Aero 320: Numerical Methods
Lab Assignment 16

Fall 2013

Problem 1

Numerical differentiation

For small h, where 0 < h << 1, use Taylor series expansion to show that
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Solution

(a) Taylor series expansion of the function f about xo gives

h? h3
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This is the two point forward difference approximation for the first derivative.

(b) From Taylor series expansion similar to part (a), we get
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fzo+h)=f(x0)+ hf/ (z0) + ?f” (z0) + Ff”/ (xo) + ...

and (think of this as replacing h by —h in the above expansion)
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Adding the above two equations, we get
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This is the three point central difference approximation for the second derivative.



