Tensor Optimization Problems in Optimal Transport

- **Georgiy Antonovich Bondar**
- Advancement to Ph.D. Candidacy in Applied Mathematics
 - University of California, Santa Cruz

Advisor: Abhishek Halder

January 24, 2025

Transport of a Probability Measure

Random variable $X \sim \mu known$

Random variable $Y = \tau(X) \sim ?$

Given differentiable $\tau(\cdot)$

Transport of a Probability Measure

Random variable $X \sim \mu known$

Random variable $Y = \tau(X) \sim ?$

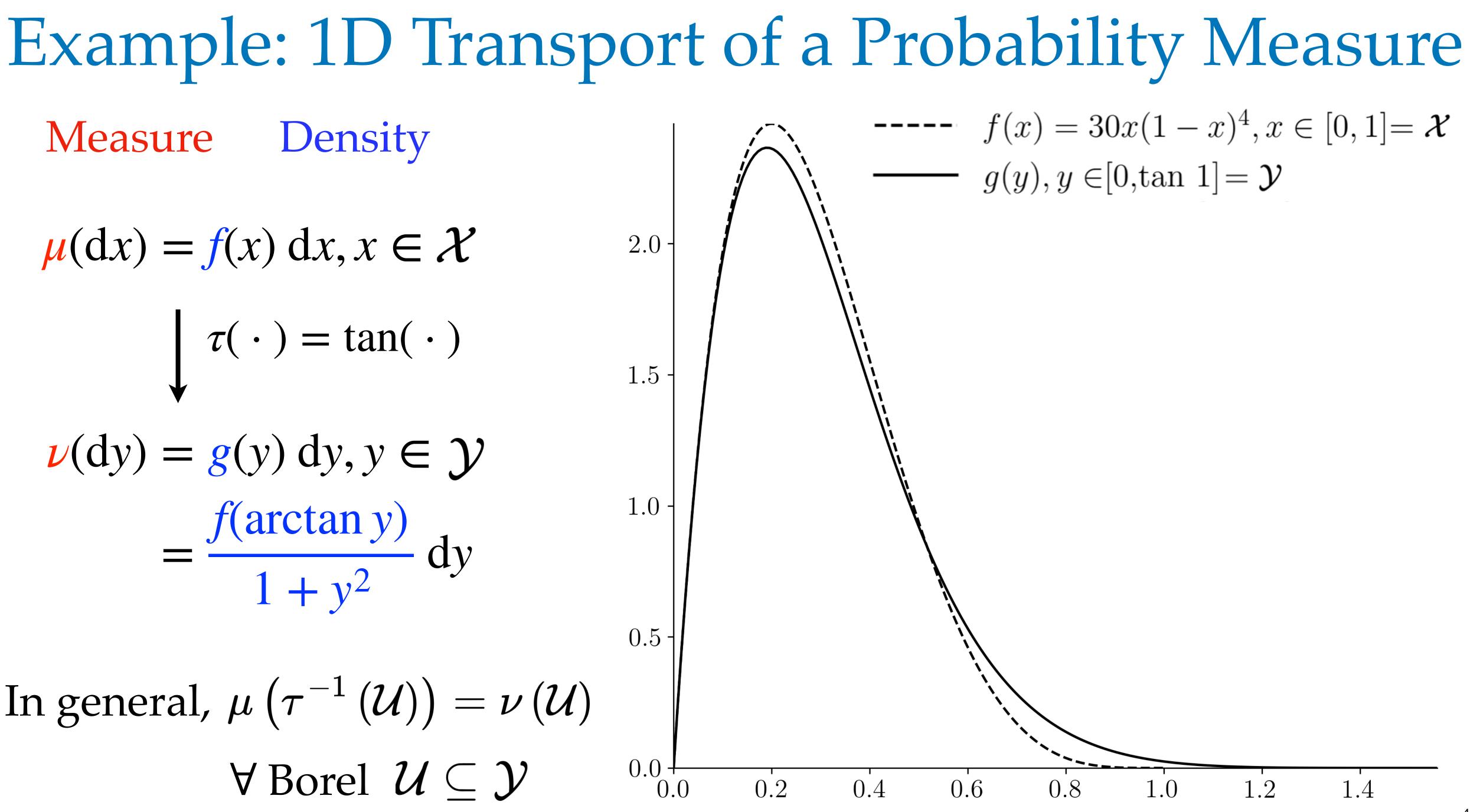
Notation: $\nu = \tau_{\mu}\mu$, read as: ν is the pushforward of μ under transport map τ

Computation: $\mu(dx) = f(x) dx$, $\nu(dx) = f(x) dx$

Given differentiable $\tau(\cdot)$

$$dy) = \tau_{\#}\mu = \frac{f(\tau^{-1}(y))}{|\nabla \tau(\tau^{-1}(y))|} dy$$

Measure Density $\mu(\mathrm{d} x) = f(x) \, \mathrm{d} x, x \in \mathcal{X}$ 2.0 - $\tau(\ \cdot\)=\tan(\ \cdot\)$ 1.5 - $\nu(dy) = g(y) dy, y \in \mathcal{Y}$ $= \frac{f(\arctan y)}{1 + y^2} dy$ 1.00.5 -In general, $\mu(\tau^{-1}(\mathcal{U})) = \nu(\mathcal{U})$ 0.0 - \forall Borel $\mathcal{U} \subseteq \mathcal{Y}$ 0.0



What is Optimal Transport (OT)?

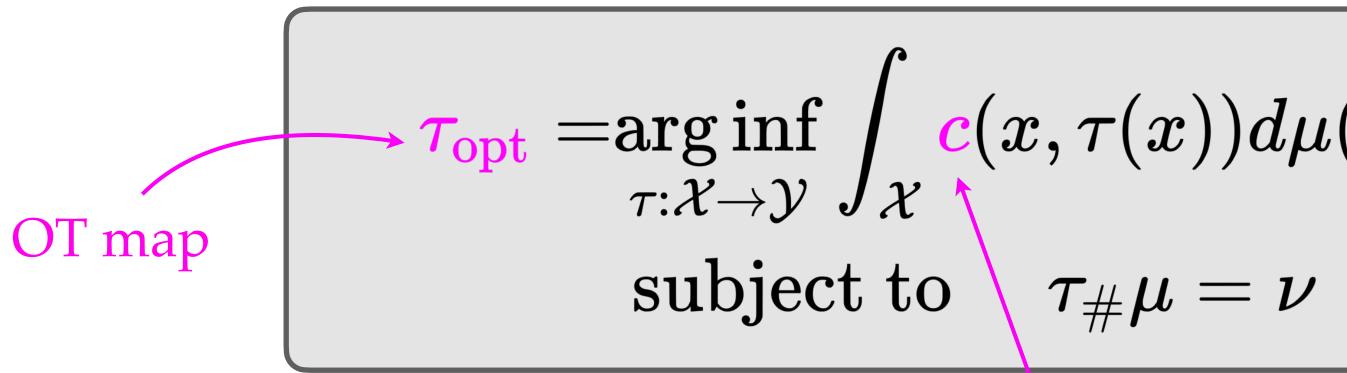
Given μ , τ , the new measure ν is unique: *nothing to optimize*

Inverse problem: Given μ , ν , the map τ is *underdetermined*

What is Optimal Transport (OT)?

Given μ , τ , the new measure ν is unique: nothing to optimize

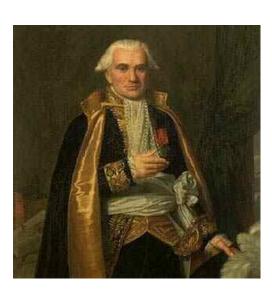
Inverse problem: Given μ , ν , the map τ is *underdetermined*



Ground cost = cost of transporting unit amount of mass from x to $\tau(x)$

Example: $c(x, y) = ||x - y||_{2}^{2}$, squared minimal geodesic length, etc.

$$d(x))d\mu(x)$$



Monge formulation, 1781

Very Brief History

Gaspard Monge: OT map formulation in 1781 with $c(x, y) = ||x - y||_1$

Now called the Schrödinger Bridge (SB): diffusive version of OT

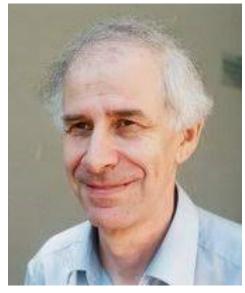
Leonid Kantorovich: OT plan reformulation in 1941

Wins 1975 Nobel prize in Economics for this work

Math for OT takes shape in late 20th - early 21st century

C. Villani

A. Figalli



Y. Brenier

R.J. McCann J-D. Benamou

- Erwin Schrödinger: attempts stochastic interpretation of quantum mechanics in 1931-32

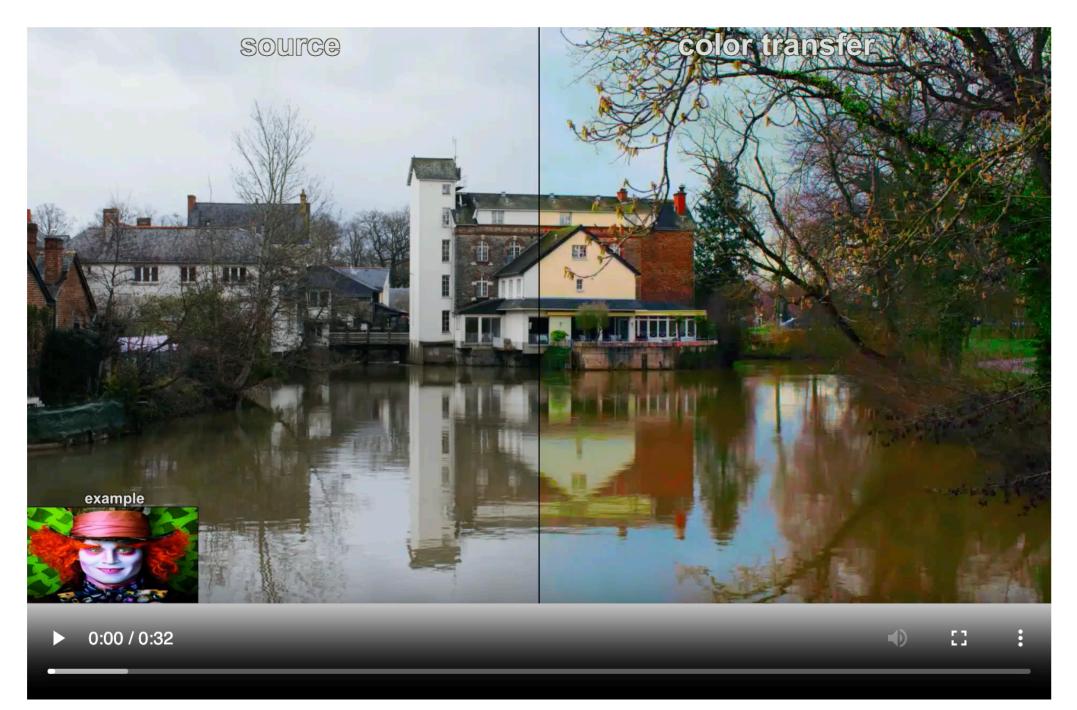


X-N. Ma

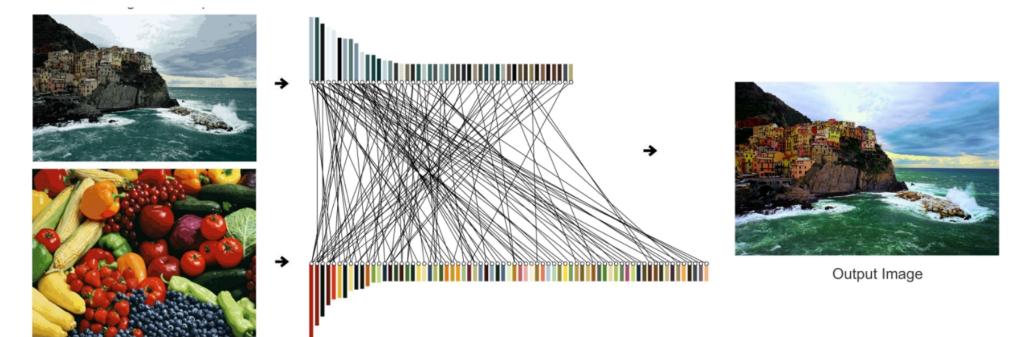
N. Trudinger X-J. Wang

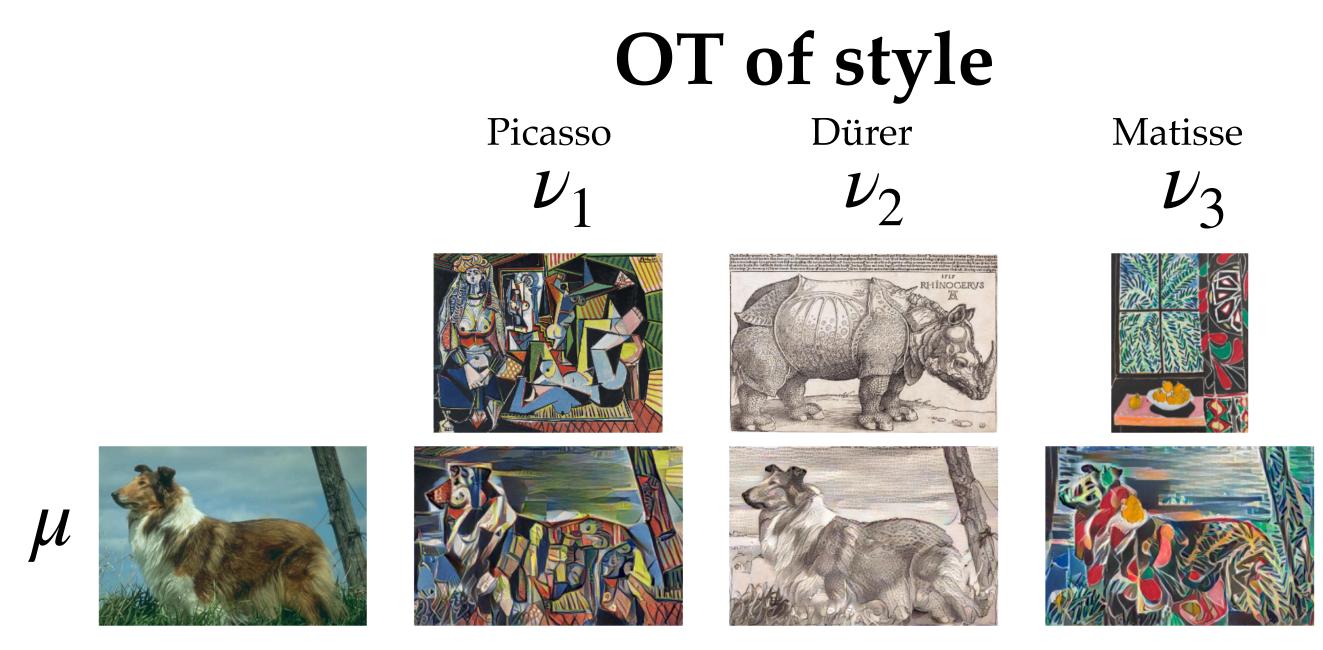
AI/ML Applications

OT of color



Credit: https://oriel.github.io/color_transfer.html





Credit: Kolkin, Salavon, Shakhnarovich, CVPR 2019 SB in diffusion model generative AI Stable diffusion, DALL-E

Credit: https://github.com/Stability-Al/generative-models

Science Applications of SB

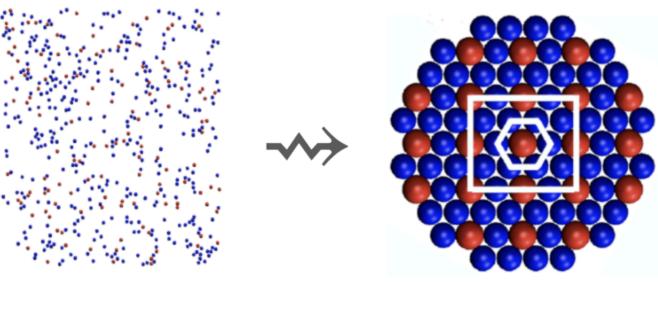
Protein synthesis

receptor

UAI 2023

Aligned Diffusion Schrödinger Bridges Vignesh Ram Somnath^{*1,2} Matteo Pariset*1,3 Ya-Ping Hsieh¹ Andreas Krause¹ Maria Rodriguez Martinez² Charlotte Bunne¹ ¹Department of Computer Science, ETH Zürich ²IBM Research Zürich ³Department of Computer Science, EPFL alignment π^{\star} Brownian bridge $\mathrm{d}X_t = g_t^2 \frac{\mathbf{x}_1 - X_t}{\beta_1 - \beta_1} \,\mathrm{d}t + g_t \,\mathrm{d}\mathbb{W}_t$ recepto bound unbound SBALIGN

 $dX_{t} = g_{t}^{2} \left[b_{t}^{\theta} \left(X_{t} \right) + \nabla \log h_{t}^{\theta} \left(X_{t} \right) \right] dt + g_{t} dW_{t}$



