
Aero 320: Numerical Methods

Homework 6

Name: ..........................................................................................................

Due: November 18, 2013

NOTE: All problems, unless explicitly asked to write a code, are to be done by hand (with the help of a

calculator) but you need to show all the steps. Turn in a hard copy of your HW stapled with this as cover

sheet with your name written in the above field. Submit your HW by Monday midnight at Room 201, Reed

McDonald Building. Late submissions or failure to submit in the required format will receive no credit.

Problem 1

Least squares approximation of a continuous function (15+10+5 = 30 points)

In class and previous homework, you learned how to approximate discrete datapoints using least

square. In this exercise, you will see that instead of approximating discrete data, we can also

approximate a continuous function in least squares sense. This is useful, for example, when the

true function, although known, is complicated to evaluate numerically. If we can approximate it

using a simpler and “numerically friendly” function, then we can use that approximate function

for computational purposes.

Consider any continuous function f(x) in the interval [−π, π]. We want to approximate this

function as

f̂(x) = a0 +
n∑
k=1

(ak cos kx+ bk sin kx) .

(a) Show that the coefficients a0, ak, bk, that minimize the total square error

∫ π

−π

(
f(x)− f̂(x)

)2
dx,

are given by

a0 =
1

2π

∫ +π

−π
f(x) dx, ak =

1

π

∫ +π

−π
f(x) cos kx dx, bk =

1

π

∫ +π

−π
f(x) sin kx dx, k = 1, . . . , n.

(b) Using your answer in part (a), for f(x) = ex, find the coefficients a0, ak, bk, as functions of k
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only. Your final answers should not have any integral.

(c) Use your answer in part (b) to plot the functions f(x) = ex together with f̂(x) for n = 1, 2, 5,

in the interval [−π, π]. In other words, you will be plotting four functions: one true function,

and three approximations. Submit a hard copy of your plot. What do you conclude from this

plot?

Solution

(a) We need the following identities. (I am writing these identities for clarity of understanding, students don’t

need to write these in their Homework submission.)∫ π

−π
cos kx dx =

1

k
[sin kx]

x=π
x=−π =

1

k
(sin (kπ)− sin (−kπ)) =

1

k
(sin (kπ) + sin (kπ)) =

1

k
(0 + 0) = 0,∫ π

−π
sin kx dx = −1

k
[cos kx]

x=π
x=−π = −1

k
(cos (kπ)− cos (−kπ)) = −1

k
(cos (kπ)− cos (kπ)) = 0.

In addition, recall that

sinA cosB =
1

2
(2 sinA cosB) =

1

2
(sin (A+B) + sin (A−B)) ,

sinA sinB =
1

2
(2 sinA sinB) =

1

2
(cos (A−B)− cos (A+B)) ,

cosA cosB =
1

2
(2 cosA cosB) =

1

2
(cos (A−B) + cos (A+B)) .

As a result, if we consider any two integers m and n, then for m 6= n, we have∫ π

−π
sinmx cosnx dx =

1

2

∫ π

−π
(sin (m+ n)x+ sin (m− n)x) dx =

1

2

(
−
[
cos (m+ n)x

m+ n

]x=+π

x=−π
−
[
cos (m− n)x

m− n

]x=+π

x=−π

)
= 0,

∫ π

−π
sinmx sinnx dx =

1

2

∫ π

−π
(cos (m− n)x− cos (m+ n)x) dx =

1

2

([
sin (m− n)x

m− n

]x=+π

x=−π
−
[
sin (m+ n)x

m+ n

]x=+π

x=−π

)
= 0,

∫ π

−π
cosmx cosnx dx =

1

2

∫ π

−π
(cos (m− n)x+ cos (m+ n)x) dx =

1

2

([
sin (m− n)x

m− n

]x=+π

x=−π
+

[
sin (m+ n)x

m+ n

]x=+π

x=−π

)
= 0.

