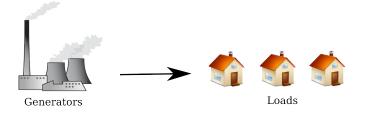
A Control Framework for Demand Response of Thermal Inertial Loads

Abhishek Halder

Department of Electrical and Computer Engineering Texas A&M University College Station, TX 77843

Joint work with X. Geng, G. Sharma, L. Xie, and P.R. Kumar

Demand Response: what, why, how

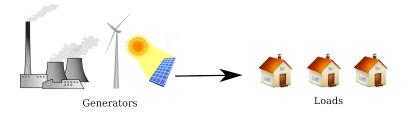


Traditional paradigm: demand is uncertain

Operational model: supply follows demand

Mechanism: operating reserve

Demand Response: what, why, how

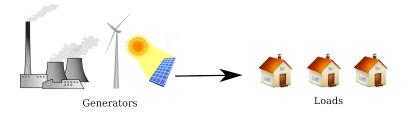


New paradigm: both supply and demand are uncertain

Operational model: demand follows supply

Mechanism: demand response

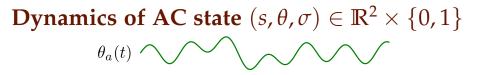
Demand Response: what, why, how

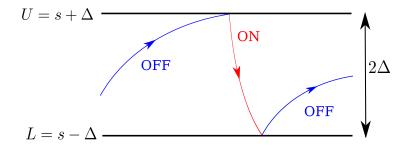


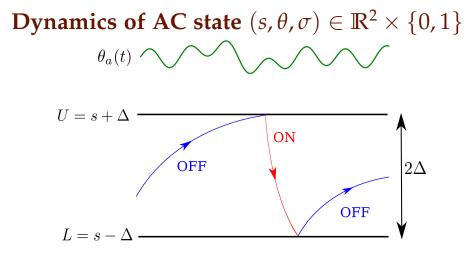
New paradigm: both supply and demand are uncertain

Operational model: demand follows supply

Mechanism: demand response of thermal inertial loads

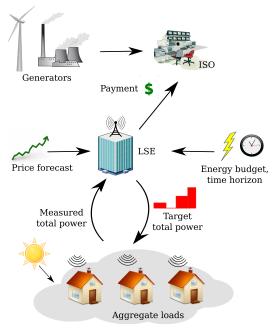






Newton's law of heating/cooling: $\dot{\theta} = -\alpha \left(\theta(t) - \theta_a(t)\right) - \beta P \sigma(t)$ ON/OFF mode switching: $\sigma(t) = \begin{cases} 1 & \text{if } \theta(t) \ge U \\ 0 & \text{if } \theta(t) \le L \\ \sigma(t^-) & \text{otherwise} \end{cases}$

Proposed architecture



Research scope

Objective: A theory of operation for the LSE

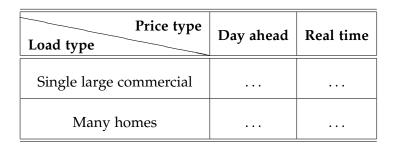
Challenges:

1. How to design the target consumption as a function of price?

2. How to control so as to preserve **privacy** of the loads' states?

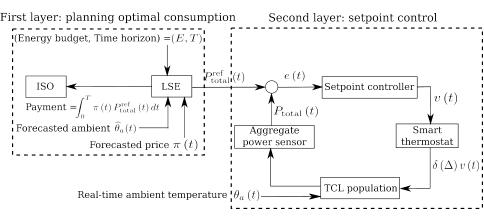
3. How to respect loads' **contractual obligations** (e.g. comfort range width Δ)?

Problem types



Let's focus on many homes + day ahead price

Two layer block diagram



First layer: planning optimal consumption

$$\begin{array}{c} \text{price} \\ \text{forecast} \\ \underbrace{\text{minimize}}_{\{u_1(t),\dots,u_N(t)\}\in\{0,1\}^N} \quad \int_0^T P \quad \overbrace{\pi(t)}^{I} \quad (u_1(t)+u_2(t)+\dots+u_N(t)) \ \mathrm{d}t \end{array}$$

subject to

(1)
$$\dot{\theta}_i = -\alpha \left(\theta_i(t) - \widehat{\theta}_a(t) \right) - \beta P u_i(t) \quad \forall i = 1, \dots, N,$$

