
Aero 320: Numerical Methods

Homework 5

Name: ..........................................................................................................

Due: November 4, 2013

NOTE: All problems, unless explicitly asked to write a code, are to be done by hand (with the help of a

calculator) but you need to show all the steps. Turn in a hard copy of your HW stapled with this as cover

sheet with your name written in the above field. Submit your HW by Monday midnight at Room 201, Reed

McDonald Building. Late submissions or failure to submit in the required format will receive no credit.

Problem 1

Interpolation using monomial basis and Lagrange polynomials

(5 + 10 + 10 + 10 + 2 + 3 = 40 points)

Suppose we have observed 4 experimental data points: (x0, y0) , (x1, y1) , (x2, y2) , (x3, y3).

(a) If we want to interpolate these data using standard monomial basis, then we need to compute

the coefficient vector c = {c0 c1 c2 c3}> such that the interpolating polynomial is y =

c0 + c1x+ c2x
2 + c3x

3. Find the matrix-vector equation from which vector c can be solved.

(b) From your answer in part (a), under what conditions on the data points (xi, yi), i = 0, . . . , 3,

we can have unique solution for c?

(c) Let the numerical values of the experimental data are (0, 0); (0.5, 4.25); (1, 3); (2, 2).

From your answer in part (b), does unique c exist in this case? If yes, determine the vector c

using any algorithm you have learned in this course.

(d) Determine the Lagrange interpolating polynomial that passes through the data points given

in part (c).

(e) Compare the Lagrange interpolating polynomial derived in part (d), with the interpolating

polynomial having monomial basis derived in part (c). Predict the value of y at x = 1.5 from

part (c) and part (d).

(f) Submit a plot of the interpolating polynomial(s) in part (e). Mark the data points on your

plot. (Hint: If using MATLAB, look up the commands ezplot and plot in MATLAB Help.
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Also, you may find it useful to look at the commands in Homework 1, Problem 1 (d), for saving

the MATLAB plot as .pdf file.)

Solution

(a) For interpolation, our cubic polynomial must pass through all the datapoints (xi, yi), i = 0, . . . , 3. This gives

four linear equations:

yi = c0 + c1xi + c2x
2
i + c3x

3
i , i = 0, 1, 2, 3,

which can be put in matrix-vector equation form
1 x0 x2

0 x3
0

1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3




c0

c1

c2

c3

 =


y0

y1

y2

y3

 .

This matrix-vector equation needs to be solved for vector c = {c0 c1 c2 c3}>.

(b) To solve for unique c, we need to have det


1 x0 x2

0 x3
0

1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3

 6= 0. In other words, the determinant of the

Vandermonde matrix should be non-zero. One can prove (by induction) that the n×n Vandermonde determinant

is (You don’t need to prove this for the Homework. It is okay if you did something like this: http://mathcentral.

uregina.ca/QQ/database/QQ.09.07/h/rav1.html):

det


1 x0 x2

0 . . . xn−1
0

1 x1 x2
1 . . . xn−1

1

...
...

...
...

...

1 xn−1 x2
n−1 . . . xn−1

n−1

 =
∏

0≤i<j≤n−1

(xj − xi) .

In our case, the 4×4 Vandermonde determinant is equal to (x1 − x0) (x2 − x0) (x3 − x0) (x2 − x1) (x3 − x1) (x3 − x2).

Hence, there exists unique vector c provided all the abscissa values (xi) of the experimental data, are distinct.

(c) Yes, for the numerical values of our experimental data, unique c exists since from part (b), the Vandermonde

determinant = 0.5× 1× 2× 0.5× 1.5× 1 = 0.75 6= 0.