Dispersed particles

2024 Hugo Schuck Award by American Automatic Control Council

Material synthesis

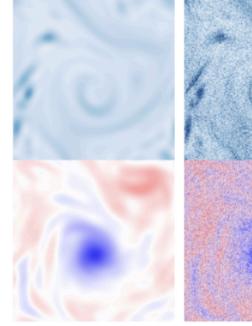
Ordered structure

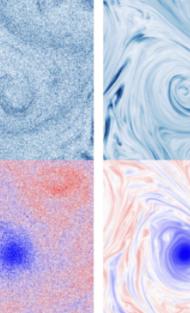
NeurIPS 2024

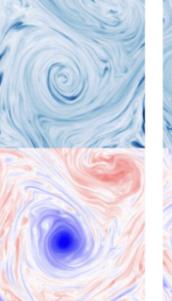
Diffusion Schrödinger Bridge Matching

Yuyang Shi* University of Oxford Valentin De Bortoli* ENS ULM

Andrew Campbell University of Oxford



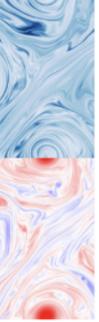




Low res

High res

Arnaud Doucet University of Oxford



Outline of This Talk

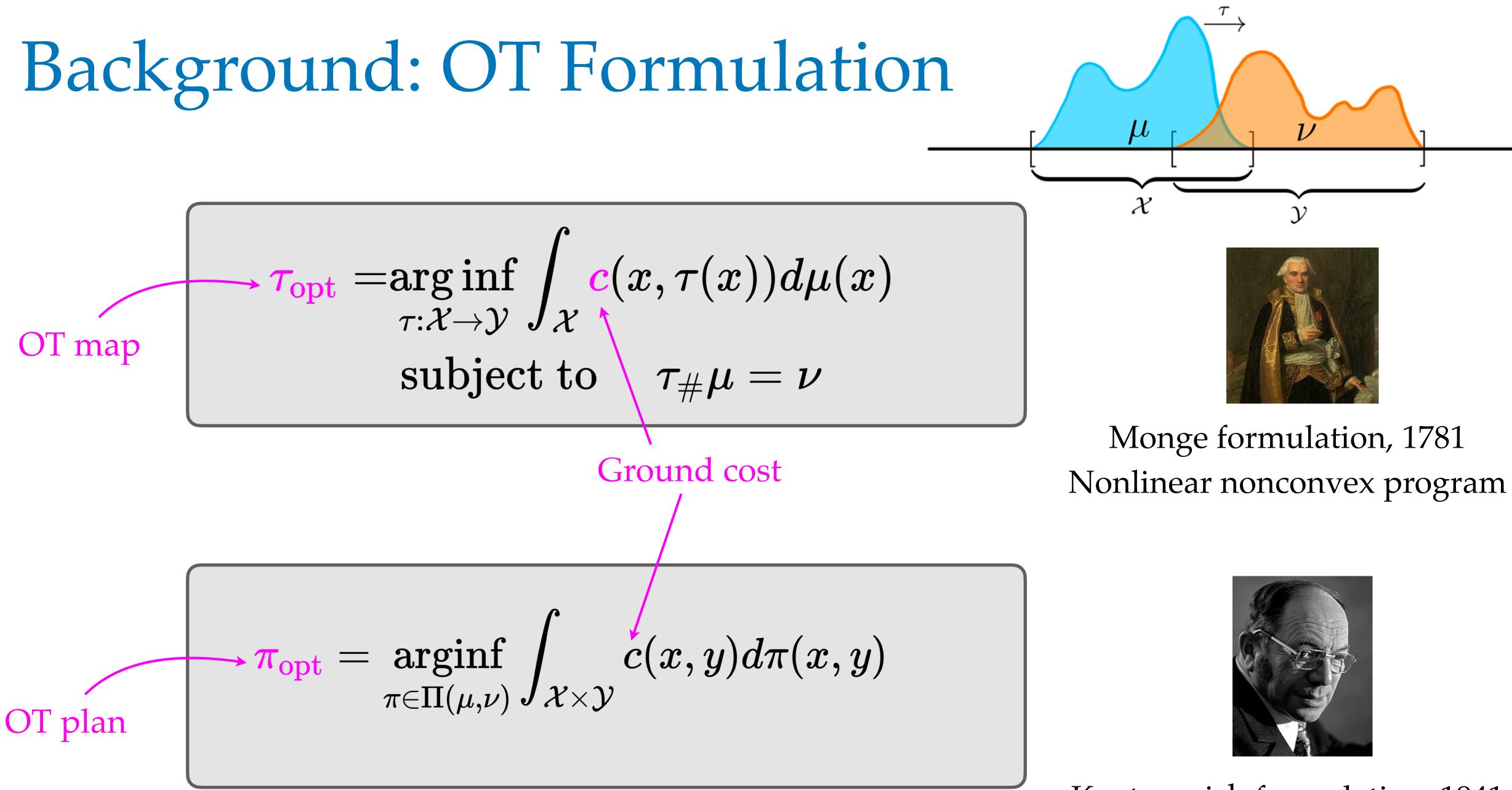
Mathematical Background

Tensor Optimization for OT Regularity

First computational method for OT regularity

Tensor Optimization for Graph-structured Multimarginal SB

Application in learning computational resource usage



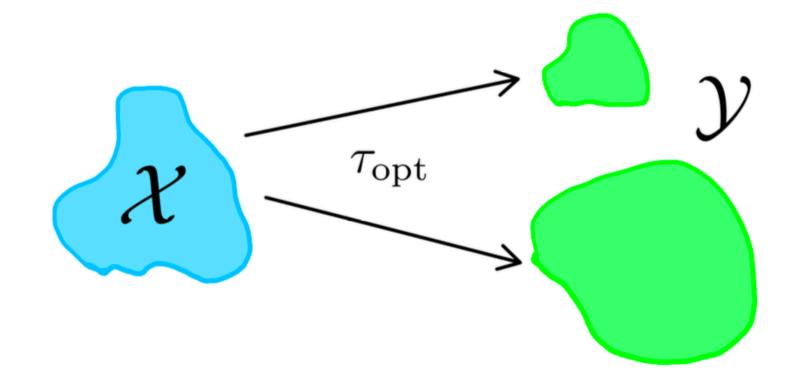
The inf value is called the squared Wasserstein distance

$$g)d\pi(x,y)$$

Kantorovich formulation, 1941 Linear program

Background: OT Regularity

Question: is τ_{opt} continuous?



Answer: Yes if μ , ν abs. continuous + extra condition on c and manifold

Background: OT Regularity

Question: is τ_{opt} continuous?

Defn: Ma-Trudinger-Wang (MTW) tensor (2005, 2009)

$$\mathfrak{S}_{(x,y)}(\xi,\eta):=\sum_{i,j,k,l,p,q,r,s}(c_{ij})$$

$$c_{ij,kl} = \partial_{x_i} \partial_{x_j} \partial_{y_k} \partial_{y_l} c(x,y),$$

$au_{ m opt}$

Answer: Yes if μ , ν abs. continuous + extra condition on *c* and manifold

X-N. Ma N. Trudinger X-J. Wang

 $\sum_{i,p} c^{p,q} c_{q,rs} - c_{ij,rs}) c^{r,k} c^{s,l} \xi_i \xi_j \eta_k \eta_l$

 $orall x \in \mathcal{X}, y \in \mathcal{Y}, \xi \in T_x \mathcal{X}, \eta \in T_u^* \mathcal{Y}$

 $c^{i,j}(x,y) = \left\lfloor ((
abla_x \otimes
abla_y)c)^{-1}
ight
floor_{i,j}$

Background: OT Regularity **Defn:** MTW(0) and MTW(κ), $\kappa > 0$

If $\mathfrak{S}_{(\cdot,\cdot)}(\xi,\eta) \ge 0 \ \forall (\xi,\eta) \text{ s.t. } \eta(\xi) = 0$ then *c* satisfies MTW(0) If $\exists k > 0$ s.t. $\mathfrak{S}_{(\cdot,\cdot)}(\xi,\eta) \geq \kappa \|\xi\|^2 \|\eta\|^2$ then *c* satisfies MTW(κ)

Defn: Nonnegative Cost Curvature (NNCC)

If $\mathfrak{S}_{(\cdot,\cdot)}(\xi,\eta) \geq 0 \ \forall (\xi,\eta)$ then *c* satisfies NNCC

Difficult to verify analytically. **Our approach:** computational certificate

Background: Schrödinger Bridge Problem (SBP)

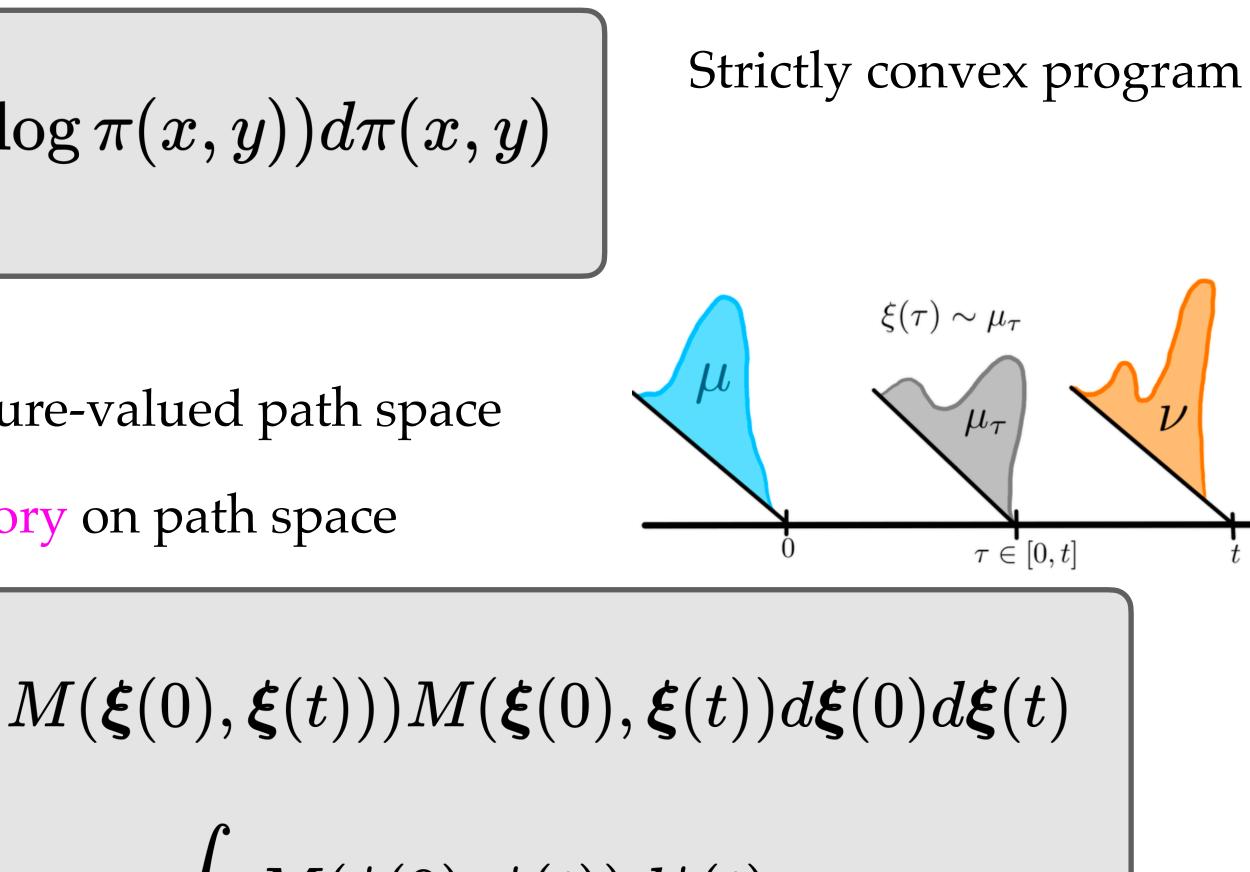
Static SBP = Kantorovich OT + entropic regularization

$$\pi_{ ext{opt}} = rginf_{\pi\in\Pi(\mu,
u)} \int_{\mathcal{X} imes\mathcal{Y}} (c(x,y)+arepsilon \operatorname{l} x imes \mathcal{Y})$$

Continuous SBP = optimization over measure-valued path space

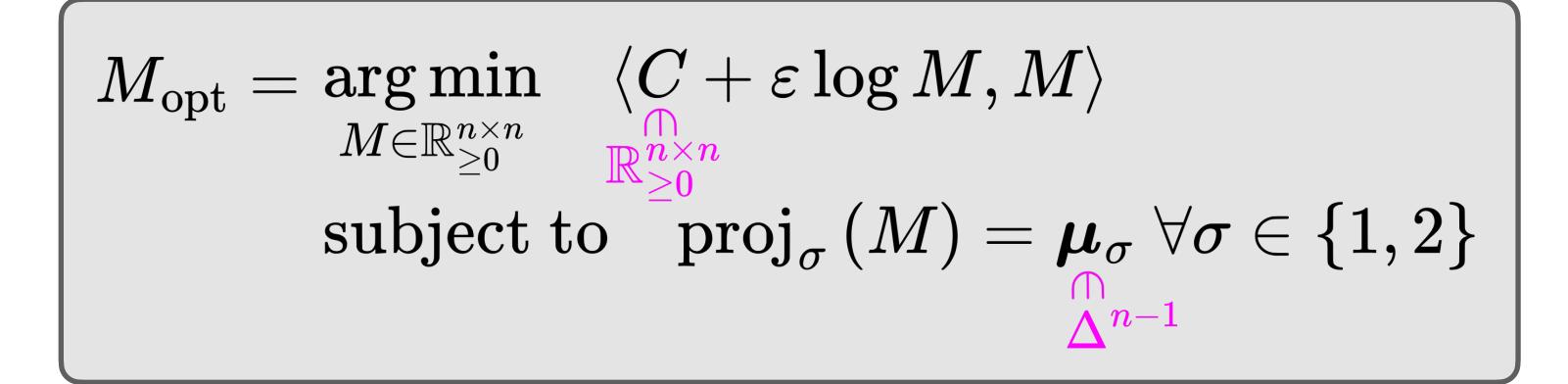
Generates the maximum likelihood trajectory on path space

$$egin{argsinf} rginf_{M\in\mathcal{P}(\mathcal{X} imes\mathcal{Y})} \int_{\mathcal{X} imes\mathcal{Y}} (c(oldsymbol{\xi}(0),oldsymbol{\xi}(t))+arepsilon\log M(oldsymbol{\xi}(0),oldsymbol{\xi}(t)))M(oldsymbol{\xi}(0),oldsymbol{\xi}(t))doldsymbol{\xi}(0),oldsymbol{\xi}(t)))M(oldsymbol{\xi}(0),oldsymbol{\xi}(t))doldsymbol{\xi}(0),oldsymbol{\xi}(t)))M(oldsymbol{\xi}(0),oldsymbol{\xi}(0),oldsymbol{\xi}(t)))M(oldsymbol{\xi}(0),oldsymbol{\xi}(0),oldsymbol{\xi}(0),oldsymbol{\xi}(0),oldsymbol{\xi}(0),oldsymbol{\xi}(0),oldsymbol{\xi}(0),oldsymbol{\xi}(0),oldsymbol{\xi}(0),oldsymbol{\xi}(0),oldsymbol{\xi}(0),oldsymbol{\xi}(0),oldsymbol{\xi}(0),oldsymbol{\xi}(0),oldsymbol{\xi$$

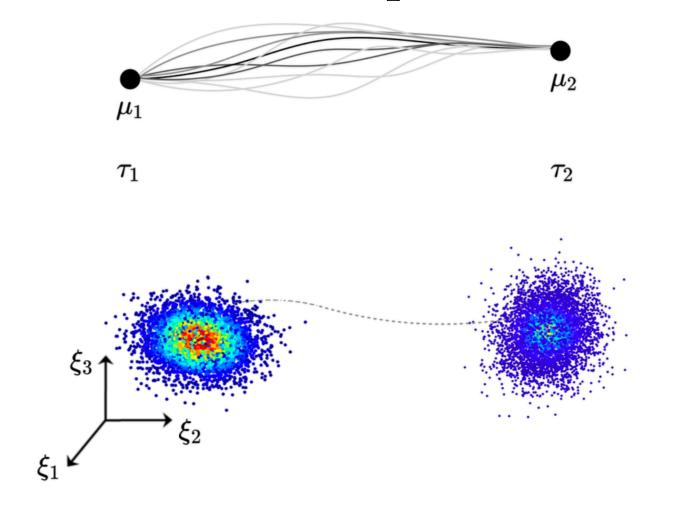


Background: Discrete SBP

Bi-marginal a.k.a. classical SBP



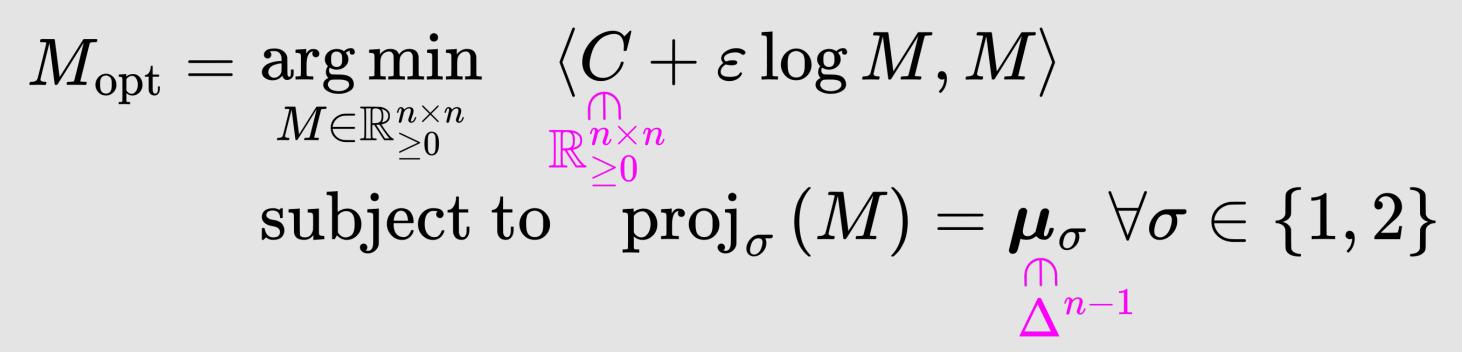
Darker distributional path = more likely



Weighted scattered data: $\{\boldsymbol{\xi}^{i}(\tau_{\sigma})\}_{i=1}^{n}, \mu_{\sigma} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\boldsymbol{\xi} - \boldsymbol{\xi}^{i}(\tau_{\sigma})\right)$