(2)
$$\int_0^T (u_1(t) + u_2(t) + \ldots + u_N(t)) dt = \tau \doteq \frac{E}{P} (< T, \text{given})$$

(3)
$$L_0^{(i)} \le \theta_i(t) \le U_0^{(i)}$$
 $\forall i = 1, \dots, N$

Optimal consumption: $P_{\text{ref}}^{*}(t) = P \sum_{i=1}^{N} u_{i}^{*}(t)$

Second layer: setpoint control

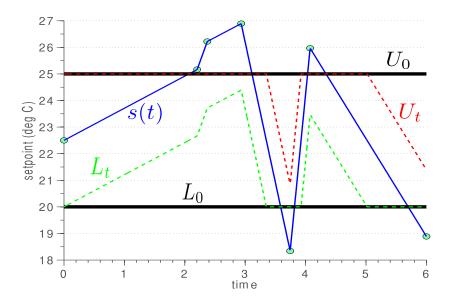
optimal
reference error measured

$$P_{ref}^{*}(t) = P \sum_{i=1}^{N} u_{i}^{*}(t), \quad \rightsquigarrow \quad e(t) = P_{ref}^{*}(t) - P(t) \quad , \quad \rightsquigarrow$$

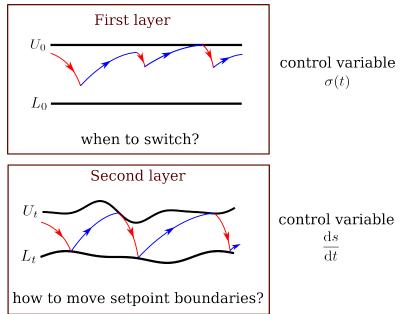
$$v(t) = k_p e(t) + k_i \int_0^t e(\varsigma) d\varsigma + k_i \frac{d}{dt} e(t), \quad \rightsquigarrow \quad \frac{ds_i}{dt} = \begin{bmatrix} gain & broadcast \\ I & I \\ \Delta_i & v(t) \end{bmatrix},$$

$$\rightsquigarrow \quad L_t^{(i)} = L_0^{(i)} \vee (s_i(t) - \Delta_i), \qquad U_t^{(i)} = U_0^{(i)} \wedge (s_i(t) + \Delta_i).$$

Second layer: setpoint control

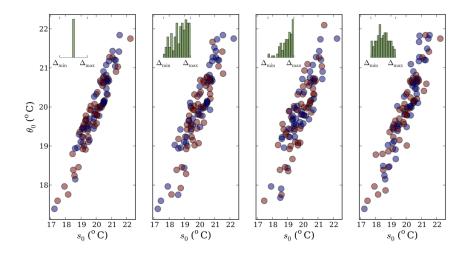


Control problems



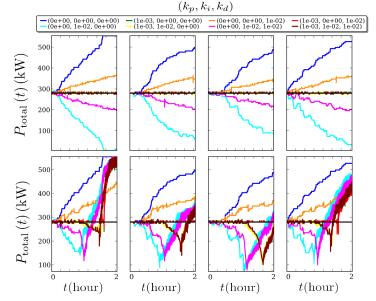
Direct numerical solution

Given: distribution of the N = 100 loads' initial conditions $(s_0, \theta_0, \sigma_0)$, and their contracts (Δ)

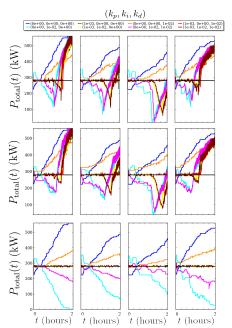


Direct numerical solution: $P^*_{ref}(t) = 50P$

Setpoint velocity control has good tracking performance

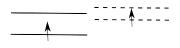


Fairness in setpoint velocity control

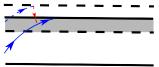


What does "fairness" mean?

all deadbands hit zero at the same time

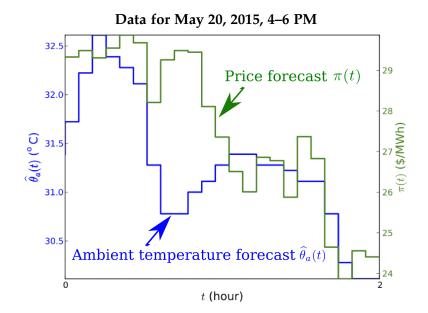


identical states (room temperatures) see identical controls (setpoint velocity)