On the other hand, for m = n, we get∫ π

−π
sinnx cosnx dx =

1

2

∫ π

−π
sin (2nx) dx = − 1

4n
[cos (2nx)]x=+π

x=−π = − 1

4n
[cos (2nπ)− cos (−2nπ)] = 0,∫ π

−π
sin2 nx dx =

1

2

∫ π

−π
(1− cos (2nx)) dx =

1

2
2π − 1

2

[
sin (2nx)

2n

]x=+π

x=−π
= π − 1

4n
(0 + 0) = π,∫ π

−π
cos2 nx dx =

1

2

∫ π

−π
(1 + cos (2nx)) dx =

1

2
2π +

1

2

[
sin (2nx)

2n

]x=+π

x=−π
= π +

1

4n
(0 + 0) = π.
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Now, if we denote the total square error as E =

∫ π

−π

(
f(x)− f̂(x)

)2
dx, then to make E minimum (or “least”),

we need

∂E

∂a0
= 0

⇒ ∂

∂a0

∫ π

−π

(
f(x)− f̂(x)

)2
dx =

∫ π

−π

∂

∂a0

(
f(x)− f̂(x)

)2
dx = 2

∫ π

−π

(
f − f̂

)− ∂f̂

∂a0︸︷︷︸
1

 dx = 0

⇒
∫ π

−π
f̂ (x) dx =

∫ π

−π
f (x) dx

⇒ a0

∫ π

−π
dx+

n∑
k=1

ak
∫ π

−π
cos kx dx︸ ︷︷ ︸

0

+ bk

∫ π

−π
sin kx dx︸ ︷︷ ︸

0

 =

∫ π

−π
f (x) dx

⇒ a0 =
1

2π

∫ π

−π
f (x) .

Similarly,

∂E

∂ak
= 0

⇒ ∂

∂ak

∫ π

−π

(
f(x)− f̂(x)

)2
dx =

∫ π

−π

∂

∂ak

(
f(x)− f̂(x)

)2
dx = 2

∫ π

−π

(
f − f̂

)− ∂f̂

∂ak︸︷︷︸
cos kx

 dx = 0

⇒
∫ π

−π
f̂ (x) cos kx dx =

∫ π

−π
f (x) cos kx dx

⇒ a0

∫ π

−π
cos kx dx︸ ︷︷ ︸

0

+

n∑
j=1

aj
∫ π

−π
cos jx cos kx dx︸ ︷︷ ︸

=π for j=k, else=0

+ bj

∫ π

−π
sin jx cos kx dx︸ ︷︷ ︸

0

 =

∫ π

−π
f (x) cos kx dx

⇒ ak =
1

π

∫ π

−π
f (x) cos kx dx,

and

∂E

∂bk
= 0

⇒ ∂

∂bk

∫ π

−π

(
f(x)− f̂(x)

)2
dx =

∫ π

−π

∂

∂bk

(
f(x)− f̂(x)

)2
dx = 2

∫ π

−π

(
f − f̂

)− ∂f̂

∂bk︸︷︷︸
sin kx

 dx = 0

⇒
∫ π

−π
f̂ (x) sin kx dx =

∫ π

−π
f (x) sin kx dx

⇒ a0

∫ π

−π
sin kx dx︸ ︷︷ ︸

0

+

n∑
j=1

aj
∫ π

−π
cos jx sin kx dx︸ ︷︷ ︸

0

+ bj

∫ π

−π
sin jx sin kx dx︸ ︷︷ ︸

=π for j=k, else=0

 =

∫ π

−π
f (x) sin kx dx

⇒ bk =
1

π

∫ π

−π
f (x) sin kx dx.

(b) For f(x) = ex, from part (a), we get

a0 =
1

2π

∫ π

−π
ex dx =

1

2π
[ex]

x=+π
x=−π =

1

2π

(
eπ − e−π

)
.
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Next, from part (a), we have

ak =
1

π

∫ π

−π
ex cos kx dx

=
1

π

([
ex

sin kx

k

]x=+π

x=−π
−
∫ π

−π
ex

sin kx

k
dx

)
(by doing integration by parts)

=
1

π

([
ex

sin kx

k
+ ex

cos kx

k2

]x=+π

x=−π
− 1

k2

∫ π

−π
ex cos kx dx

)
(by doing integration by parts again)

=
1

πk2
[ex (k sin kx+ cos kx)]x=+π

x=−π −
1

k2
1

π

∫ π

−π
ex cos kx dx︸ ︷︷ ︸
ak

⇒
(
1 +

1

k2

)
ak =

1

πk2

eπ
k sin kπ︸ ︷︷ ︸

0

+cos kπ

 − e−π

−k sin kπ︸ ︷︷ ︸
0

+cos kπ


⇒ ak =

cos kπ

π (k2 + 1)

(
eπ − e−π

)
=

(−1)k

π (k2 + 1)

(
eπ − e−π

)
.

