E}{P}(<T$, given $)$
(3) $L_{0}^{(i)} \leq \theta_{i}(t) \leq U_{0}^{(i)}$

$$
\forall i=1, \ldots, N
$$

Optimal consumption: $P_{\text {ref }}^{*}(t)=P \sum_{i=1}^{N} u_{i}^{*}(t)$

Second layer: setpoint control

optimal
reference
$P_{\text {ref }}^{*}(t)=P \sum_{i=1}^{N} u_{i}^{*}(t), \rightsquigarrow$ $\underset{\underset{\text { er }}{\text { error }}}{e(t)}=P_{\text {ref }}^{*}(t)-\stackrel{\text { measured }}{\substack{\mid \\ P(t)}}, \rightsquigarrow$

$$
\begin{gathered}
\text { PID velocity control } \\
v(t)=k_{p} e(t)+k_{i} \int_{0}^{t} e(\varsigma) \mathrm{d} \varsigma+k_{i} \frac{\mathrm{~d}}{\mathrm{~d} t} e(t), \rightsquigarrow \frac{\mathrm{d} s_{i}}{\mathrm{~d} t}=\begin{array}{cc}
\text { gain } \\
\Delta_{i} & \text { broadcast } \\
\mid
\end{array} \\
\rightsquigarrow \quad L_{t}^{(i)}=L_{0}^{(i)} \vee\left(s_{i}(t)-\Delta_{i}\right), \quad U_{t}^{(i)}=U_{0}^{(i)} \wedge\left(s_{i}(t)+\Delta_{i}\right) .
\end{gathered}
$$

Second layer: setpoint control

Control problems

Direct numerical solution

Given: distribution of the $N=100$ loads' initial conditions $\left(s_{0}, \theta_{0}, \sigma_{0}\right)$, and their contracts (Δ)

Direct numerical solution: $P_{\text {ref }}^{*}(t)=50 P$

Setpoint velocity control has good tracking performance
$\left(k_{p}, k_{i}, k_{d}\right)$

Fairness in setpoint velocity control

What does "fairness" mean?
all deadbands hit zero at the same time

identical states (room temperatures) see identical controls (setpoint velocity)

no contractual constraints, fairness is not an issue

Direct numerical solution: Houston data

Data for May 20, 2015, 4-6 PM

Direct numerical solution: Houston data

$\left(k_{p}, k_{i}, k_{d}\right)$

Analytical solution for planning problem

Analytical solution for planning problem

Intuition: what if price were monotone in time?
Assume: $N=1$ home. Constraints (1) and (2) active.

Analytical solution for planning problem

Intuition: what if price were monotone in time?
Assume: $N=1$ home. Constraints (1) and (2) active.

Analytical solution for planning problem

Intuition: what if price were monotone in time?
Assume: $N=1$ home. Constraints (1) and (2) active.

Analytical solution for planning problem

$N \geq 1$ homes. Constraints (1) and (2) active.

$$
\begin{aligned}
& F_{\pi}(\widetilde{\pi}) \triangleq \int_{0}^{T} \mathbf{1}_{\{\pi(t) \leq \tilde{\pi}\}} d t, \quad \pi^{*} \triangleq \inf \left\{\tilde{\pi} \in \mathbb{R}^{+}: F_{\pi}(\widetilde{\pi})=\tau\right\} \\
& S \triangleq\left\{s \in[0, T]: \pi(s)<\pi^{*}\right\}, \quad u^{*}(t)= \begin{cases}1 & \forall t \in S \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Optimal actions are synchronized

Analytical solution for planning problem

Constraints (1), (2) and (3) active.
Case I: large $\Delta \Leftrightarrow \exists \Theta_{0}$ s.t. $\forall \theta_{0} \in \Theta_{0}, \theta_{123}^{*}(t)=\theta_{12}^{*}(t)$

Analytical solution for planning problem

Constraints (1), (2) and (3) active.
Case I: large $\Delta \Leftrightarrow \exists \Theta_{0}$ s.t. $\forall \theta_{0} \in \Theta_{0}, \theta_{123}^{*}(t)=\theta_{12}^{*}(t)$

Analytical solution for planning problem

Constraints (1), (2) and (3) active.
Case I: large $\Delta \Leftrightarrow \exists \Theta_{0}$ s.t. $\forall \theta_{0} \in \Theta_{0}, \theta_{123}^{*}(t)=\theta_{12}^{*}(t)$