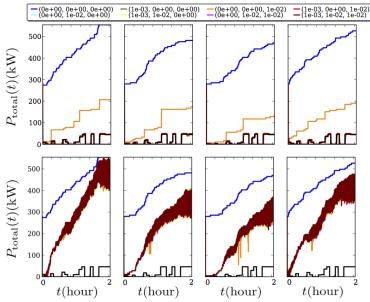
no contractual constraints, fairness is not an issue

Direct numerical solution: Houston data



Direct numerical solution: Houston data

 (k_p, k_i, k_d)

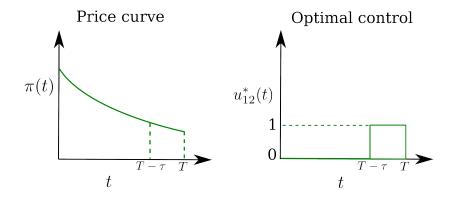


Intuition: what if price were monotone in time?

Assume: N = 1 home. Constraints (1) and (2) active.

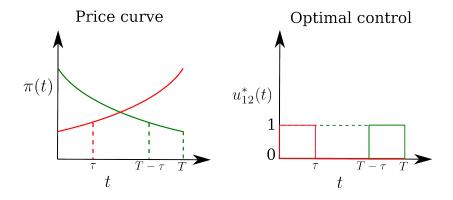
Intuition: what if price were monotone in time?

Assume: N = 1 home. Constraints (1) and (2) active.



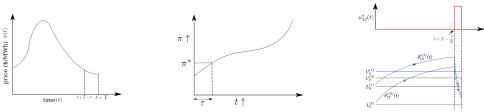
Intuition: what if price were monotone in time?

Assume: N = 1 home. Constraints (1) and (2) active.



 $N \ge 1$ homes. Constraints (1) and (2) active.

$$F_{\pi}(\widetilde{\pi}) \triangleq \int_{0}^{1} \mathbf{1}_{\{\pi(t) \leq \widetilde{\pi}\}} dt, \quad \pi^{*} \triangleq \inf\{\widetilde{\pi} \in \mathbb{R}^{+} : F_{\pi}(\widetilde{\pi}) = \tau\},$$
$$S \triangleq \{s \in [0,T] : \pi(s) < \pi^{*}\}, \quad u^{*}(t) = \begin{cases} 1 & \forall t \in S, \\ 0 & \text{otherwise.} \end{cases}$$



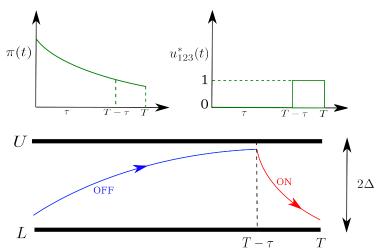
Optimal actions are synchronized

Constraints (1), (2) and (3) active.

Case I: large $\Delta \Leftrightarrow \exists \Theta_0 \text{ s.t. } \forall \theta_0 \in \Theta_0, \theta_{123}^*(t) = \theta_{12}^*(t)$

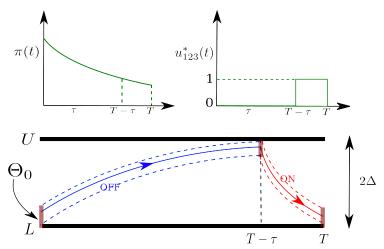
Constraints (1), (2) and (3) active.

Case I: large $\Delta \Leftrightarrow \exists \Theta_0 \text{ s.t. } \forall \theta_0 \in \Theta_0, \theta_{123}^*(t) = \theta_{12}^*(t)$



Constraints (1), (2) and (3) active.

Case I: large $\Delta \Leftrightarrow \exists \Theta_0 \text{ s.t. } \forall \theta_0 \in \Theta_0, \theta_{123}^*(t) = \theta_{12}^*(t)$



Understanding large Δ condition (lin traj)

Suppose
$$\dot{\theta} = \begin{cases} +\alpha \\ -\beta \end{cases}$$
. We have
 $2\Delta > \alpha (T - \tau) \lor \beta \tau$
 $\Im \Theta_0 \stackrel{:}{=} \underbrace{\left[L + \left[(\alpha + \beta) \tau - \alpha T \right]^+ }_{\begin{cases} = L \text{ for } \frac{\tau}{T} \in (0, \frac{\alpha}{\alpha + \beta}] \\ > L \text{ for } \frac{\tau}{T} \in (\frac{\alpha}{\alpha + \beta}, 1] \end{cases}$, $\underbrace{U - \alpha (T - \tau)}_{L \le - \langle U \rangle}$