Background: Discrete SBP

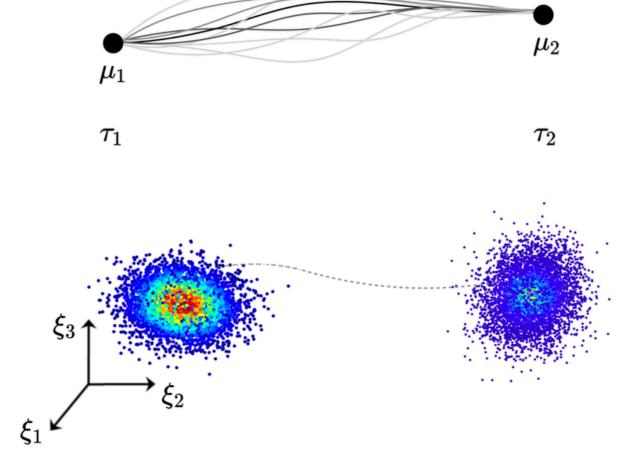
Bi-marginal a.k.a. classical SBP



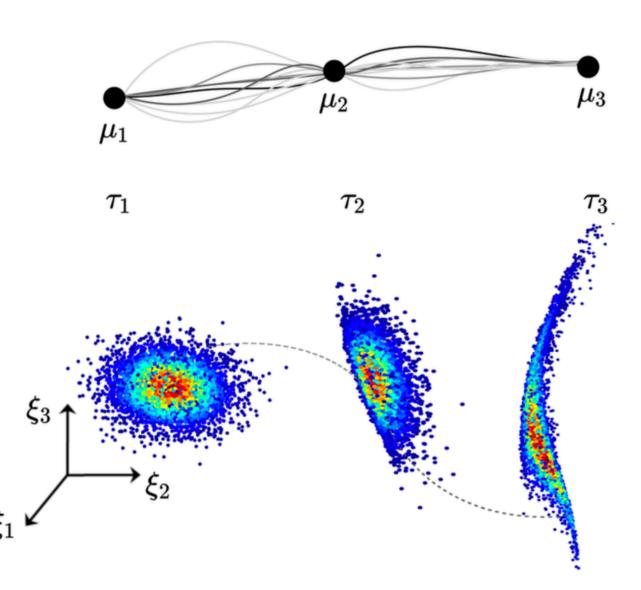
Multimarginal SBP (MSBP)

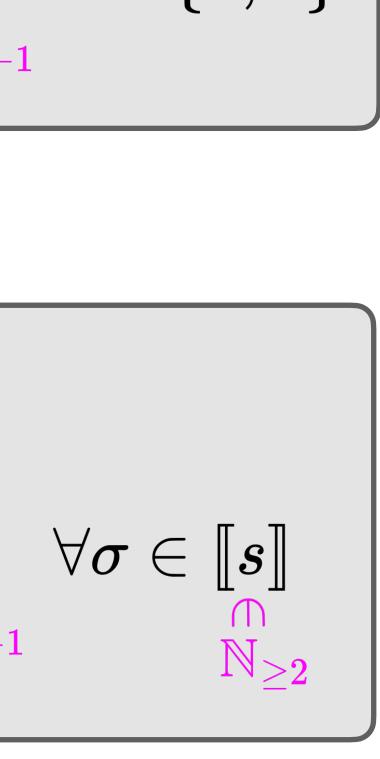
 $egin{aligned} M_{ ext{opt}} &= rgmin & \langle m{C} + arepsilon \log m{M}, m{M}
angle \ & m{M} \in (\mathbb{R}^n)^{\otimes s}_{\geq 0} & \stackrel{\cap}{(\mathbb{R}^n)^{\otimes s}_{> 0} \end{aligned}$ $ext{subject to} \quad ext{proj}_{\sigma}(oldsymbol{M}) = oldsymbol{\mu}_{\sigma} \quad orall \sigma \in \llbracket s
rbracket$ \bigwedge^{n-1}

Darker distributional path = more likely



Weighted scattered data: $\{\boldsymbol{\xi}^{i}(\tau_{\sigma})\}_{i=1}^{n}, \, \mu_{\sigma} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\boldsymbol{\xi} - \boldsymbol{\xi}^{i}(\tau_{\sigma})\right)$





Background: Sinkhorn Iteration to Solve MSBP

Step 2: Perform Sinkhorn iterations until (linear) convergence

Step 3: $M_{\text{opt}} = K \odot U$ where $U := \bigotimes_{\sigma=1}^{s} u_{\sigma} \in (\mathbb{R}^n)_{>0}^{\otimes s}$

- **Step 1:** Let $K := \exp\left(-C/\varepsilon\right) \in (\mathbb{R}^n)_{>0}^{\otimes s}$, initialize $u_{\sigma} := \exp\left(\lambda_{\sigma}/\varepsilon\right) \in \mathbb{R}^n_{>0}$

 - $oldsymbol{u}_{\sigma} \leftarrow oldsymbol{u}_{\sigma} \otimes oldsymbol{\mu}_{\sigma} \oslash \operatorname{proj}_{\sigma}(oldsymbol{K} \odot oldsymbol{U}) \quad orall \sigma \in \llbracket s
 Vert$

Background: Sinkhorn Iteration to Solve MSBP

Step 2: Perform Sinkhorn iterations until (linear) convergence

Step 3: $M_{\text{opt}} = K \odot U$ where $U := \bigotimes_{\sigma=1}^{s} u_{\sigma} \in (\mathbb{R}^n)_{>0}^{\otimes s}$

Trouble: computing $[\operatorname{proj}_{\sigma}(M)]_{j} = \sum_{i_{1},\ldots,i_{\sigma-1},i_{\sigma+1},\ldots,i_{s}} M_{i_{1},\ldots,i_{\sigma-1},j,i_{\sigma+1},\ldots,i_{s}}$

has $\mathcal{O}(n^s)$ complexity more on this later

- **Step 1:** Let $\boldsymbol{K} := \exp\left(-\boldsymbol{C}/\varepsilon\right) \in (\mathbb{R}^n)_{>0}^{\otimes s}$, initialize $\boldsymbol{u}_{\sigma} := \exp\left(\boldsymbol{\lambda}_{\sigma}/\varepsilon\right) \in \mathbb{R}^n_{>0}$

 - $oldsymbol{u}_{\sigma} \leftarrow oldsymbol{u}_{\sigma} \otimes oldsymbol{\mu}_{\sigma} \oslash \operatorname{proj}_{\sigma}(oldsymbol{K} \odot oldsymbol{U}) \quad orall \sigma \in \llbracket s
 brace$

Tensor Optimization for OT Regularity

Problem Formulation

Assumption A1: MTW tensor is rational in $(x, y) \in \mathcal{X} \times \mathcal{Y}$ semialgebraic **Sufficient but not necessary:** *c* is rational in $(x, y) \in \mathcal{X} \times \mathcal{Y}$ semialgebraic

Problem Formulation

Forward problem:

satisfies either MTW(0) or MTW(κ) or NNCC condition

Inverse problem:

Assumption A1: MTW tensor is rational in $(x, y) \in \mathcal{X} \times \mathcal{Y}$ semialgebraic Sufficient but not necessary: *c* is rational in $(x, y) \in \mathcal{X} \times \mathcal{Y}$ semialgebraic

Given $c, \mathcal{X}, \mathcal{Y}$ as per A1, certify / falsify if the ground cost $c: \mathcal{X} \times \mathcal{Y} \mapsto \mathbb{R}_{>0}$

Given $c, \mathcal{X}, \mathcal{Y}$ as per A1, find semialgebraic $\mathcal{U} \times \mathcal{V} \subseteq \mathcal{X} \times \mathcal{Y}$ such that $c: \mathcal{U} \times \mathcal{V} \mapsto \mathbb{R}_{>0}$ satisfies either MTW(0) or MTW(κ) or NNCC condition

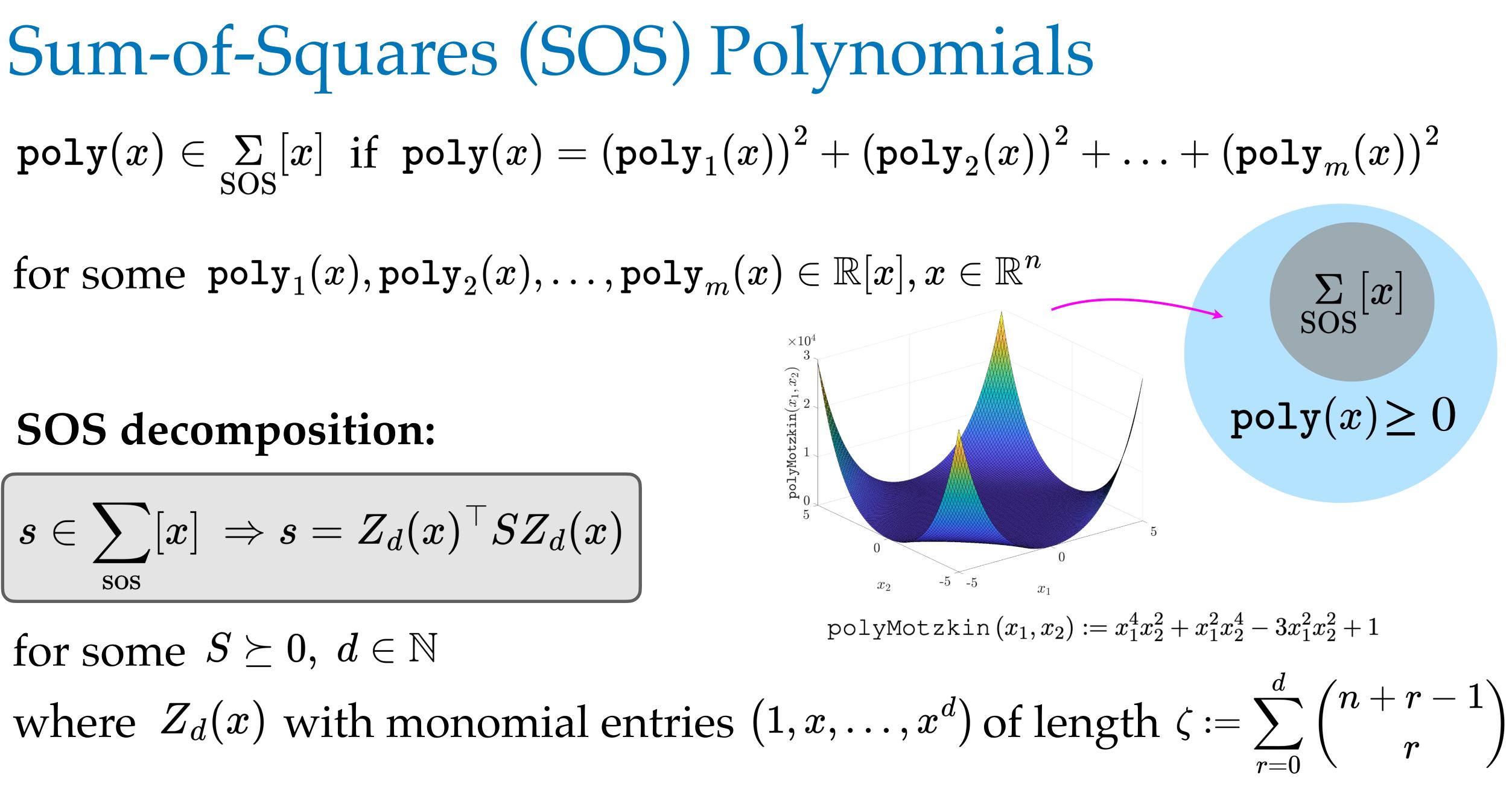
Sum-of-Squares (SOS) Polynomials

for some $\operatorname{\mathsf{poly}}_1(x), \operatorname{\mathsf{poly}}_2(x), \dots, \operatorname{\mathsf{poly}}_m(x) \in \mathbb{R}[x], x \in \mathbb{R}^n$

SOS decomposition:

$$s \in \sum_{\mathrm{sos}} [x] \, \Rightarrow s = Z_d(x)^ op S Z_d(x)$$

for some $S \succeq 0, d \in \mathbb{N}$



SOS Programming

Defn: Semialgebraic set

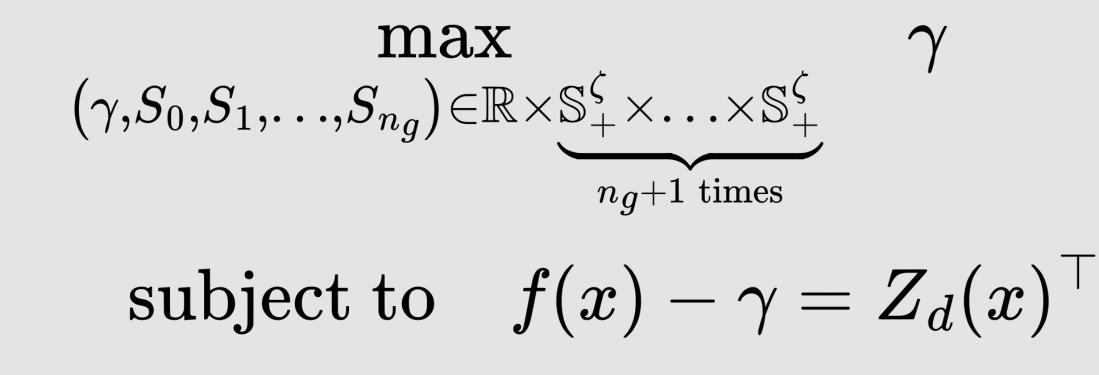
Defn: Polynomial Optimization For $f, g_{i \in [n_q]} \in \mathbb{R}[x]$ $\min_{x\in \mathbb{R}^n} f(x) \quad ext{such that} \quad x\in \mathcal{C}:=\{x\in \mathbb{R}^n\mid g_i(x)\leq 0 orall i\in \llbracket n_q
rbrace\}$ $\mathbf{1}$ subject to $f(x) - \gamma \geq 0$ $\forall x \in \mathcal{C}$ semialgebraic $\max \gamma$ $\gamma \in \mathbb{R}$

Finite union of sets of the form $\{x \in \mathbb{R}^n \mid g(x) \leq 0, g \in \mathbb{R}_{d_q}[x], d_q \in \mathbb{N}\}$

Computationally intractable

SOS Programming (contd.)

$$\exists s_0, s_1, \dots, s_{n_g} \in \sum_{\mathrm{sos}} [x] ext{ such that } f(x) - \gamma = s_0(x) - \sum_{i \in [n_g]} s_i(x) g_i(x)$$



Semidefinite program (SDP) ->> software SOSTOOLS, YALMIP, SOSOPT

$\in \mathcal{C}$ Archimedean

utinar's Positivstellensatz (1993)

$$S_0Z_d(x) - \sum_{i\in[n_g]}Z_d(x)^ op S_iZ_d(x)g_i(x)$$

Back to Forward Problem

Forward problem: Given $c, \mathcal{X}, \mathcal{Y}$ as per A1, certify / falsify if the ground cost satisfies either MTW(0) or MTW(κ) or NNCC condition

$$\mathcal{X} imes \mathcal{Y} = \{(x,y) \in \mathbb{R}^n imes \mathbb{R}^n \mid m_i(x,y) \in \mathbb{R}$$

NNCC forward problem:

min

MTW(*k*) forward problem: min ()subject to $\mathfrak{S}_{(x,y)}(\xi,\eta) \geq \kappa \|\xi\|^2 \|\eta\|^2$,

$|y| \leq 0, \; m_i(x,y) \in \mathbb{R}_{d_m}[x,y] \; orall i \in \llbracket \ell rbrace \}$

$\text{subject to} \quad \mathfrak{S}_{(x,y)}(\xi,\eta) \geq 0, \quad \forall (x,y) \in \mathcal{X} \times \mathcal{Y}, \ \xi \in T_x \mathcal{X}, \ \eta \in T_y^* \mathcal{Y}$

 $orall (x,y) \in \mathcal{X} imes \mathcal{Y}, \xi \in T_x \mathcal{X}, \eta \in T_y^* \mathcal{Y} ext{ s.t. } \eta(\xi) = 0.$

Solution to (NNCC) Forward Problem $\in \mathbb{R}^{n^2 imes n^2}$ $F_{(x,y)}(\xi,\eta) = (\xi\otimes\eta)^{ op} \widetilde{F(x,y)}(\xi\otimes\eta)^{ op}$ $[F(x,y)]_{i+n(j-1),k+n(l-1)} = \sum (c_{ij,p}c^{p,q}c_{q,rs}-c_{ij,rs})c^{r,k}c^{s,l}$

$$T_x \mathcal{X}, T_y^* \mathcal{Y} \cong \mathbb{R}^n \implies \mathfrak{S}$$

For $F = \frac{F_N}{F_D} \in \mathbb{R}_{N,D}[x,y], N, D \in \mathbb{N}$, if $\exists s_0, s_1, \dots, s_\ell \in \sum_{i=1}^{n^2} [x,y]$ such that SOS $ig(F_N(x,y)\!+\!F_N^ op(x,y)ig)-s_0(x,y)F_D(x,y)+\sum s_i(x,y)m_i(x,y)\in \sum^n [x,y]$ $i \in [\ell]$ SOS then *c* satisfies NNCC condition on $\mathcal{X} \times \mathcal{Y}$

p,q,r,s

Computational Complexity: Forward Problem

Parameters: $\omega \in [2.376, 3]$

 $F=rac{F_N}{F_D}\in \mathbb{R}_{N,D}[x,y], N,D\in \mathbb{N} \quad \Rightarrow \quad [F]_{i,j}\in \mathbb{R}_{(n^4-1)d_D+d_N,n^4d_D}[x,y]$ $d_N, d_D = \mathcal{O}(ND)$

 $\ell = \#$ of polynomial constraints defining $\mathcal{X} \times \mathcal{Y}$ semialgebraic

NNCC complexity: $\mathcal{O}\left(\ell^{5/4}n^{9+5d_N/4} + n^{\omega(4+d_N)} + \ell^{\omega/2}n^{\omega(2+d_N/2)}\right)$ MTW(κ) complexity: $O\left(\ell^{5/4}n^{9a}\right)$