To solve the matrix-vector equation in part (a), we first perform LU decomposition of the Vandermonde
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matrix:
1 0 0 0

1 0.5 0.25 0.125

1 1 1 1

1 2 4 8


Row 2=Row 2−Row 1, Row 3=Row 3−Row 1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Row 4=Row 4−Row 1, Row 3=Row 3−2Row 2


1 0 0 0

1 0.5 0.25 0.125

1 2 0.5 0.75

1 2 4 8


Row 4=Row 4−4Row 2−−−−−−−−−−−−−−−→
Row 4=Row 4−6Row 3


1 0 0 0

1 0.5 0.25 0.125

1 2 0.5 0.75

1 4 6 3

 ⇒ L =


1 0 0 0

1 1 0 0

1 2 1 0

1 4 6 1

 , U =


1 0 0 0

0 0.5 0.25 0.125

0 0 0.5 0.75

0 0 0 3

 .

Now we solve the matrix-vector equation in part (a) as LUc = y, where the vector y = {y0 y1 y2 y3}>. To

do this, we first solve for vector z in Lz = y, and then solve for vector c in Uc = z. Forward substitution in

Lz = y yields z =


0

4.25

−5.5

18

. Then backward substitution in Uc = z yields c =


0

17

−20

6

. Hence, the polynomial

that interpolates the given four points, is 6x3 − 20x2 + 17x.

(d) The Lagrange interpolating polynomial is

3∑
i=0

yi `i (x) =
(x− x1) (x− x2) (x− x3)

(x0 − x1) (x0 − x2) (x0 − x3)
y0 +

(x− x0) (x− x2) (x− x3)
(x1 − x0) (x1 − x2) (x1 − x3)

y1 +
(x− x0) (x− x1) (x− x3)

(x2 − x0) (x2 − x1) (x2 − x3)
y2

+
(x− x0) (x− x1) (x− x2)

(x3 − x0) (x3 − x1) (x3 − x2)
y3

=
(x− 0.5) (x− 1) (x− 2)
(0− 0.5) (0− 1) (0− 2)

× 0 +
(x− 0) (x− 1) (x− 2)

(0.5− 0) (0.5− 1) (0.5− 2)
× 4.25 +

(x− 0) (x− 0.5) (x− 2)
(1− 0) (1− 0.5) (1− 2)

× 3

+
(x− 0) (x− 0.5) (x− 1)
(2− 0) (2− 0.5) (2− 1)

× 2

= 6x3 − 20x2 + 17x.

(e) The polynomials computed from part (c) and (d) are the same. At x = 1.5, the predicted value of y is

6× (1.5)3 − 20× (1.5)2 + 17× 1.5 = 0.75.

(f)

Figure 1: The blue curve is the interpolating polynomial 6x3 − 20x2 + 17x found in part (c) and (d), passing

through the datapoints shown in red circles.
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Problem 2

Interpolation using Neville’s method and divided differences (10+10+10 = 30 points)

(a) For the experimental data given in Problem 1(c), construct the Neville table to interpolate

the value of y at x = 1.5. How does your answer compare with that in Problem 1(e)?

(b) Repeat part (a) with the method of divided differences.

(c) If you are doing polynomial interpolation through a fixed set of n+ 1 data points, is it pos-

sible that different algorithms (monomial basis, Lagrange polynomial, Neville’s method, divided

difference) can produce different answers? Why/why not?

Solution

(a) Neville’s table can be constructed as shown below (see Example 3.2, page 155-156 in textbook, for details).

i |x− xi| xi yi = Pi0 Pi1 Pi2 Pi3

0 0.5 2 2 2.5 2.25 0.75

1 0.5 1 3 1.75 -3.75

2 1 0.5 4.25 12.75

3 1.5 0 0

The answer is same as problem 1(e). Here is a nice online tool by Prof. Kiffe that you can use to verify your

answer: http://www.math.tamu.edu/~tkiffe/Fall12/609/Tools/interp.html. Allow JAVA to run this on

your web browser.

(b) We can construct the divided difference table as in page 159 in textbook. Again, this tells that the value of

y at x = 1.5 is 0.75, as predicted by the solution of problem 1(e) and 2(a). You can use the same online tool, as

above, to verify your results (select “Divided Differences” from the dropdown menu).

(c) No, it is impossible that different algorithms (monomial basis, Lagrange polynomial, Neville’s method, divided

difference) produce different interpolating polynomials.

