Aero 320: Numerical Methods Lab Assignment 16

Fall 2013

Problem 1

Numerical differentiation

For small h, where 0 < h << 1, use Taylor series expansion to show that (a)

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} + O(h),$$

(b)

$$f''(x_0) = \frac{f(x_0 - h) - 2f(x_0) + f(x_0 + h)}{h^2} + O(h^2).$$

Solution

(a) Taylor series expansion of the function f about x_0 gives

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \frac{h^3}{6}f'''(x_0) + \dots$$

$$\Rightarrow f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(x_0) - \frac{h^2}{6}f'''(x_0) - \dots$$

$$= \frac{f(x_0 + h) - f(x_0)}{h} + O(h).$$

This is the two point forward difference approximation for the first derivative.

(b) From Taylor series expansion similar to part (a), we get

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \frac{h^3}{6}f'''(x_0) + \dots$$

and (think of this as replacing h by -h in the above expansion)

$$f(x_0 - h) = f(x_0) - hf'(x_0) + \frac{h^2}{2}f''(x_0) - \frac{h^3}{6}f'''(x_0) + \dots$$

Adding the above two equations, we get

$$f(x_0 + h) + f(x_0 - h) = 2f(x_0) + h^2 f''(x_0) + \frac{h^4}{12} f''''(x_0) + \dots$$

$$\Rightarrow f(x_0 + h) - 2f(x_0) + f(x_0 - h) = h^2 f''(x_0) + \frac{h^4}{12} f''''(x_0) + \dots$$

$$\Rightarrow f''(x_0) = \frac{f(x_0 - h) - 2f(x_0) + f(x_0 + h)}{h^2} - \frac{h^2}{12} f''''(x_0) - \dots$$

$$= \frac{f(x_0 - h) - 2f(x_0) + f(x_0 + h)}{h^2} + O(h^2).$$

This is the three point central difference approximation for the second derivative.