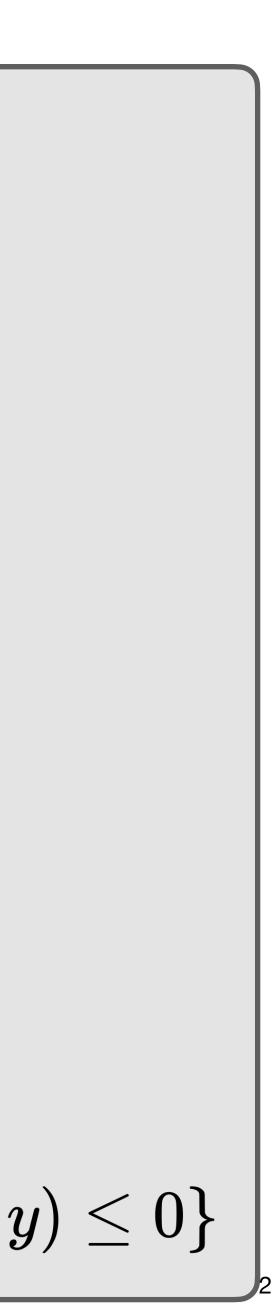
$$d_N/4 + \ell^{\omega/2 + 1/4} n^{(\omega/2 + 1/4) d_N}$$

Sub-quadratic in ℓ , polynomial in n

Solution to (NNCC) Inverse Problem For compact $\Lambda := \{(x,y) \in \mathcal{X} \times \mathcal{Y} \mid \lambda(x,y) \leq 0, \lambda(x,y) \in \mathbb{R}_{d_{\lambda}}[x,y], d_{\lambda} \in \mathbb{N}\}$ chosen a priori, let $V_{\pm} : \Lambda \mapsto \mathbb{R}$ solve $\min_{V\in \mathbb{R}_d[x,y]} ~~ \int_{\Lambda} V(x,y) dx dy,$ subject to $V(x,y) - m_i(x,y) + r$ $V(x,y)\pm F_D(x,y)+s$ $V(x,y)\pm f_j(x,y)+s_j(x,y)\lambda$ $s_0(x,y),s_j(x,y),r_i(x,y)\in \sum$

then *c* satisfies NNCC on $\{(x, y) \in \Lambda\}$

$$egin{aligned} & V_i(x,y)\lambda(x,y)\in\sum_{ ext{sos}}[x,y], & orall i\in \llbracket \ell
rbracket, \ & V_i(x,y)\lambda(x,y)\in\sum_{ ext{sos}}[x,y], \ & \lambda(x,y)\in\sum_{ ext{sos}}[x,y], \ & orall j\in \llbracket | ext{pminor}(F_N)|
rbracket, \ & \lambda \mid V_+(x,y)\leq 0
bracket \cup \{(x,y)\in\Lambda\mid V_-(x,y)\} \end{aligned}$$



Numerical Results: Forward Problem

Example 1: Perturbed Euclidean Cost

$$c(x,y) = \|x-y\|_2^2 - arepsilon$$

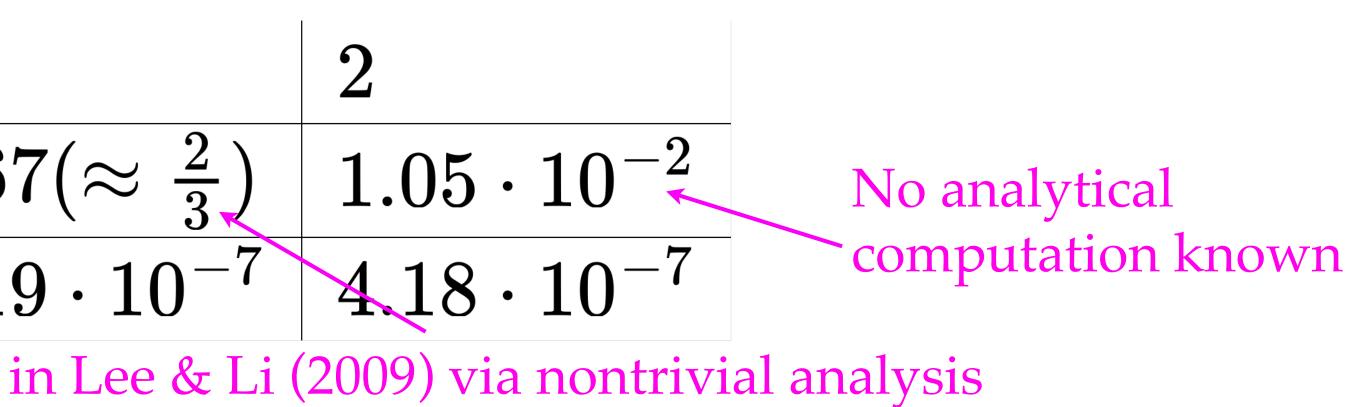
Lee & Li (2009): for ε small enough, MTW(0) holds on

But how small is small enough?

We used SOS SDP + bisection to find ε_{max} such that MTW(0) holds

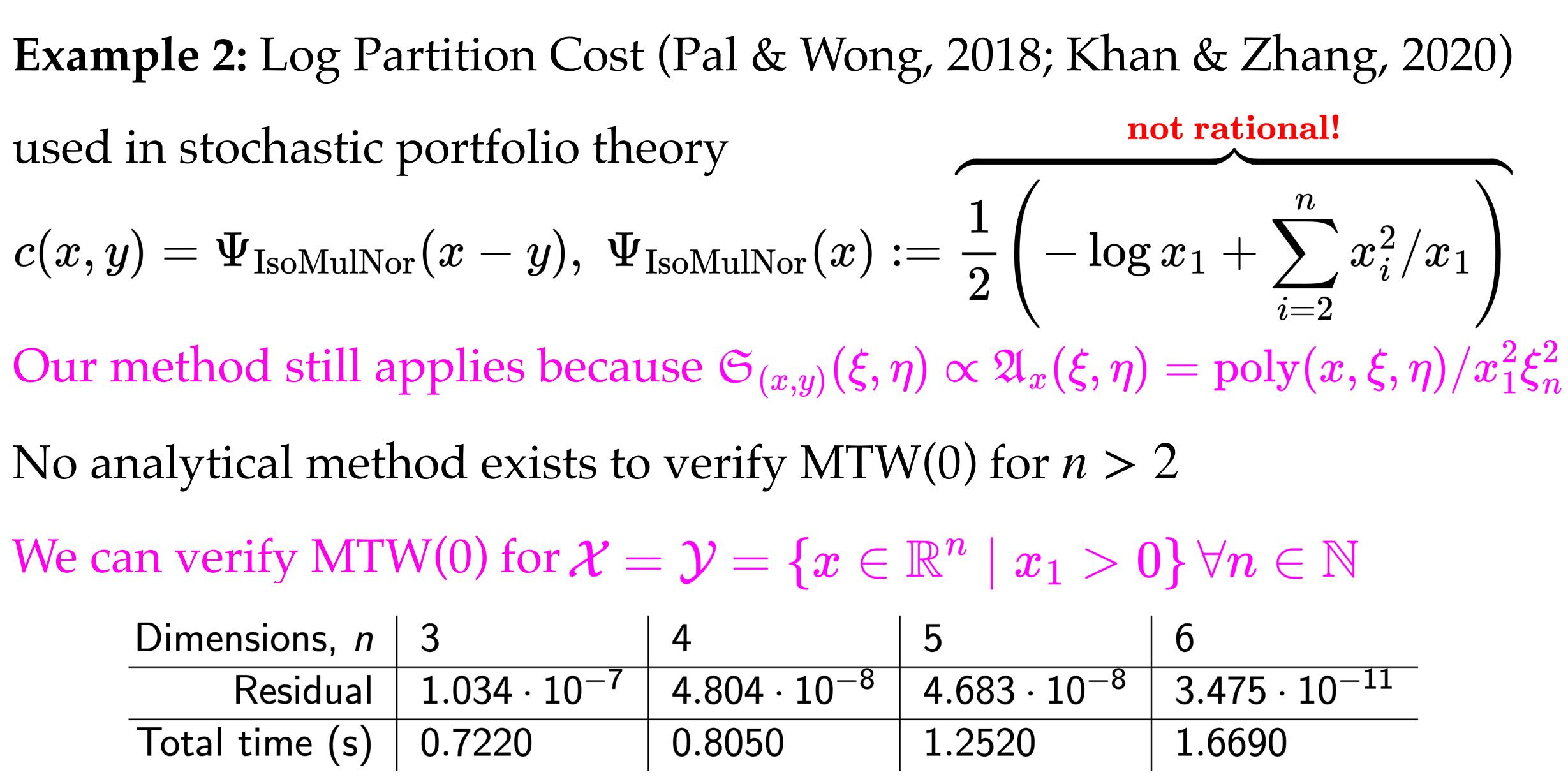
Dimensions, n	1
$arepsilon_{ ext{max}}$	0.67(pprox
Residual	$1.19 \cdot 10$
	:T

- $\|x-y\|_2^4, \quad x,y\in \mathbb{R}^n, arepsilon>0$
- $\mathcal{X} \times \mathcal{Y} := \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n \mid ||x y||_2 \leq 0.5\}$



Numerical Results: Forward Problem used in stochastic portfolio theory No analytical method exists to verify MTW(0) for n > 2We can verify MTW(0) for $\mathcal{X} = \mathcal{Y} = \{x \in \mathbb{R}^n \mid x_1 > 0\} \forall n \in \mathbb{N}$ Dimensions, *n* 3 4 5

Residual	$1.034 \cdot 10^{-7}$	4.80
Total time (s)	0.7220	0.80



Numerical Results: Forward Problem

For n = 3, our method discovered SOS decomposition:

[0	-1.4	0	0.24	0	0	
2.4	0	-0.17	0	0	0	
0	1.4	0	-0.24	0	0	$\Gamma_{m} \epsilon^{2} \epsilon$
-2.4	0	0.17	0	-0.0002	0	$\left[egin{array}{c} \eta_1 \xi_1^2 \xi_2 \ \epsilon^2 \epsilon \end{array} ight]$
0	-1.4	0	0.25	0	-1.2	$\eta_1 \xi_1^2 \xi_3$
2.4	0	-0.17	0	-0.0002	0	$\eta_1 \xi_1 \xi_2 \xi_1$
-1.6	0	-1.9	0	0	0	$\eta_1 \xi_1 \xi_3 \xi_1$
0	0.52	0	1.3	0	0	$\eta_2 \xi_1 \xi_2 \xi_2$
0	1.4	0	-0.25	0	0	$\eta_2 \xi_1 \xi_2 \xi_3$
-0.84	0	2	0	0	0	
0	-0.52	0	-1.3	0	0	

where $s(x,\xi,\eta) =$

Example 2: Log Partition Cost (Pal & Wong, 2018; Khan & Zhang, 2020) $\mathrm{poly}(x,\xi,\eta)=s(x,\xi,\eta)^ op s(x,\xi,\eta)$

Numerical Results: Inverse Problem

Example 3: Perturbed Euclidean Cost Revisited

$$c(x,y) = \|x-y\|_2^2 - \varepsilon$$

Lee & Li (2009): for $\varepsilon \gg 0$, MTW(0) fails on

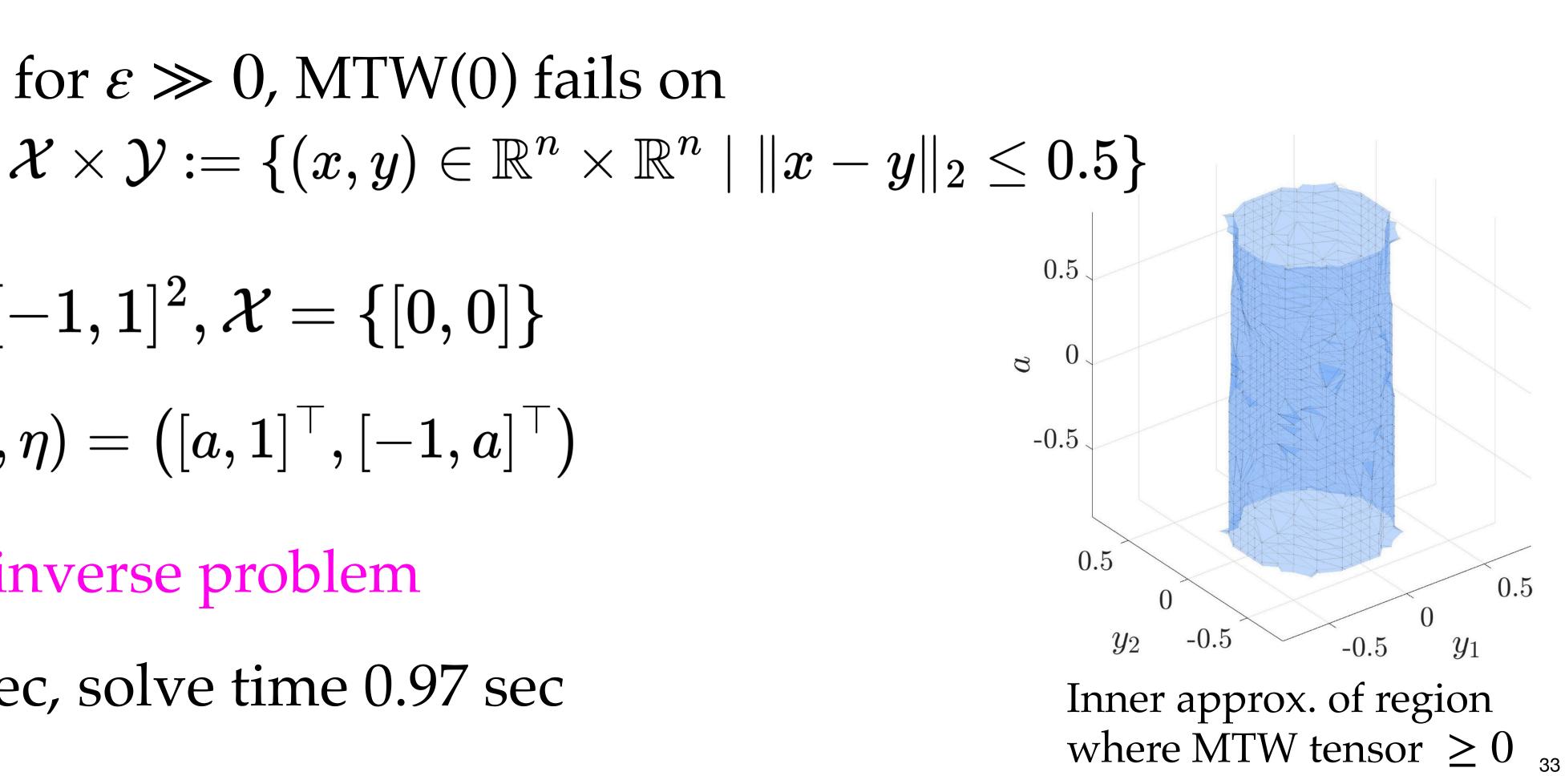
Fix $\varepsilon = 1, \Lambda = [-1, 1]^2, \mathcal{X} = \{[0, 0]\}$

Parameterize $(\xi, \eta) = ([a, 1]^\top, [-1, a]^\top)$

Solve MTW(0) inverse problem

Exec time 115 sec, solve time 0.97 sec

 $\|x-y\|_2^4, \quad x,y\in \mathbb{R}^n, arepsilon>0$



Numerical Results: Inverse Problem

Example 4: Squared Distance Cost for a Surface of Positive Curvature

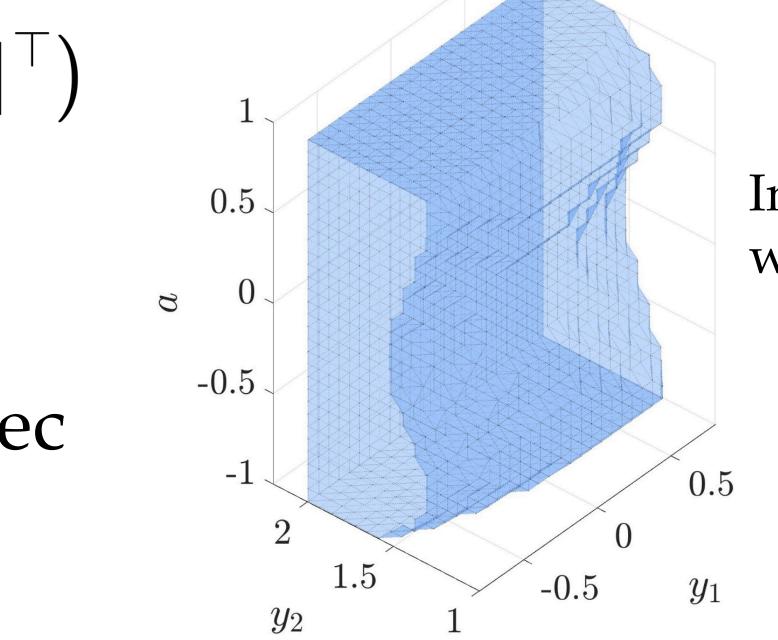
$$c(x,y) = 3(x_1 - y_1)^2(x_2 + y_2) + 4(x_2^3 + y_2^3) - (4x_2y_2 - (x_1 - y_1)^2)^{rac{3}{2}}$$

MTW holds around $\{x = y\}$ Fix $\Lambda = [-1,1] imes [0,2], \ \mathcal{X} imes \mathcal{Y} = \{[0,1], \ \mathcal{X} \in \mathcal{Y}\}$

Parameterize $(\xi, \eta) = ([a, 1]^{\top}, [-1, a]^{\top})$

Solve MTW(0) inverse problem

Exec time 119 sec, solve time 19.6 sec



Inner approx. of region where MTW tensor ≥ 0

Recap: SOS Programming for OT Regularity

NNCC, MTW(κ), MTW(0) conditions \Rightarrow regularity of the OT map τ_{opt}

J

SOS tightening of forward & inverse problems

 \downarrow

Solve SDP using SOSTOOLS + YALMIP ---> computational certificates

Assumption A1: MTW tensor is rational in $(x, y) \in \mathcal{X} \times \mathcal{Y}$ semialgebraic

Tensor Optimization for Graph-structured Multi-marginal SB

Learning Computational Resource Usage

Multicore Software

Software running on $J \in \mathbb{N}$ CPU cores

Resource usage stochastic process

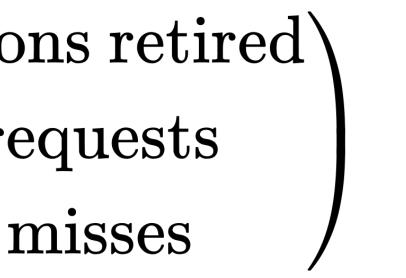
Example:
$$\boldsymbol{\xi}^{j} := \begin{pmatrix} \xi_{1}^{j} \\ \xi_{2}^{j} \\ \xi_{3}^{j} \end{pmatrix} = \begin{pmatrix} \text{instruction} \\ \text{LLC reduce} \\ \text{LLC} \end{pmatrix}$$

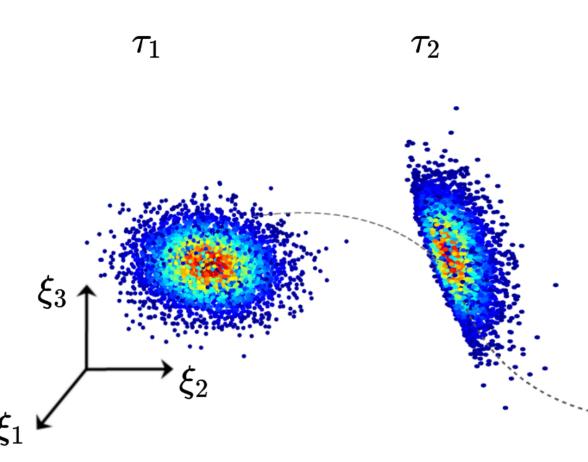
"Profiling" in RTOS community: san

Time / resource intensive!