Understanding large Δ condition (lin traj)

Suppose $\dot{\theta}=\left\{\begin{array}{l}+\alpha \\ -\beta\end{array}\right.$. We have

$$
\begin{aligned}
2 \Delta & >\alpha(T-\tau) \vee \beta \tau \\
& \hat{\Downarrow} \\
\exists \Theta_{0} \stackrel{\dot{y}}{=} & \underbrace{\left[L+[(\alpha+\beta) \tau-\alpha T]^{+}\right.}, \underbrace{U-\alpha(T-\tau)]}_{L \leq<U} \\
& \left\{\begin{array}{l}
=L \text { for } \frac{\tau}{T} \in\left(0, \frac{\alpha}{\alpha+\beta}\right] \\
>L \text { for } \frac{\tau}{T} \in\left(\frac{\alpha}{\alpha+\beta}, 1\right]
\end{array}\right.
\end{aligned}
$$

If $\theta_{0} \in \Theta_{0}$, then optimal policy $= \begin{cases}\text { OFF } & \forall t \in(0, T-\tau) \\ \text { ON } & \forall t \in[T-\tau, T]\end{cases}$ i.e., $\theta_{123}^{*}(t)=\theta_{12}^{*}(t)$

Understanding large Δ condition (exp traj)

Suppose $\dot{\theta}=-\alpha\left(\theta(t)-\theta_{a}\right)-\beta P u$. We have

$$
2 \Delta>\left(L\left(e^{\alpha \tau}-1\right)+\theta_{a}+\frac{\beta}{\alpha} P\right) \vee\left(\left(\theta_{a}-U\right)\left(e^{\alpha(T-\tau)}-1\right)\right)
$$

$\exists \Theta_{0} \doteq[L \vee\left(\theta_{a}+e^{\alpha T}\left(L-2 \theta_{a} e^{-\alpha \tau}+\frac{\beta}{\alpha} P e^{-\alpha \tau}\right)\right), \underbrace{\left(U-\theta_{a}\right) e^{\alpha(T-\tau)}+\theta_{a}}_{L \leq}]$
If $\theta_{0} \in \Theta_{0}$, then optimal policy $= \begin{cases}\text { OFF } & \forall t \in(0, T-\tau) \\ \text { ON } & \forall t \in[T-\tau, T]\end{cases}$
i.e., $\theta_{123}^{*}(t)=\theta_{12}^{*}(t)$

Analytical solution for planning problem

Constraints (1), (2) and (3) active.
Case II: $\theta_{123}^{*(i)}(t)=\Psi_{L_{0}^{(i)}, U_{0}^{(i)}}\left(\theta_{12}^{*(i)}(t)\right)$, where $\Psi_{L, U}(\cdot)$ is the two-sided Skorokhod map in $[L, U]$

Digression: Skorokhod map Ψ

Digression: Skorokhod map $\Psi_{0, \infty}$

$$
z(t)=x(t)+\sup _{0 \leq s \leq t}[-x(s)]_{\text {(Skorokhod, 1961) }}^{+}
$$

Digression: Two-sided Skorokhod map $\Psi_{L, U}$

(Kruk, Lehoczky, Ramanan, Shreve, 2007)

Analytical solution for planning problem

Constraints (1), (2) and (3) active.
Case II: $\theta_{123}^{*(i)}(t)=\Psi_{L_{0}^{(i)}, U_{0}^{(i)}}\left(\theta_{12}^{*(i)}(t)\right)$, where $\Psi_{L, U}(\cdot)$ is the two-sided Skorokhod map in $[L, U]$

Summary

- A simple framework for optimal demand response.
- Designs optimal target consumption using forecast.
- Tracks the designed target consumption in real-time.
- LSE does not need to know individual states \Rightarrow preserves privacy.

Summary

- A simple framework for optimal demand response.
- Designs optimal target consumption using forecast.
- Tracks the designed target consumption in real-time.
- LSE does not need to know individual states \Rightarrow preserves privacy.