The reason is that the nth degree polynomial that interpolates a fixed set of n+ 1 data points, is unique. For

a proof, see page 162 in textbook. Again, the proof is not mandatory for the purpose of this homework.

Problem 3

Least squares (15 + 15 = 30 points)
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Consider the data in the following table.

xi 1 2 4 5

yi 2 3 5 6

We want to approximate the data using a quadratic polynomial y = a0 + a1x + a2x
2 in least

squares sense.

(a) Set up the matrix-vector equation to solve for the coefficient vector a = {a0 a1 a2}>.

Report the polynomial by solving the least squares problem. Submit a plot of the data points

together with your least squares approximating polynomial. (Hint: You may use the LU de-

composition technique to compute inverse of a square matrix, that you learned in Homework 4,

Problem 1(f).)

(b) Approximate the same data using a straight line of the form y = α0 + α1x, by resolving

the least squares problem. Plot the approximating straight line on top of your plot in part (a).

Report the straight line approximation and submit the final plot.

Solution

(a) Enforcing yi = a0 + a1xi + a2x
2
i , i = 0, . . . , 3, results the following system of linear equations:

1 1 1

1 2 4

1 4 16

1 5 25


︸ ︷︷ ︸

X


a0

a1

a2


︸ ︷︷ ︸

a

=


2

3

5

6


︸ ︷︷ ︸
b

.

Unlike interpolation, the Vandermonde matrix X is rectangular and we can not exactly solve for the coefficient

vector a from the equation Xa = b. The least square approximation for a is given by â =
(
X>X

)−1
X>b, which

is computed as shown below.

First, we compute X>b =


16

58

244

. To compute
(
X>X

)−1, we proceed similar to Problem 1(f) in Homework

4, as follows.

X>X =


4 12 46

12 46 198

46 198 898

 Row 2=Row 2−3Row 1−−−−−−−−−−−−−−−−→
Row 3=Row 3− 23

2 Row 1


4 12 46

3 10 60
23
2 60 369

 Row 3=Row 3−6Row 2−−−−−−−−−−−−−−−→


4 12 46

3 10 60
23
2 6 9



⇒ L =


1 0 0

3 1 0
23
2 6 1

 , U =


4 12 46

0 10 60

0 0 9

 .
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Solving three linear systems LUzi = ei, i = 1, 2, 3, where e1 =


1

0

0

, e2 =


0

1

0

, e3 =


0

0

1

, we obtain

z1 =


1052
180

− 139
30

13
18

, z2 =


− 278

60

41
10

− 2
3

, z3 =


13
18

− 2
3

1
9

. Stacking the vectors z1, z2, z3 together, we get
(
X>X

)−1 =


1052
180 − 278

60
13
18

− 139
30

41
10 − 2

3

13
18 − 2

3
1
9

 . Then â =
(
X>X

)−1
X>b =


1052
180 − 278

60
13
18

− 139
30

41
10 − 2

3

13
18 − 2

3
1
9




16

58

244

 =


1

1

0

. Hence, the least

square quadratic polynomial is y = 1 + x. This is an interesting result since the best quadratic approximation

turns out to be a linear approximation! If we look at our data, we can explain why this strange thing has

happened: all our datapoints were indeed collinear!

(b) In this case, we have
1 1

1 2

1 4

1 5


︸ ︷︷ ︸
Xnew

α0

α1


︸ ︷︷ ︸

α

=


2

3

5

6


︸ ︷︷ ︸
b

⇒ X>newXnew =

 4 12

12 46

 ⇒
(
X>newXnew

)−1
=

1
(4× 46)− (12× 12)

 46 −12

−12 4



=
1
40

 46 −12

−12 4

 =

 23
20 − 3

10

− 3
10

1
10

 .

On the other hand, X>newb =

16

58

. Thus, we have α̂ =
(
X>newXnew

)−1
X>newb =

1

1

. Hence, the best linear

approximation is y = 1 + x, which is same as the answer we got in part (a). The plot is shown below.

Figure 2: The blue curve is the least square polynomial 1 + x found in part (a) and (b). The datapoints are

shown as red circles.
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