Motivation: Computational Resource Usage of

$$\boldsymbol{\xi}(au) \sim \mu_{ au}$$

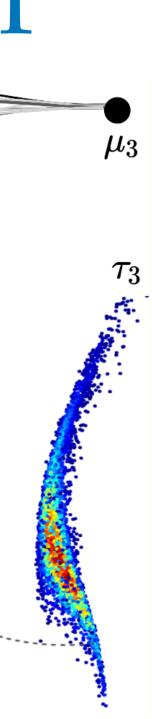




$$ext{mple} \ \underbrace{\{m{\xi}^{i,j}\left(au_{\sigma}
ight)\}_{i=1}^n}_{ ext{scattered data}} \ orall \sigma \in \llbracket s
rbracket ext{ where }$$

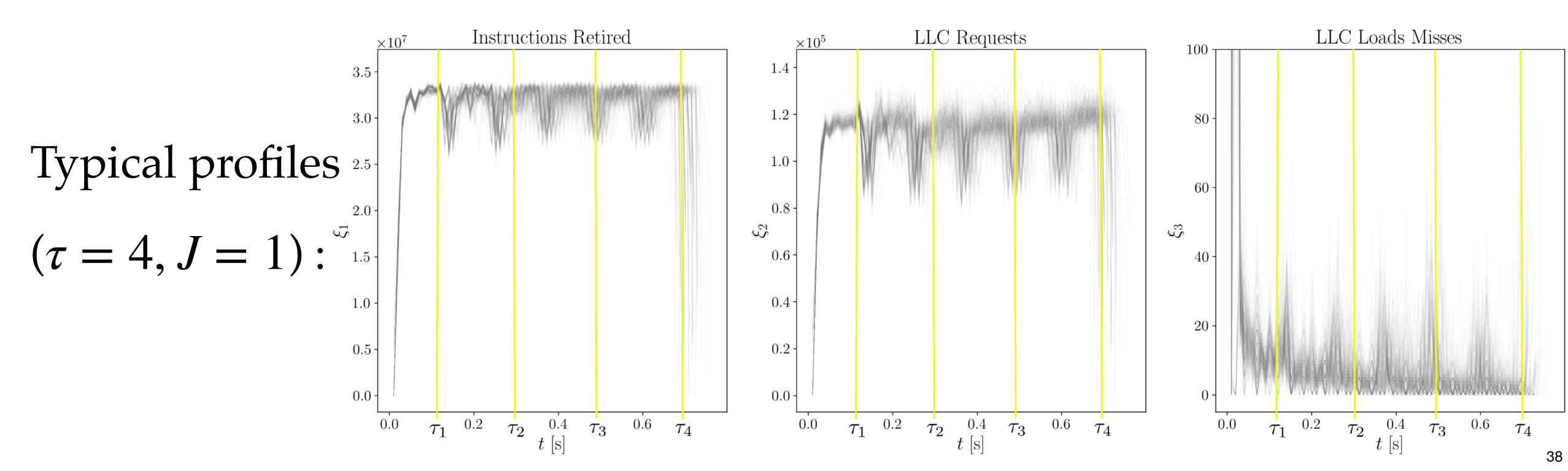
 $\forall j \in \llbracket J \rrbracket$

 $au_1\equiv 0< au_2<\ldots< au_{s-1}< au_s\equiv t,\quad s\geq 2$



Problem Formulation Use (weighted scattered) profile data $\{oldsymbol{\xi}^{i,j}(au_{\sigma})\}_{i=1}^{n}, \mu_{\sigma}^{j}:=rac{1}{n}\sum_{i=1}^{n}\delta\left(oldsymbol{\xi}^{j}-oldsymbol{\xi}^{i,j}\left(au_{\sigma}
ight)
ight)orall(j,\sigma)\in\llbracket J
ight] imes\llbracket s
ight]$

to learn $\hat{\mu}_{\tau} \forall \tau \in [0, t]$



Challenges

Difficult to have first-principle physics based model for combined S/W+H/W level stochasticity

Correlation structure among resource states changes with time

Need: nonparametric learning, also desire: learning with optimality

Learning must be over joint resources (e.g., processor & cache correlated)

Main Idea

Step 1: Model the spatio-temporal correlation induced by HW+SW architecture by graph structures

Step 2: Solve MSBP over the resulting graph

Step 3: Use the MSBP solution to predict most likely $\hat{\mu}_{\tau}$

Steps 1,2: Discrete Graph-structured MSBP

- **Problem template:** $M{\in}({\mathbb R}^n)^{\otimes|\Lambda|}_{>0}$ subject to pro
- **Prop:** (Strong duality \rightsquigarrow Sinkhorn recursions, complexity: $\mathcal{O}(n^{|\Lambda|})$) $oldsymbol{K} := \exp(-oldsymbol{C}/arepsilon) \,, \, oldsymbol{u}_{\sigma}^{j} := \exp(-oldsymbol{E}/arepsilon) \,, \, oldsymbol{U}_{\sigma}^{j} := \exp(-oldsymbol{E}/are$ Let $\in (\mathbb{R}^n)^{\otimes |\Lambda|}_{>0}$ $\in \mathbb{R}^n_{>0}$
- The multi-marginal Sinkhorn recursions $oldsymbol{u}^j_{\sigma} \leftarrow oldsymbol{u}^j_{\sigma} \odot oldsymbol{\mu}^j_{\sigma} \oslash \operatorname{proj}_{(j,\sigma)}$ converges with linear rate to minimizer $M^{\text{opt}} = K \odot U$

 $rgmin \langle oldsymbol{C} + \varepsilon \log oldsymbol{M}, oldsymbol{M}
angle$

index set capturing graph structure

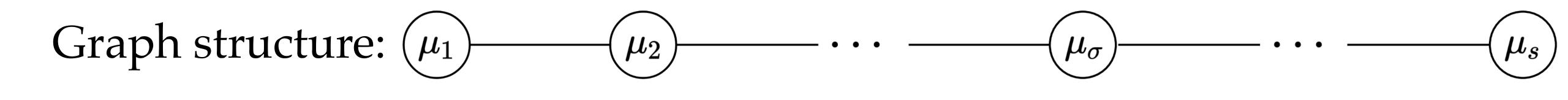
$$\mathrm{Dj}_{(j,\sigma)}\left(oldsymbol{M}
ight)=oldsymbol{\mu}_{\sigma}^{j}\quadorall(j,\sigma)\in\Lambda^{\mathcal{J}}$$

Lagrange multipliers

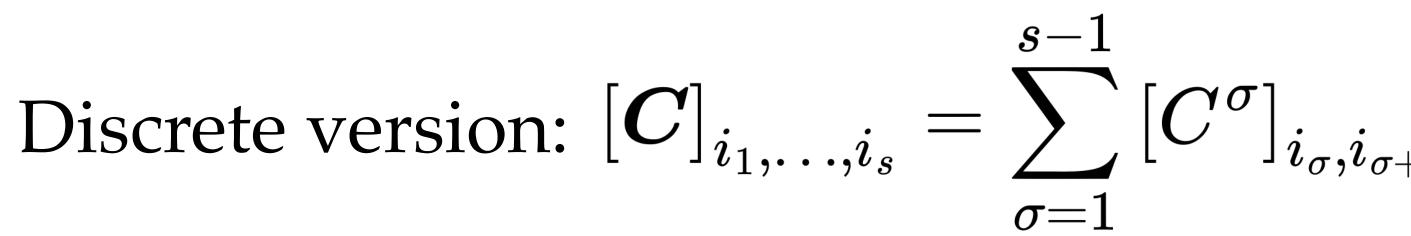
$$(oldsymbol{K}\odotoldsymbol{U}) \, orall (j,\sigma) \in \Lambda,$$

J = 1: Single CPU Core: Path-structured MSBP

Correlation induced by time



Ground cost tensor decomposes: C



$$C(oldsymbol{\xi}(au_1),\ldots,oldsymbol{\xi}(au_s)) = \sum_{\sigma=1}^{s-1} c_\sigma \left(oldsymbol{\xi}(au_\sigma),oldsymbol{\xi}(au_\sigma)
ight)$$

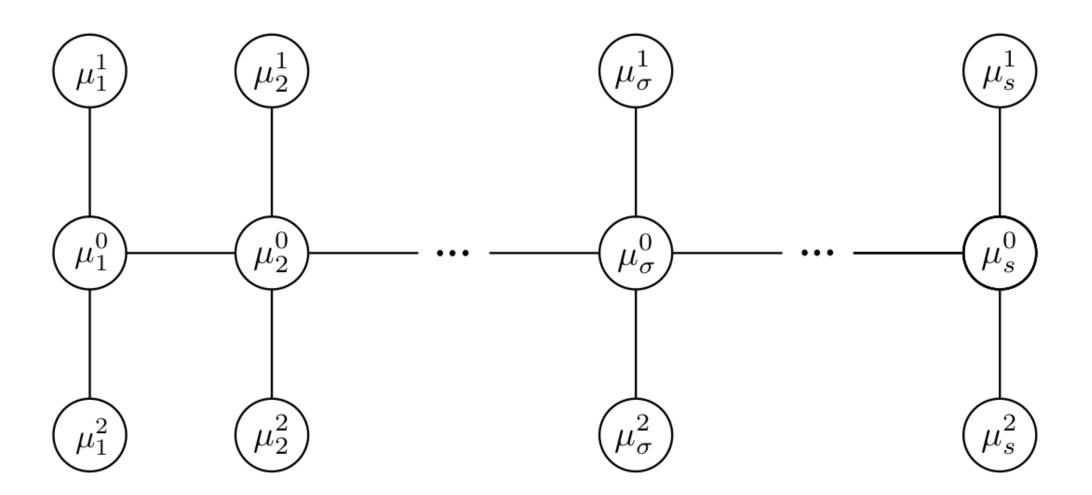
42

J > 1: Multiple CPU Cores

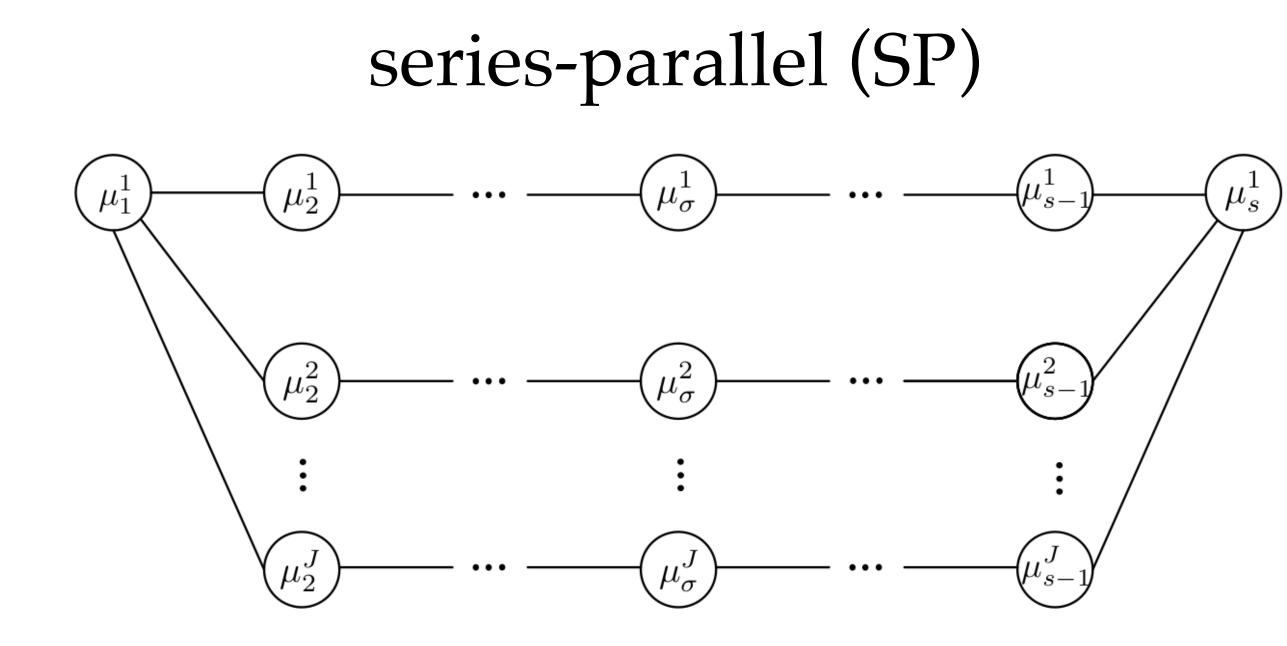
Correlation induced by time + CPU cores

Graph structure:

barycentric (BC)



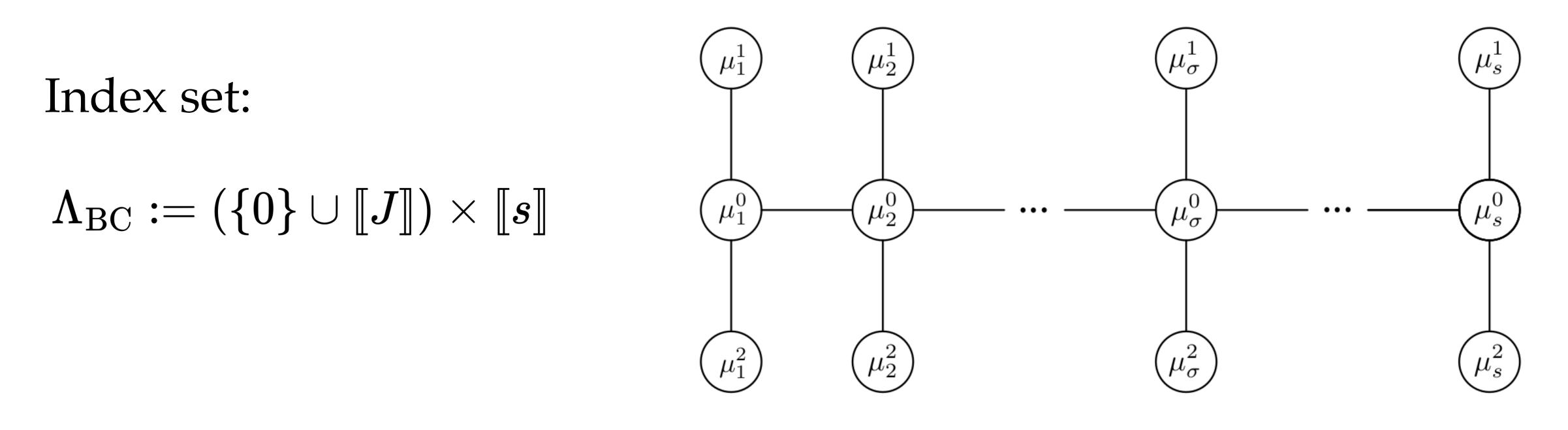
inter-CPU communication



parallel execution

J > 1: Multiple CPU Cores: Barycentric MSBP

Idea: phantom CPU resource statistics $\mu_{\sigma}^{0} =$ barycenter of $\{\mu_{\sigma}^{j}\}_{j \in [J]} \forall \sigma \in [s]$



Ground cost tensor decomposition:

$$oldsymbol{C}(oldsymbol{\xi}(au_1),\ldots,oldsymbol{\xi}(au_s)) = \sum_{\sigma=1}^{s-1} c_{0,\sigma} \left(oldsymbol{\xi}^0(au_\sigma),oldsymbol{\xi}^{\sigma}
ight)$$

 $\boldsymbol{\xi}^0(au_{\sigma+1})) + \sum \sum c_{j,\sigma}\left(\boldsymbol{\xi}^j(au_{\sigma}), \boldsymbol{\xi}^0(au_{\sigma})
ight)$ $\sigma = 1$ i = 1