If $\theta_0 \in \Theta_0$, then optimal policy = $\begin{cases}
\text{OFF} & \forall t \in (0, T - \tau) \\
\text{ON} & \forall t \in [T - \tau, T]
\end{cases}$ i.e., $\theta_{123}^*(t) = \theta_{12}^*(t)$

Understanding large Δ condition (exp traj)

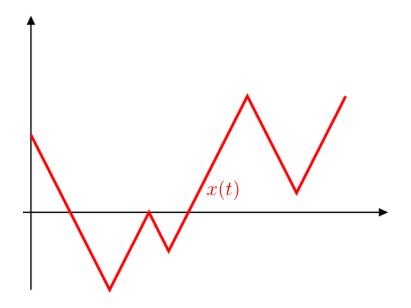
Suppose
$$\dot{\theta} = -\alpha \left(\theta(t) - \theta_a \right) - \beta P u$$
. We have

If $\theta_0 \in \Theta_0$, then optimal policy = $\begin{cases}
\text{OFF} & \forall t \in (0, T - \tau) \\
\text{ON} & \forall t \in [T - \tau, T]
\end{cases}$ i.e., $\theta_{123}^*(t) = \theta_{12}^*(t)$

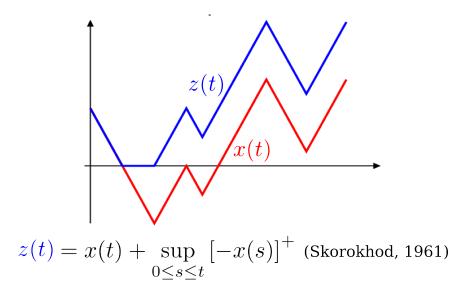
Constraints (1), (2) and (3) active.

Case II: $\theta_{123}^{*(i)}(t) = \Psi_{L_0^{(i)}, U_0^{(i)}}\left(\theta_{12}^{*(i)}(t)\right)$, where $\Psi_{L, U}(\cdot)$ is the two-sided Skorokhod map in [L, U]

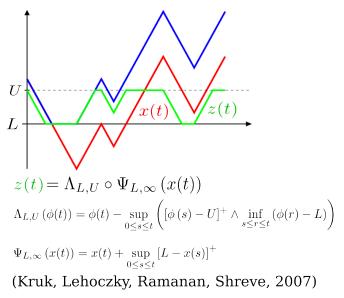
Digression: Skorokhod map Ψ



Digression: Skorokhod map $\Psi_{0,\infty}$



Digression: Two-sided Skorokhod map $\Psi_{L,U}$



Constraints (1), (2) and (3) active.

Case II: $\theta_{123}^{*(i)}(t) = \Psi_{L_{0}^{(i)}, U_{0}^{(i)}}\left(\theta_{12}^{*(i)}(t)\right)$, where $\Psi_{L, U}(\cdot)$ is the two-sided Skorokhod map in [L, U] $u_{12}^{*}(t)$ $\theta_{12}^{*(1)}(t)$ $\theta_{123}^{*(1)}(t)$ $U_0^{(1)} U_0^{(2)}$ $U_0^{(1)} \ U_0^{(2)}$ $L_{0}^{(1)}$ $L_{0}^{(1)}$ $\theta_{12}^{*(2)}(t)$ $\theta_{123}^{*(2)}(t)$ $L_{0}^{(2)}$ $L_{0}^{(2)}$

Summary

- A simple framework for optimal demand response.
- Designs optimal target consumption using forecast.
- Tracks the designed target consumption in real-time.
- ► LSE does not need to know individual states ⇒ preserves privacy.

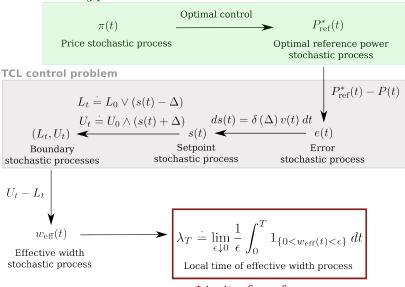
Summary

- A simple framework for optimal demand response.
- Designs optimal target consumption using forecast.
- Tracks the designed target consumption in real-time.
- ► LSE does not need to know individual states ⇒ preserves privacy.