Similarly, we get bk =
1

π

∫ π

−π
ex sin kx dx =

1

π (k2 + 1)
[−kex cos kx+ ex sin kx]

x=+π
x=−π = − k (−1)

k

π (k2 + 1)

(
eπ − e−π

)
.

(c) Combining the expressions for a0, ak, and bk from part (b), we arrive at

f̂ (x) =
eπ − e−π

π

[
1

2
+

n∑
k=1

(−1)
k

(k2 + 1)
(cos kx− k sin kx)

]
.

The plots, generated from the MATLAB file HW6Problem1c.m, are shown below. The figure shows that keeping

more terms (large n) in the least square approximate function f̂(x) introduces unwanted oscillations, while the

true function f(x) is monotone increasing.
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f(x) = ex

fhat(x), n = 1
fhat(x), n = 2
fhat(x), n = 5

Figure 1: The true function f(x) = ex, and its three least square approximations f̂(x), for n = 1, 2, 5.
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Problem 2

Spline interpolation (5 + 10 + 30 = 45 points)

(a) Determine if the following function S1(x) is a linear spline or not. Why/why not?

S1(x) =


x, −1 ≤ x ≤ 0.5,

0.5 + 2 (x− 0.5) , 0.5 ≤ x ≤ 2,

x+ 1.5, 2 ≤ x ≤ 4.

(b) Determine the values of a, b, c, if possible, such that the following becomes a cubic spline.

Show all the steps in your calculation.

S3(x) =


4 + ax+ 2x2 − 1

6
x3, 0 ≤ x ≤ 1,

1− 4
3
(x− 1) + b (x− 1)2 − 1

6
(x− 1)3 , 1 ≤ x ≤ 2,

1 + c (x− 2) + (x− 2)2 − 1
6

(x− 2)3 , 2 ≤ x ≤ 3.

(c) Write a C++ code for spline interpolation. Your code should have a function called InterpSpline

that will take the datapoints (xi, yi) and the degree of spline (1 for linear spline, 3 for cubic spline

etc.) as input, and would return the vector of coefficients of spline polynomials. Write another

function InterpPoly that only takes the datapoints (xi, yi) as input and returns a single inter-

polating polynomial over these data.

Use your code to do the linear spline, cubic spline, and polynomial interpolations of the

monthly average high temperature data, measured at an airport, from January through Decem-

ber, as shown below.
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Month Average high Temp.

1 54.6

2 54.4

3 67.1

4 78.3

5 85.3

6 88.7

7 96.9

8 97.6

9 84.1

10 80.1

11 68.8

12 61.1

Submit a plot for the linear spline, cubic spline, and the polynomial interpolants computed from

your code, with the datapoints clearly marked. Also submit a hard copy of your code.

Solution

(a) Yes, S1(x) is a linear spline.

We have three intervals. Let us denote the line segments as S11(x), S12(x) and S13(x) over the first, second

and third interval, respectively. S1(x) is a linear spline because it satisfies continuity at the knot points (where

two different line segments meet). In other words, S11 (0.5) = 0.5 = 0.5 + 2 (0.5− 0.5) = S12 (0.5), and S12 (2) =

0.5 + 2 (2− 0.5) = 2 + 1.5 = S13 (2).

(b) Let S31(x), S32(x) and S33(x) be the cubic polynomials over the first, second and third interval, respectively.

For S3(x) to be a cubic spline, we must have continuity: S31(1) = S32(1), and S32(2) = S33(2). In addition,

we must match slopes: S′31(1) = S′32(1), and S′32(2) = S′33(2). Furthermore, we must match curvatures (second

derivatives) S′′31(1) = S′′32(1), and S′′32(2) = S′′33(2).