J > 1: Multiple CPU Cores: Series-parallel MSBP

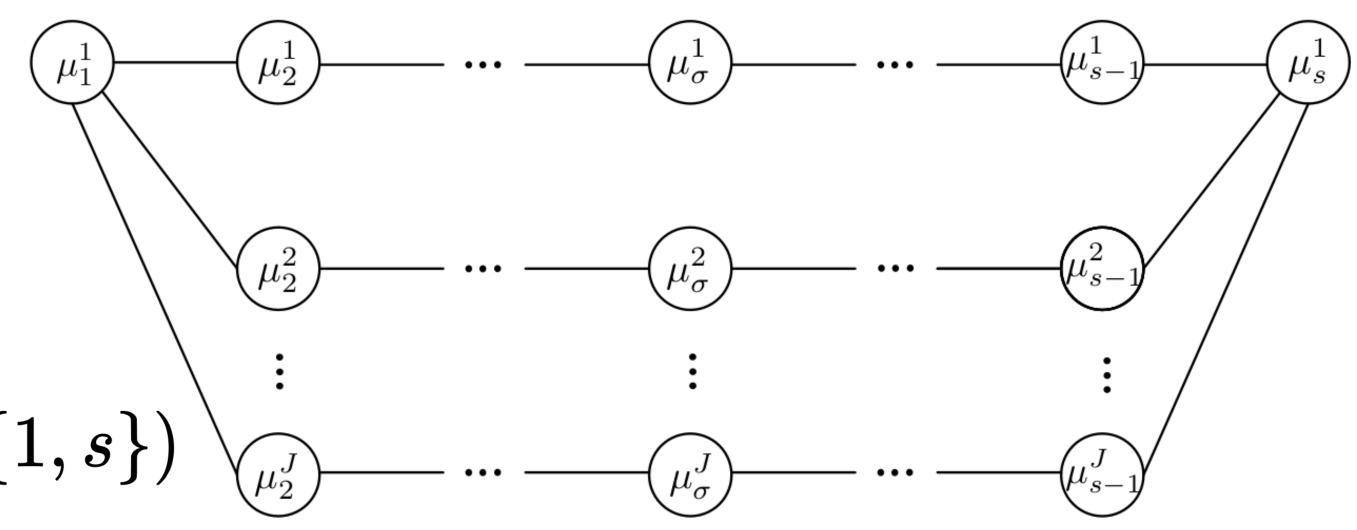
Idea: fork and merge

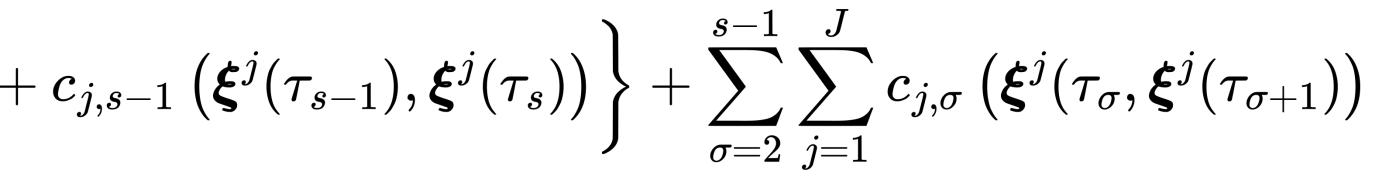
Index set:

 $\Lambda_{ ext{SP}} := (\llbracket J
rbracket imes \llbracket s
rbracket) \setminus ((\llbracket J
rbracket \setminus \{1\}) imes \{1, s\})$

Ground cost tensor decomposition:

$$oldsymbol{C}(oldsymbol{\xi}(au_1),\ldots,oldsymbol{\xi}(au_s)) = \sum_{j=1}^J \left\{ c_{j,1}\left(oldsymbol{\xi}^j(au_1),oldsymbol{\xi}^j(au_2)
ight)$$
 -





J > 1: Computational Complexity for MSBP

	Structure	General	Path	BC	SP
	Index set	Λ	$\llbracket s \rrbracket$	$\Lambda_{ m BC}$	$\Lambda_{ m SP}$
	# of indices	$ \Lambda $	<i>S</i>	(J+1)s	J(s-2)+2
linear in <i>J</i> , <i>s</i> —	• $\mathcal{O}(\cdot)$ for $\operatorname{proj}_{\sigma}(oldsymbol{M})$	$n^{ \Lambda }$	$(s-1)n^2$	$(Js)n^2$	$(Js)n^2$

Exact flop count for BC:

 $Js(n_0n +$

 $Js(n_0n +$

Exact flop count for SP:

 $\underbrace{n+J\left(1\, \neg
ight) }$

$$+n_0) + (2n_0) + (2s-2)n_0^2$$

barycenter

$$n_0) + (3n_0 + n + 2n_0n) + (2s - 2)n_0^2$$

other up.

$$+2(s-2))n^2$$

end dist.

other dist.

Step 3: MSBP Solution to Predicting $\hat{\mu}_{\tau}$

Given $\tau \in [0, t), j \in \llbracket J \rrbracket$, find $\sigma \in \{\llbracket s \rrbracket \mid \tau_{\sigma} \leq \tau < \tau_{\sigma+1}\}$

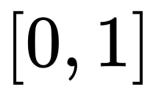
$$M^{j,\sigma} := \mathrm{proj}_{(j,\sigma),(j,\sigma+1)}(oldsymbol{M}^{\mathrm{opt}}): \mu^j_\sigma o \mu^j_{\sigma+1} \quad igl(\in \mathbb{R}^{n imes n}_{\geq 0}igr)$$

Compute measure interpolating μ_{σ}^{j} and $\mu_{\sigma+1}^{j}$ as:

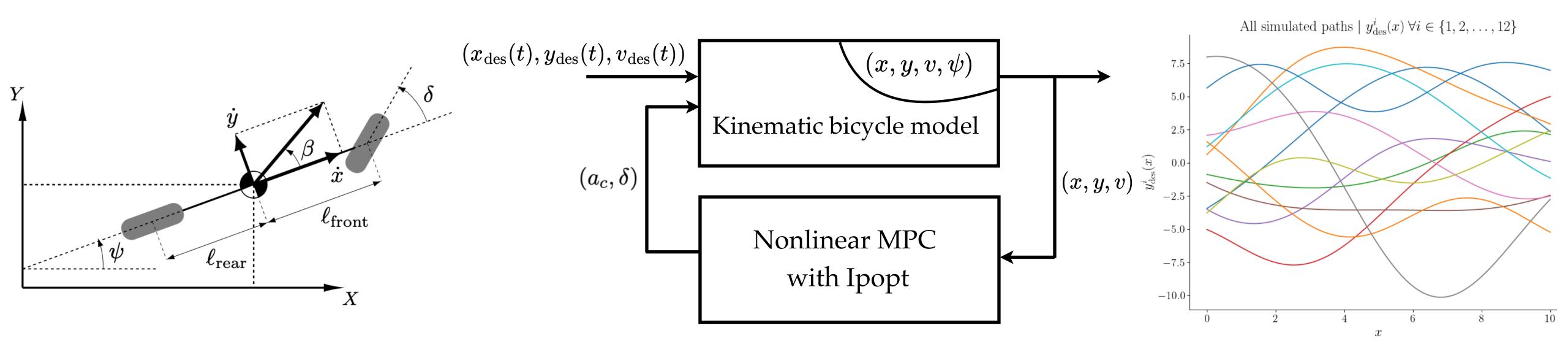
$$\hat{\mu}^j_{ au} := \sum_{r=1}^n \sum_{\ell=1}^n \Big[M^{j,\sigma}_{r,\ell} \Big] \delta(oldsymbol{\xi}^j - \widehat{oldsymbol{\xi}}^j(au,oldsymbol{\xi}^{r,j}(au_\sigma),oldsymbol{\xi}^{\ell,j}(au_{\sigma+1})))$$

and its support: $oldsymbol{\hat{\xi}}^{j}(au,oldsymbol{\xi}^{r,j}(au_{\sigma}),oldsymbol{\xi}^{\ell,j}(au_{\sigma+1})):=(1-\lambda)oldsymbol{\xi}^{r,j}(au_{\sigma})$

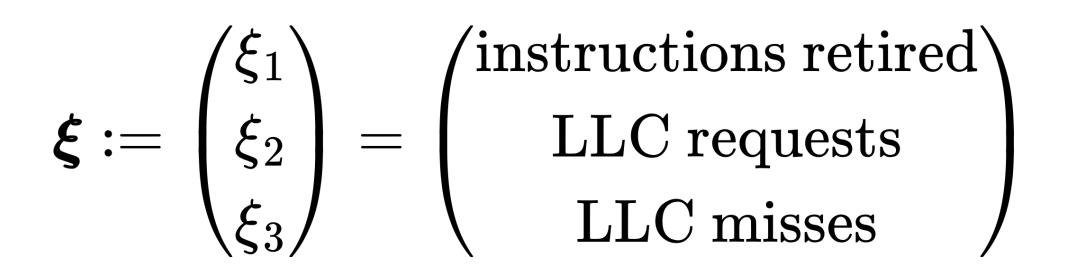
$$\tau^{r,j}(au_\sigma)\!+\!\lambdaoldsymbol{\xi}^{\ell,j}(au_{\sigma+1}),\;\lambda:=rac{ au- au_\sigma}{ au_{\sigma+1}- au_\sigma}\in$$



47



 $oldsymbol{c}_{ ext{cyber}} = egin{pmatrix} ext{alloc. last-level cache} \ ext{alloc. memory bandwidth} \end{pmatrix}, oldsymbol{c}_{ ext{phys}} = y_{ ext{des}}(x) \in ext{GP}\left([x_{ ext{min}}, x_{ ext{max}}]
ight)$



Single core \Rightarrow Path-structured MSBP

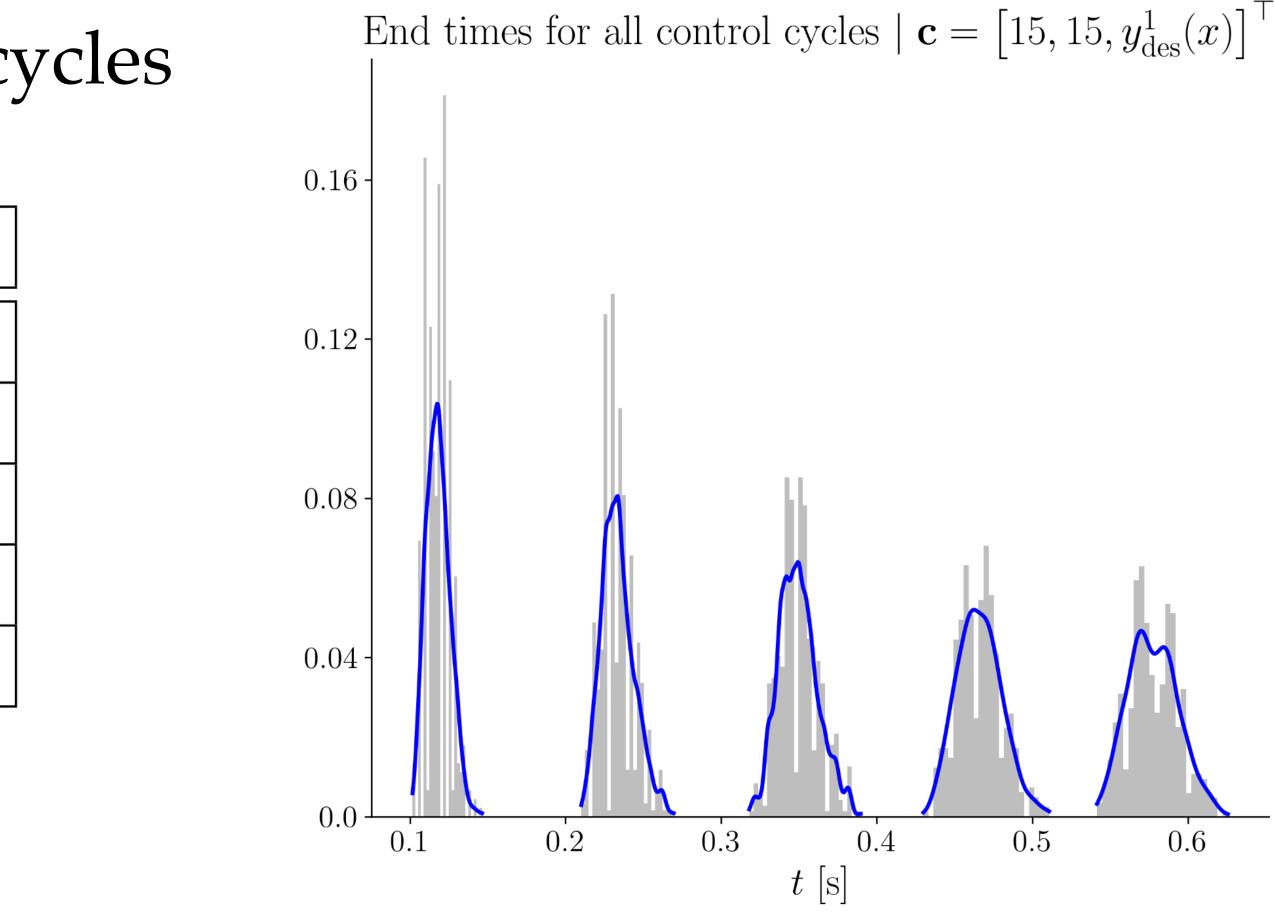
48

Each profile with $n_c = 5$ control cycles

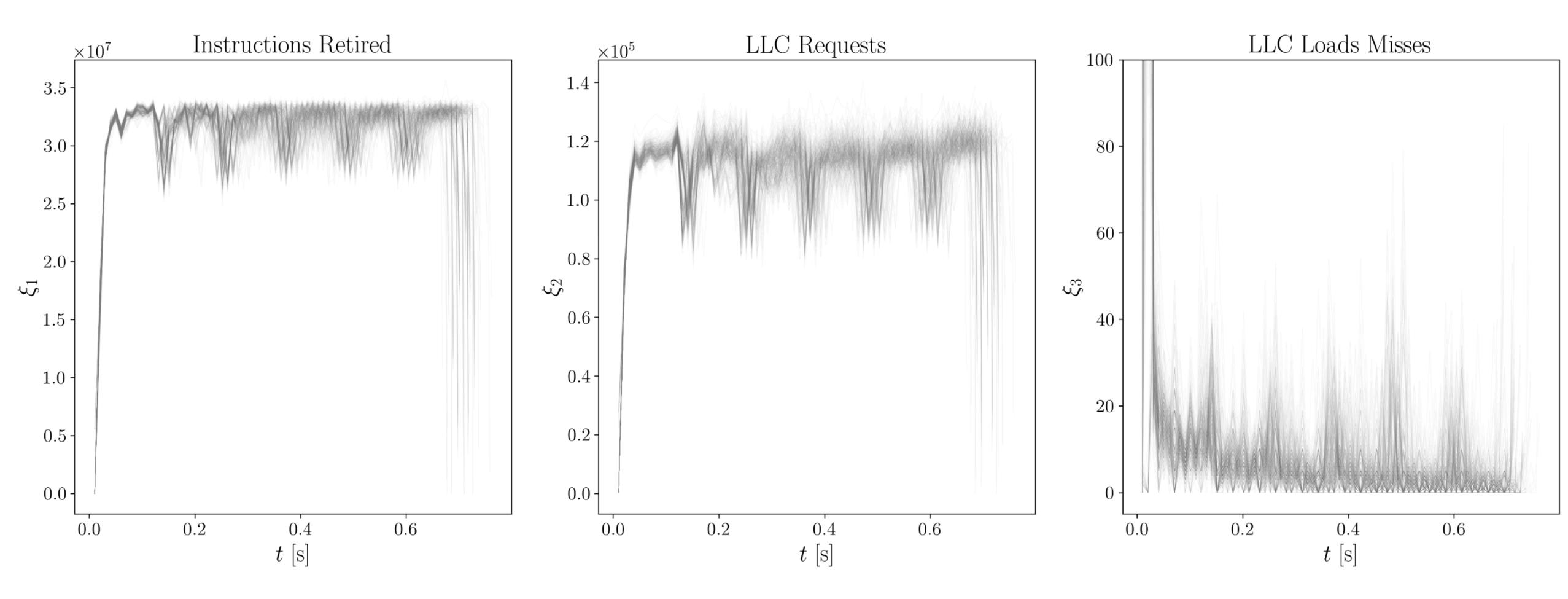
Cycle No.	Mean	Std. Dev.
#1	0.1181	0.0076
#2	0.2336	0.0106
#3	0.3495	0.0127
#4	0.4660	0.0143
#5	0.5775	0.0159

Sampling period = 5 ms

$n = 500, \ \boldsymbol{c}_{cyber} = [15 \ 15]^{+}, \ \boldsymbol{c}_{phys} = y_{des}^{1}(x), 30 \text{ MB LLC, mem. bandwidth}$



Profiles:



H/W-level stochasticity, fixed context *c*

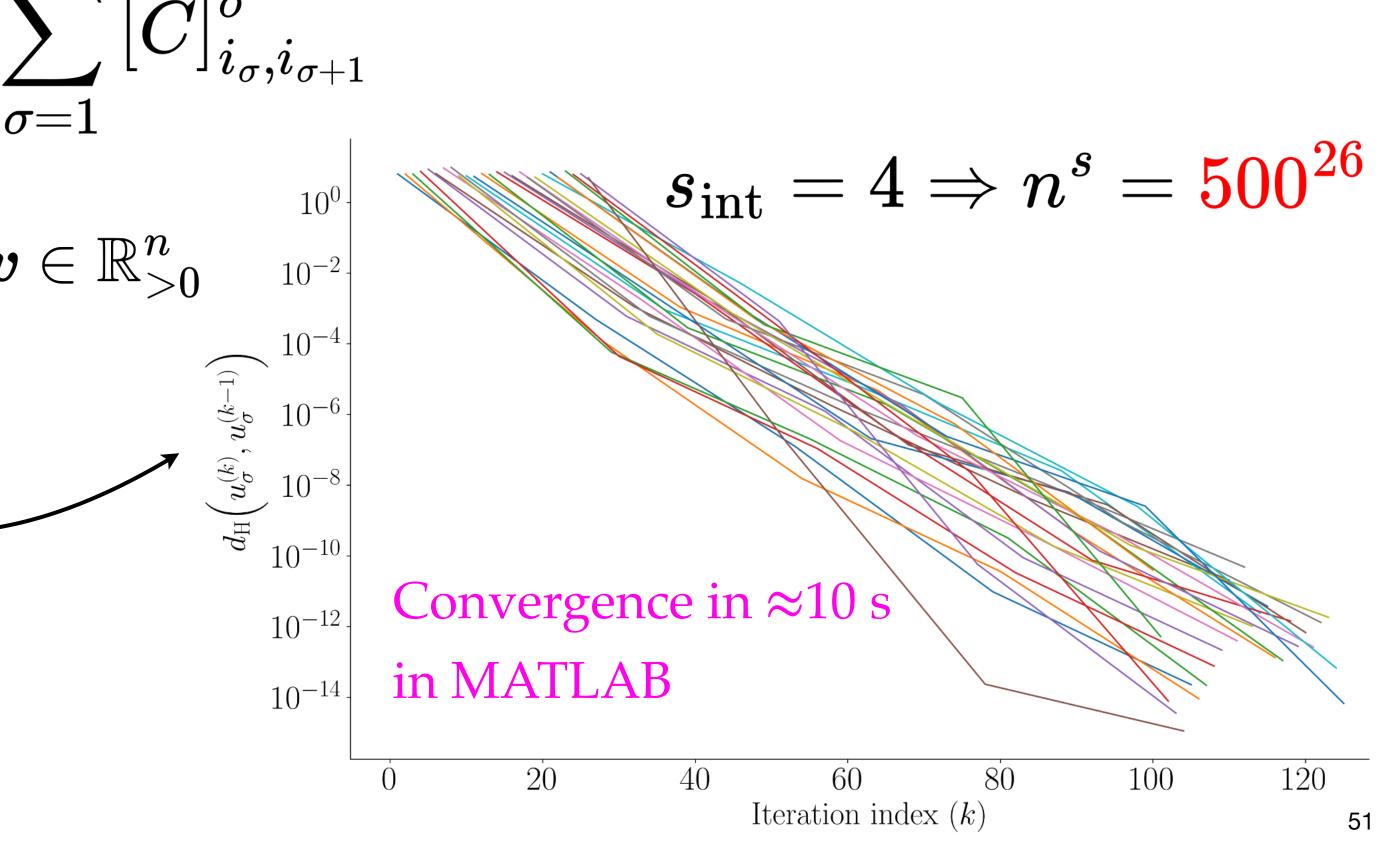
MSBP convergence:

of marginals $s := 1 + n_c(s_{int} + 1)$; Euclidean $C^{\sigma} \forall \sigma \in [s - 1]$