Thank you

Performance

Planning problem



Limit of performance

Real time market + large commercial load

$$\underset{u(\cdot) \in \mathbf{1}_{\mathcal{P}(\theta, \pi_{\mathrm{RT}}, \theta_{d})}{\text{minimize}} \quad \mathbb{E}\left[\int_{0}^{T} \left\{\pi_{\mathrm{RT}} P u + \gamma \left(\theta - \theta_{d}\right)^{2}\right\} dt\right]$$

subject to

(1)
$$\dot{\theta}(t) = -\alpha \left(\theta(t) - \theta_a(t)\right) - \beta P u(t),$$

[ODE for continuous state θ]

(2)
$$\mathbf{m} \triangleq (\pi_{\text{RT}}, \theta_a) \sim Q = Q_{\pi_{\text{RT}}} \otimes Q_{\theta_a}$$
.
[finite state continuous time Markov chain for \mathbf{m}]

State: $(\theta, \mathbf{m}) \in \mathbb{R} \times |\mathcal{M}|$, where $|\mathcal{M}| = n_{\pi_{\mathrm{RT}}} n_{\theta_a}$

Find: optimal (indicator) feedback $u^*(t) = \mathbf{1}_{\mathcal{P}(\theta, \mathbf{m})} \in \{0, 1\}$

HJB for controlled Markov jump process

Value function: $V_i \triangleq V(\theta, \mathbf{m} = i), i = 1, 2, ..., |\mathcal{M}|$

HJB:

$$0 = \inf_{u(\cdot) \in \mathbf{1}_{\mathcal{P}(\theta, \pi_{\mathrm{RT}}, \theta_{a})}} \left[\pi_{\mathrm{RT}} P u + \gamma \left(\theta - \theta_{d}\right)^{2} + \frac{\partial V_{i}}{\partial t} + \frac{\partial V_{i}}{\partial \theta} \left\{ -\alpha \left(\theta - \theta_{a}\right) - \beta P u \right\} + \sum_{j=1}^{|\mathcal{M}|} q_{ij} \left(V_{j} - V_{i}\right) \right]$$

$$\forall i = 1, 2, \dots, |\mathcal{M}|$$

Involves optimization problem:

$$\begin{split} \inf_{u(\cdot)} \underbrace{\left[\pi_{\mathrm{RT}} P u + \frac{\partial V_i}{\partial \theta} \left\{-\alpha \left(\theta - \theta_a\right) - \beta P u\right\}\right]}_{\Gamma(u)} \\ \Rightarrow \mathrm{If} \ \Gamma(1) - \Gamma(0) = \pi_{\mathrm{RT}} P - \beta P \frac{\partial V_i}{\partial \theta} < (>)0, \ \mathrm{then} \ u^* = 1(0) \end{split}$$

What can we tell about the value function

Optimality condition: If
$$\frac{\partial V_i}{\partial \theta} > (<) \frac{\pi_{\text{RT}}(t)}{\beta}$$
, then $u^*(t) = 1(0)$

Notice:

Optimality condition is invariant under convexification $u \in \{0,1\} \mapsto u \in [0,1]$

Lemma: $V_{i_{[0,1]}}$ is convex in θ .

Ongoing: code for value iteration, Q-learning.

Value iteration

Bellman equation:

$$V_{k}(i) = \min_{u \in \{0,1\}} \left[c_{k} \left(x = i, u \right) + \sum_{j \in \mathcal{X}} p_{ij} \left(u \right) V_{k+1} \left(j \right) \right], V_{T} = \operatorname{zeros}(n, 1).$$

Suppose we make 100 discretizations for $\theta \in [18, 22]$, and 40 discretizations for price $\pi_{RT} \in [50, 100]$. Let's make ambient $\theta_a = 32 \text{ deg Celcius (constant)}$. Then state space is a 100×40 grid. In Bellman equation, $n = 100 \times 40 = 4000$, and the indices i, j = 1, 2, ..., n. The time index k runs backwards. So $k + 1 \mapsto k$ means a negative 15 minutes time-step. Take actual final time T = 2 * 3600. $[p_{ij}]$ is a transition probability matrix of size $n \times n = 4000 \times 4000$, and is constructed as $P = P_{\theta} \otimes P_{\pi_{RT}}$, where P_{θ} is of size 100×100 , and $P_{\pi_{RT}}$ is of size 40×40 . The symbol \otimes denotes kronecker product (MATLAB kron).