From S31(1) = S32(1), we get a = − 29
6 . From S32(2) = S33(2), we get b = 3

2 . From S′31(1) = S′32(1), we

get a = − 29
6 again. From S′32(2) = S′33(2), we get c = 7

6 . From S′′31(1) = S′′32(1), we get b = 3
2 again. From

S′′32(2) = S′′33(2), we get b = 3
2 yet again. So for a = − 29

6 , b = 3
2 , and c = 7

6 , all necessary conditions are met for

S3(x) to be a cubic spline.

(c) The plot is shown below. As expected, the (11th degree) polynomial interpolation shows oscillations, but

the splines don’t. This plot is generated using the C++ code HW6problem2c.cpp (attached) that takes the file

input HW6problem2cData.dat (attached). When you execute the C++ code (with n = 3, and nInterp = 1000),

it outputs three data files, which are then called by the MATLAB file HW6problem2c PlotCplusplusData.m

(attached) for plotting.
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Figure 2: The datapoints (black circles) plotted with polynomial (red dashed), linear spline (blue solid) and cubic

spline (green dash dotted) interpolants.

It is possible (but you were not asked to) to solve this entire problem in MATLAB, by simply running the file

HW6problem2c.m (attached).

Problem 3

Bezier curve and B-spline (15+10 = 25 points)

A B-spline curve segment is given by the following control points:

P0 = (−1,−1) , P1 = (1,−1) , P2 = (1, 1) , P3 = (−1, 1) .

(a) Find the Bezier control points that will produce the same curve segment. Show all your
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calculations.

(b) Submit a plot of the curve segment.

Solution

(a) Let us denote the B-spline curve as BS(u) and the Bezier curve as BZ(u). We would like to find Bezier

control points Q0 = (x0, y0) , Q1 = (x1, y1) , Q2 = (x2, y2), and Q3 = (x3, y3), such that BS(u) = BZ(u).

First, we write BS(u) and BZ(u) in terms of their respective basis functions.

BS(u) = b−1 (u)P0 + b0 (u)P1 + b1 (u)P2 + b2 (u)P3,

BZ(u) = B3,0 (u)Q0 +B3,1 (u)Q1 +B3,2 (u)Q2 +B3,3 (u)Q3,

where the B-spline basis functions are (as in slide # 29, ch-3-b)

b−1(u) =
(1− u)

3

6
, b0 =

u3

2
− u2 +

2

3
, b1 =

1

2

(
−u3 + u2 + u+

1

3

)
, b2 =

u3

6
,

and the Bezier basis functions are (Bernstein polynomials Bn,k(u) =
n!

k!(n− k)!
uk (1− u)

n−k
, see slides # 12 and

14, ch-3-b)

B3,0(u) = (1− u)
3
, B3,1(u) = 3u (1− u)

2
, B3,2(u) = 3u2 (1− u) , B3,3(u) = u3.

To get BS(u) = BZ(u), we must have BSx(u) = BZx(u) (x-coordinate match) and BSy(u) = BZy(u) (y-

coordinate match). This means

−b−1 (u) + b0 (u) + b1 (u)− b2 (u) = B3,0 (u)x0 +B3,1 (u)x1 +B3,2 (u)x2 +B3,3 (u)x3,

−b−1 (u)− b0 (u) + b1 (u) + b2 (u) = B3,0 (u) y0 +B3,1 (u) y1 +B3,2 (u) y2 +B3,3 (u) y3.

The above equations, after substituting the basis functions in both sides, result

0u3 − u2 + u+
2

3
= (−x0 + 3x1 − 3x2 + x3)u3 + (3x0 − 6x1 + 3x2)u2 + (−3x0 + 3x1)u+ x0,

−2

3
u3 + u2 + u− 2

3
= (−y0 + 3y1 − 3y2 + y3)u3 + (3y0 − 6y1 + 3y2)u2 + (−3y0 + 3y1)u+ y0.

Equating the coefficients of monomials in u from both sides, we get

Q0 =

(
2

3
,−2

3

)
, Q1 =

(
1,−1

3

)
, Q2 =

(
1,

1

3

)
, Q3 =

(
2

3
,

2

3

)
.

(b) The curve segment is plotted below with B-spline and Bezier control points. The plot is made with MATLAB

code HW6Problem3b.m (attached).
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Figure 3: The curve segment (green line), the B-spline control points (blue circles) P0, P1, P2, P3, and the Bezier

control points (red circles) Q0, Q1, Q2, Q3, computed in part (a).
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