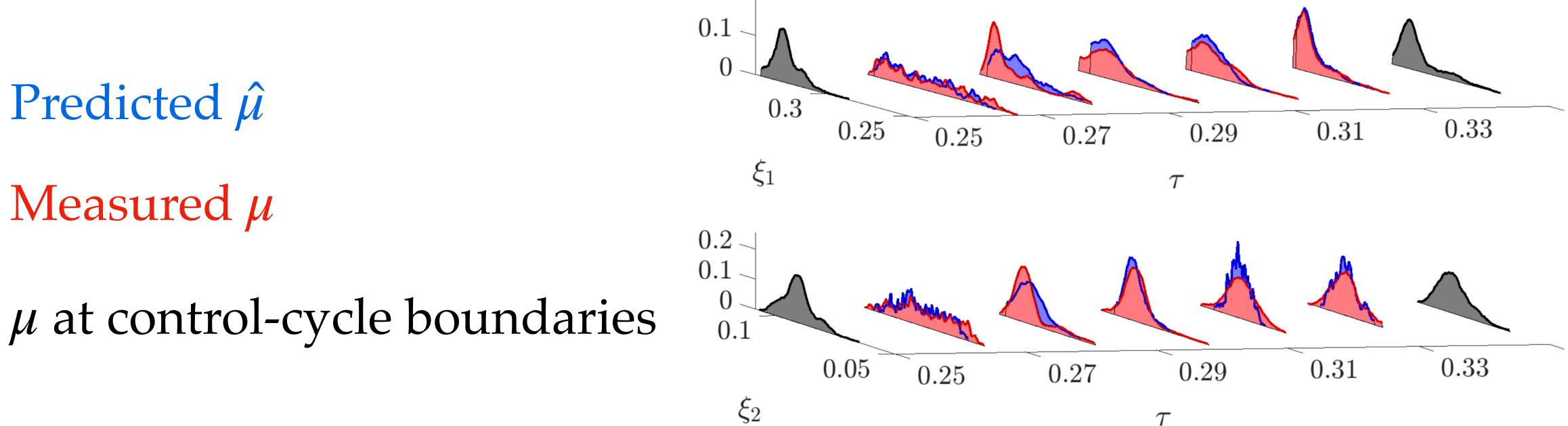
Cost tensor element: $[C]_{i_1,\ldots,i_s} = \sum [C]_{i_{\sigma},i_{\sigma+1}}^{\sigma}$

$$d_{ ext{H}}(oldsymbol{u},oldsymbol{v}) = \logigg(rac{\max_{i=1,\ldots,n}u_i/v_i}{\min_{i=1,\ldots,n}u_i/v_i}igg), oldsymbol{u},oldsymbol{v}$$

Hilbert projective metric



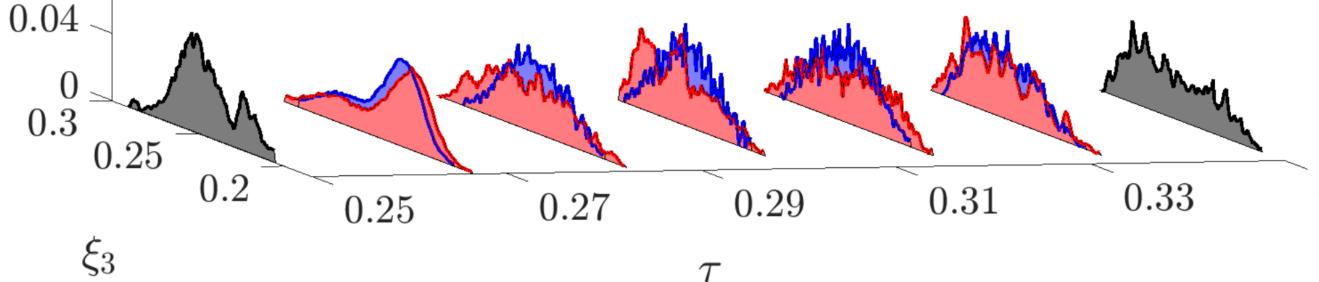
0.2



0.3

MSBP prediction vs "hold out" observation, 3rd control cycle, $s_{int} = 4$:

$\hat{\mu}_{\hat{ au}_j}, \, \mu_{\hat{ au}_j} \, \, ext{for} \, \, j \in [5]$

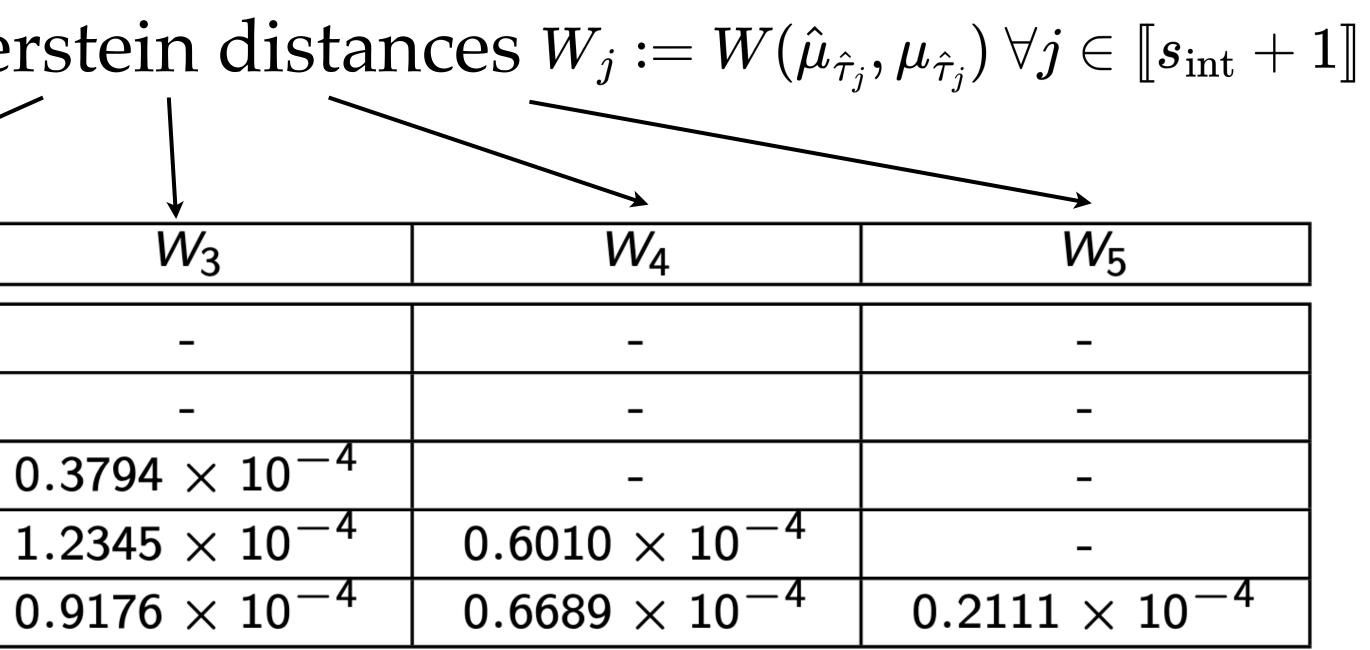


0.35

MSBP accuracy:

# of intra-cycle marginals Wasse				
s_{int}	$ W_1$	W ₂		
0	2.0489×10^{-4}	_		
1	2.2695×10^{-4}	1.1750×10^{-4}		
2	5.7717×10^{-4}	0.9163×10^{-4}	(
3	2.2413×10^{-4}	1.6432×10^{-4}		
4	0.6372×10^{-4}	1.2691×10^{-4}		

 $\uparrow s_{
m int}$



$$\implies \quad \downarrow \mathbb{E}[W_j]$$

Canneal: quad-core (J = 4) benchmark from PARSEC

 $m{c}_{ ext{cyber}} = egin{pmatrix} ext{alloc. last-level cache (MB)} \ ext{alloc. memory bandwidth (MB)} \end{bmatrix}$

Multicore \Rightarrow both BC and SP MSBP

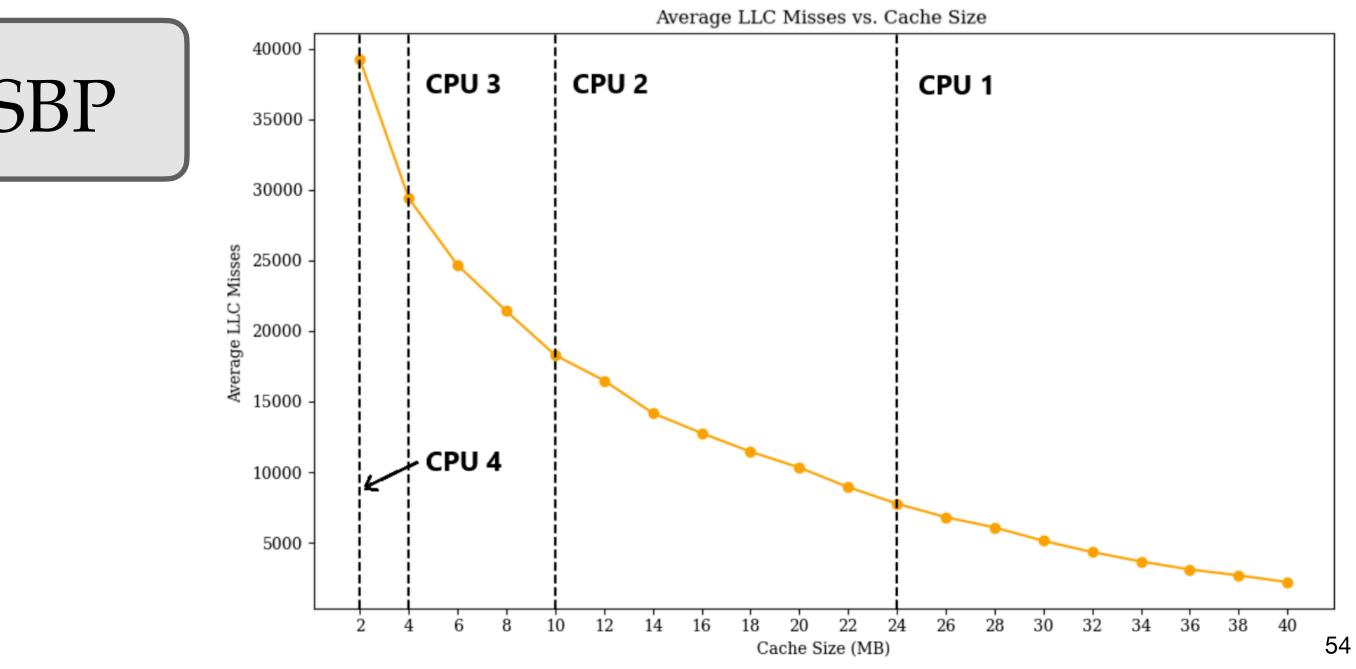
BC: 400³⁵ decision variables

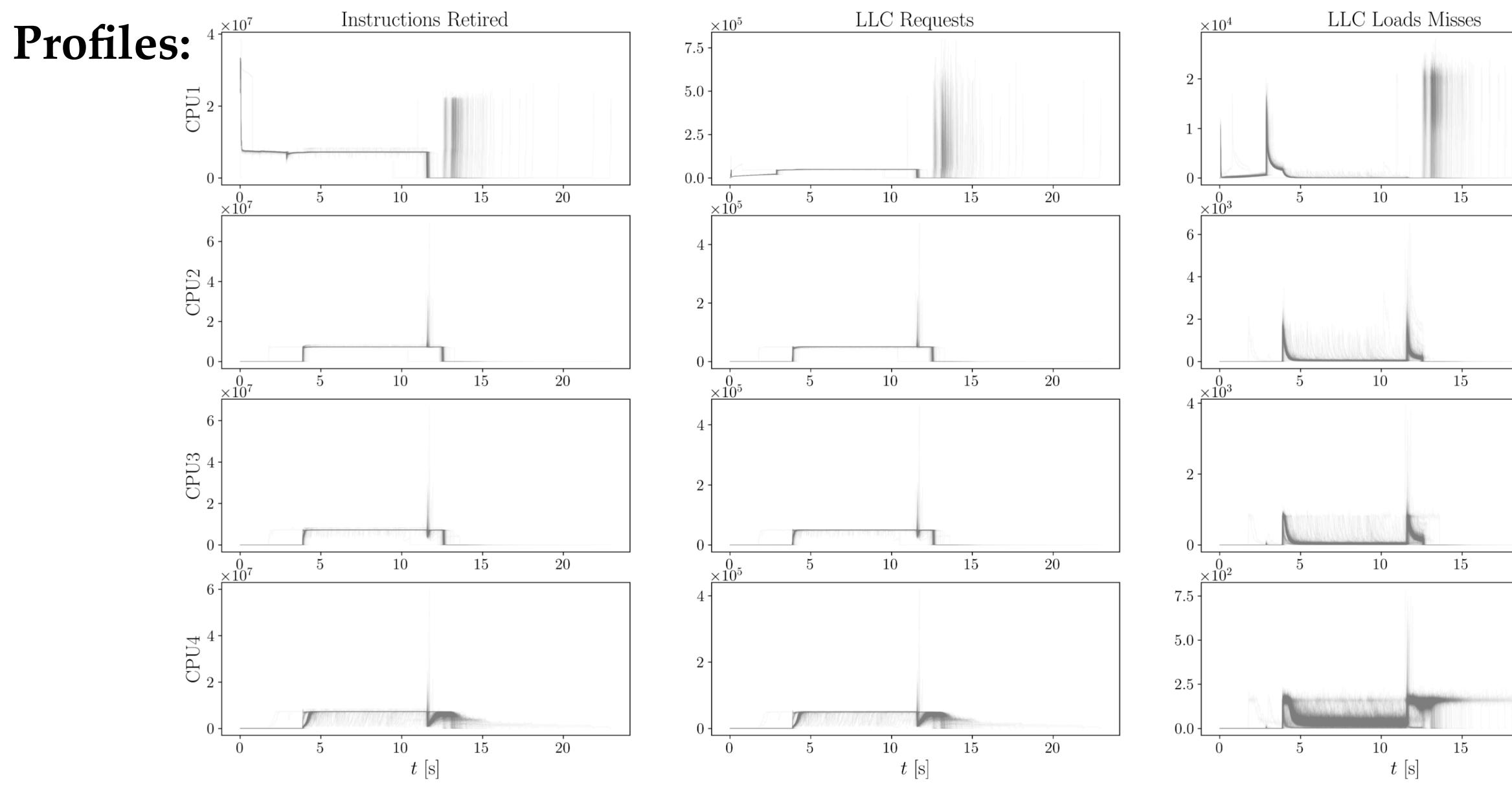
SP: 400²² decision variables

Convergence in 0.5 s in MATLAB

$$\binom{)}{3 \text{ps}} := \begin{pmatrix} 24 & 10 & 4 & 2 \\ 125 & 25 & 5 & 1 \end{pmatrix}$$

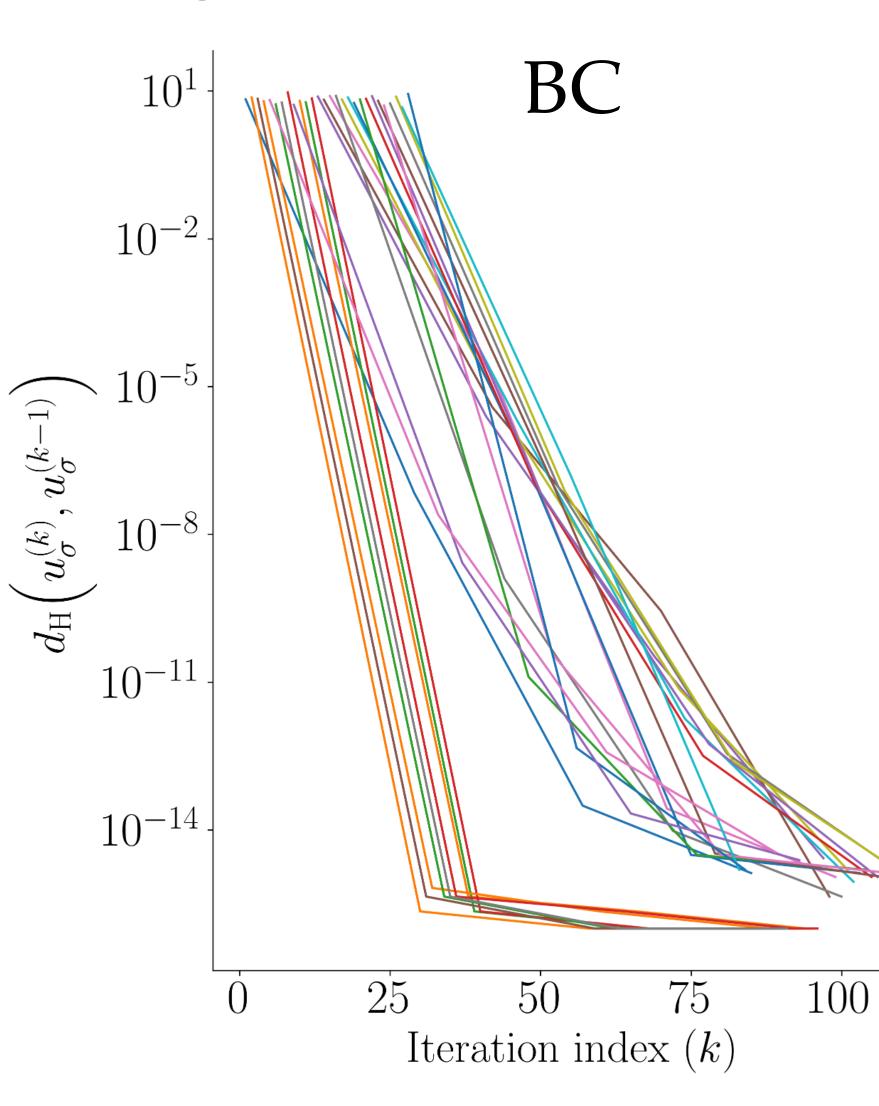
Profiled n = 400 times at $\tau_{\sigma} \in \{0.0, 0.5, 1.5, 2.5, 5.0, 9.5, 10.5\}$, i.e., s = 7