Thank you

Performance

Planning problem

$$
\pi(t) \xrightarrow{\text { Optimal control }} \quad P_{\text {ref }}^{*}(t)
$$

Price stochastic process
Optimal reference power stochastic process

Real time market + large commercial load

$$
\begin{aligned}
& \underset{u(\cdot) \in \mathbf{1}_{\mathcal{P}\left(\theta, \pi_{\mathrm{RT}}, \theta_{a}\right)}^{\operatorname{minimize}}}{ } \mathbb{E}\left[\int_{0}^{T}\left\{\pi_{\mathrm{RT}} P u+\gamma\left(\theta-\theta_{d}\right)^{2}\right\} d t\right] \\
& \text { subject to }
\end{aligned}
$$

$$
(1) \dot{\theta}(t)=-\alpha\left(\theta(t)-\theta_{a}(t)\right)-\beta P u(t)
$$

[ODE for continuous state θ]
(2) $\mathbf{m} \triangleq\left(\pi_{\mathrm{RT}}, \theta_{a}\right) \sim Q=Q_{\pi_{\mathrm{RT}}} \otimes Q_{\theta_{a}}$.
[finite state continuous time Markov chain for \mathbf{m}]

State: $(\theta, \mathbf{m}) \in \mathbb{R} \times|\mathcal{M}|$, where $|\mathcal{M}|=n_{\pi_{\mathrm{RT}}} n_{\theta_{a}}$
Find: optimal (indicator) feedback $u^{*}(t)=\mathbf{1}_{\mathcal{P}(\theta, \mathbf{m})} \in\{0,1\}$

HJB for controlled Markov jump process

Value function: $V_{i} \triangleq V(\theta, \mathbf{m}=i), i=1,2, \ldots,|\mathcal{M}|$
HJB:
$0 \stackrel{\inf _{u(\cdot)}}{ } \inf _{\mathbf{1}_{\mathcal{P}\left(\theta, \pi_{\mathrm{R}}, \theta_{a}\right)}}$

$$
\left[\pi_{\mathrm{RT}} P u+\gamma\left(\theta-\theta_{d}\right)^{2}+\frac{\partial V_{i}}{\partial t}\right.
$$

$$
\left.+\frac{\partial V_{i}}{\partial \theta}\left\{-\alpha\left(\theta-\theta_{a}\right)-\beta P u\right\}+\sum_{j=1}^{|\mathcal{M}|} q_{i j}\left(V_{j}-V_{i}\right)\right]
$$

$\forall i=1,2, \ldots,|\mathcal{M}|$
Involves optimization problem:

$$
\inf _{u(\cdot)} \underbrace{\left[\pi_{\mathrm{RT}} P u+\frac{\partial V_{i}}{\partial \theta}\left\{-\alpha\left(\theta-\theta_{a}\right)-\beta P u\right\}\right]}_{\Gamma(u)}
$$

$\Rightarrow \operatorname{If} \Gamma(1)-\Gamma(0)=\pi_{\text {RT }} P-\beta P \frac{\partial V_{i}}{\partial \theta}<(>) 0$, then $u^{*}=1(0)$

What can we tell about the value function

Optimality condition: If $\frac{\partial V_{i}}{\partial \theta}>(<) \frac{\pi_{\mathrm{RT}}(t)}{\beta}$, then $u^{*}(t)=1(0)$
Notice:
Optimality condition is invariant under convexification
$u \in\{0,1\} \mapsto u \in[0,1]$
Lemma: $V_{i_{[0,1]}}$ is convex in θ.
Ongoing: code for value iteration, Q-learning.

Value iteration

Bellman equation:
$V_{k}(i)=\min _{u \in\{0,1\}}\left[c_{k}(x=i, u)+\sum_{j \in \mathcal{X}} p_{i j}(u) V_{k+1}(j)\right], V_{T}=\operatorname{zeros}(n, 1)$.
Suppose we make 100 discretizations for $\theta \in[18,22]$, and 40 discretizations for price $\pi_{\mathrm{RT}} \in[50,100]$. Let's make ambient $\theta_{a}=32 \mathrm{deg}$ Celcius (constant). Then state space is a 100×40 grid. In Bellman equation, $n=100 \times 40=4000$, and the indices $i, j=1,2, \ldots, n$. The time index k runs backwards. So $k+1 \mapsto k$ means a negative 15 minutes time-step. Take actual final time $T=2 * 3600$. $\left[p_{i j}\right]$ is a transition probability matrix of size $n \times n=4000 \times 4000$, and is constructed as $P=P_{\theta} \otimes P_{\pi_{\mathrm{RT}}}$, where P_{θ} is of size 100×100, and $P_{\pi_{\mathrm{RT}}}$ is of size 40×40. The symbol \otimes denotes kronecker product (MATLAB kron).