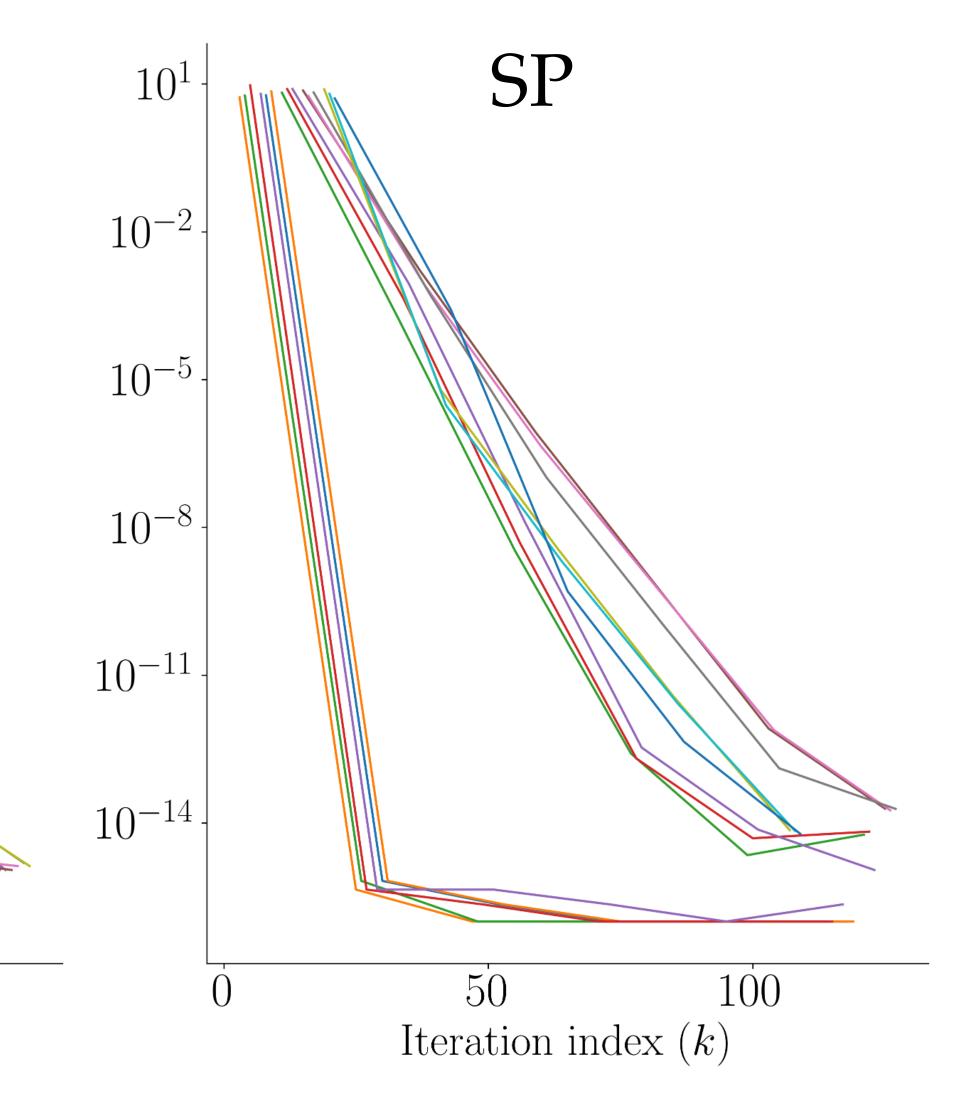




20	
20	
20	
20	55

MSBP convergence:





MSBP accuracy: BC:

CPU core Wasserstein distances $W_j := W(\hat{\mu}_{\hat{\tau}_j}, \mu_{\hat{\tau}_j}) \ \forall j \in [\![s_{int} + 1]\!]$

j	W_1^j	W_2^j	W_3^j	W_4^j	W_5^j
1	4.077×10^{-5}	$1.009 imes10^{-7}$	2.131×10^{-7}	$1.976 imes 10^{-7}$	$1.509 imes 10^{-7}$
2	0	$1.135 imes10^{-7}$	$2.342 imes 10^{-7}$	$7.684 imes 10^{-8}$	$8.805 imes 10^{-8}$
3	0	$1.149 imes10^{-7}$	$1.534 imes10^{-7}$	$5.752 imes 10^{-8}$	$6.538 imes 10^{-8}$
4	0	$3.647 imes 10^{-8}$	$2.146 imes 10^{-7}$	$1.906 imes 10^{-7}$	$9.713 imes 10^{-8}$

SP:

j	W_1^j	W_2^j	W_3^j	W_4^j	W_5^j
1	$4.079 imes 10^{-5}$	$1.062 imes10^{-7}$	$2.173 imes 10^{-7}$	$2.110 imes 10^{-7}$	$1.575 imes 10^{-7}$
2	0	$1.048 imes10^{-7}$	$2.333 imes 10^{-7}$	$7.303 imes 10^{-8}$	$9.186 imes 10^{-8}$
3	0	$1.065 imes10^{-7}$	$1.576 imes 10^{-7}$	$6.394 imes 10^{-8}$	$6.935 imes 10^{-8}$
4	0	$5.553 imes 10^{-8}$	$2.269 imes 10^{-7}$	$1.857 imes 10^{-7}$	$9.691 imes 10^{-8}$

Case Study: Context-dependent Resource Usage Idea: account for software's resource allocation/execution context $eta=(eta_1,eta_2,\ldots,eta_b)^{ op}\in\mathcal{B}\subset\mathbb{R}^b$ Augment $\eta := \begin{bmatrix} \xi & \beta \end{bmatrix}^\top \in \mathcal{X} \times \mathcal{B} \subset \mathbb{R}^{d+b}$ to form distributions $\mu_{\sigma}:=rac{1}{n_dn_b}\sum_{i=1}^{n_d}\sum_{j=1}^{n_b}\delta(\eta-\eta^{i,j}(au_{\sigma})),\quad orall\sigma\in\llbracket n_s
rbracket$ JL

Solve path-structured MSBP for μ_{τ} , $\eta(\tau) \sim \mu_{\tau}$ $\forall \tau \in [\tau_1, \tau_{n_s}]$ Apply Bayes' theorem to obtain $\xi(\tau) \mid \beta \sim \frac{\mu_{\tau}}{\int_{\mathcal{X}} \mu_{\tau} d\xi}$

Profiling: Context-dependent Resource Usage

Benchmarks: dedup, canneal, fft, radiosity

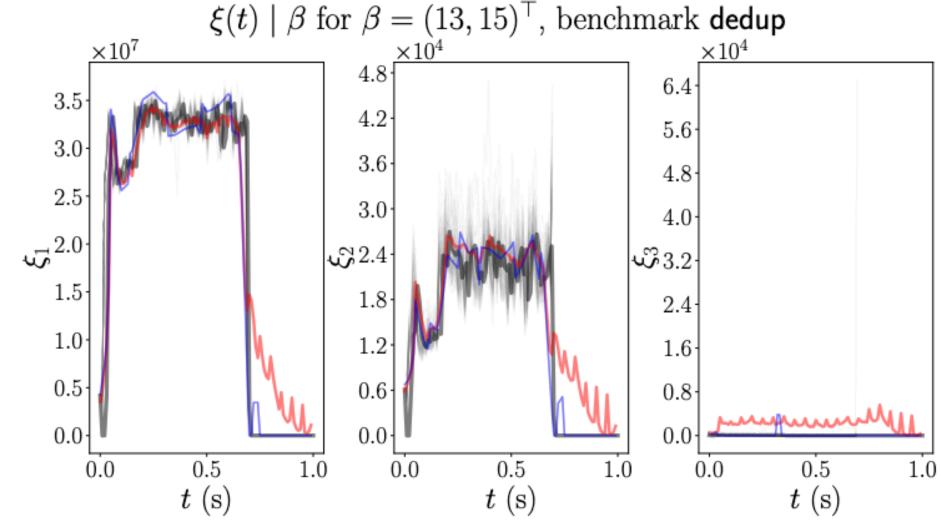
$$N_{\mathsf{ca}} = N_{\mathsf{bw}} = 20 =$$

Profile over $\mathcal{B}' = \{1, 5, 10, 15, 20\}^2 \subseteq \mathcal{B}, \ n_b = |\mathcal{B}'| = 25, \ n_d = 10 \quad \forall \beta \in \mathcal{B}'$

 $\Longrightarrow \mathcal{B} = \|N_{\mathsf{ca}}\| \times \|N_{\mathsf{bw}}\|$

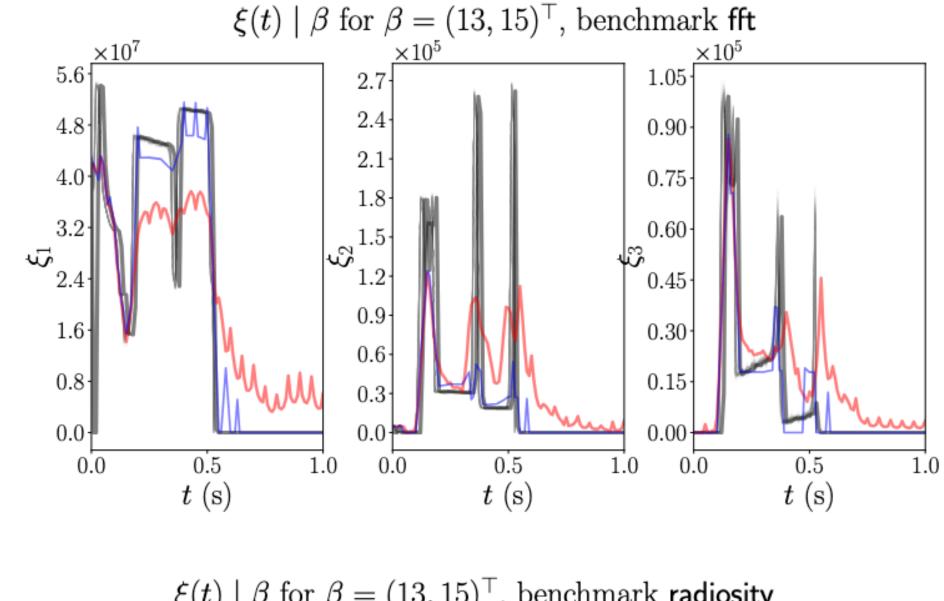
- $\tau = 0.05 \cdot (\sigma 1)$ \downarrow
- Generate $\xi(\tau) | \beta$ for all $\tau \in \{0, 0.01, ..., \tau_n\}, \beta \in \mathcal{B}$ \mathbf{V}
- Generate mean, max-likelihood, and avg. empirical profiles for all $\beta \in B$

Empirical Profiles for Benchmarks



 $\xi(t) \mid \beta \text{ for } \beta = (13, 15)^{\top}, \text{ benchmark canneal}$ $\xi(t) \mid \beta \text{ for } \beta = (13, 15)^{\top}, \text{ benchmark radiosity}$ 4.01 $\times 10^7$ $\times 10^4$ $\times 10^{\circ}$ $\times 10^{7}$ 4.01.89.0 $4.8 \cdot$ 3.5 $3.5 \cdot$ 1.6 $4.2^{.}$ 7.53.0 1.43.0 $3.6 \cdot$ 2.5 1.26.02.53.0ايت^{1.01} $\overline{v}^{2.0}$ ŝ ₩2.4^J -34.52.0 این 0.81.5 1.5 $1.8 \cdot$ 3.00.61.0 1.2 1.0 0.41.50.5 0.50.6 0.20.0 0.0 0.00.00.0 0.51.0 0.0 0.50.51.0 0.01.0t (s) t (s) t (s) t (s)

Maximum-likelihood synthetic profile, mean synthetic profile, mean empirical profile, and all empirical profiles



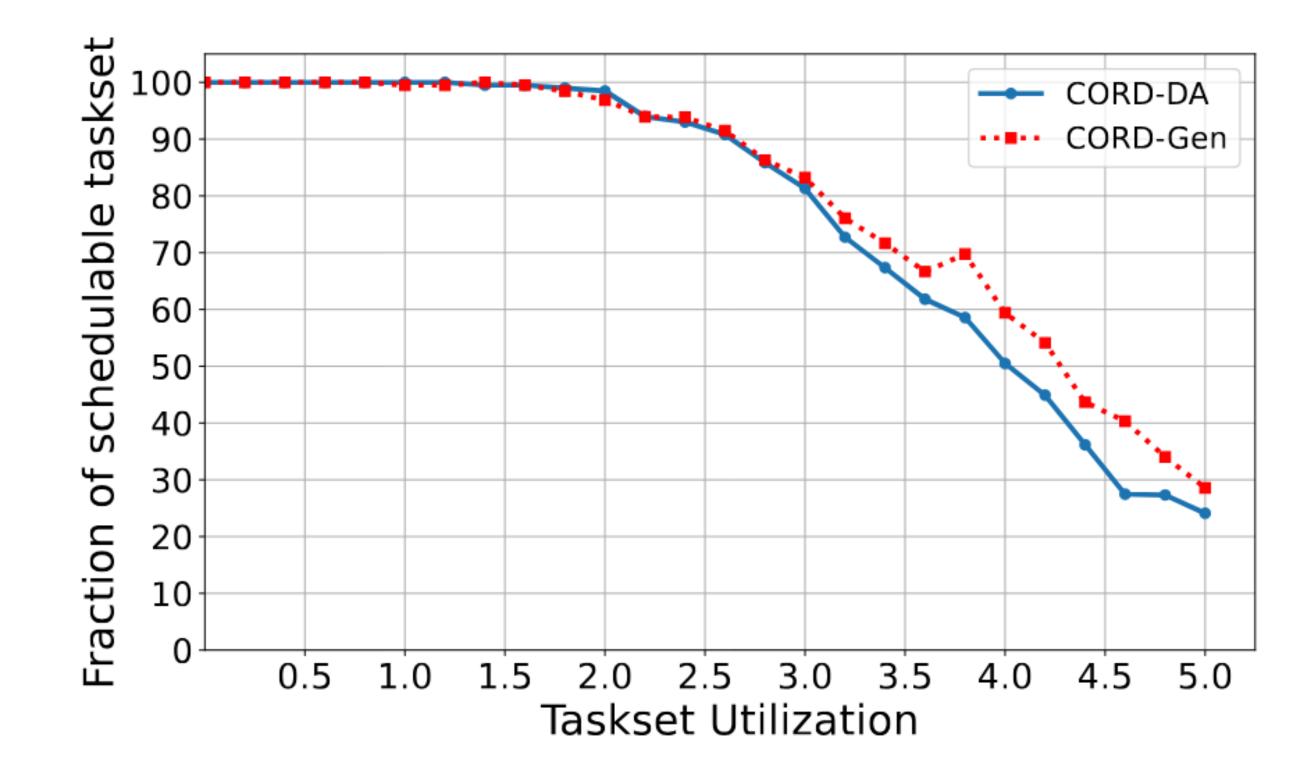
CORD: A Practical Application

Task scheduling *and* resource allocation

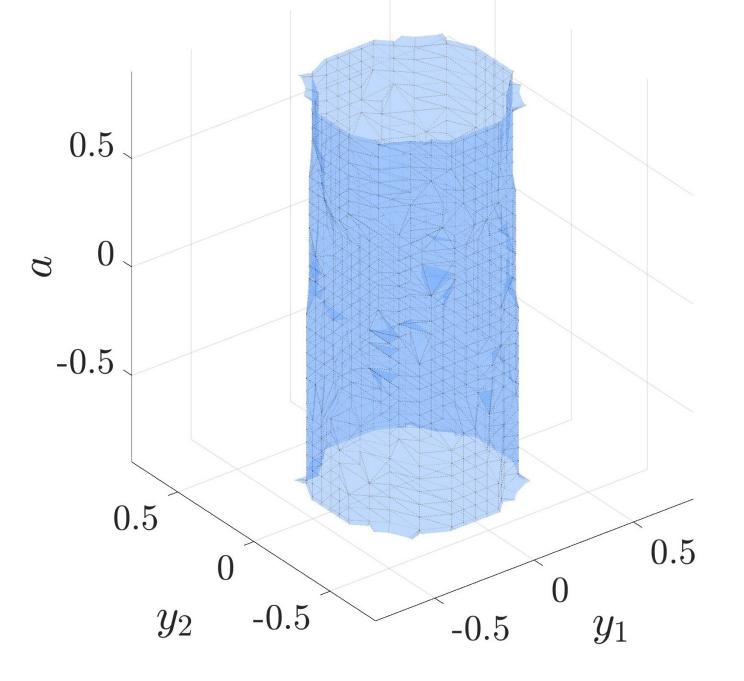
Profiles $\forall \beta \in \mathscr{B}$ required

 \downarrow

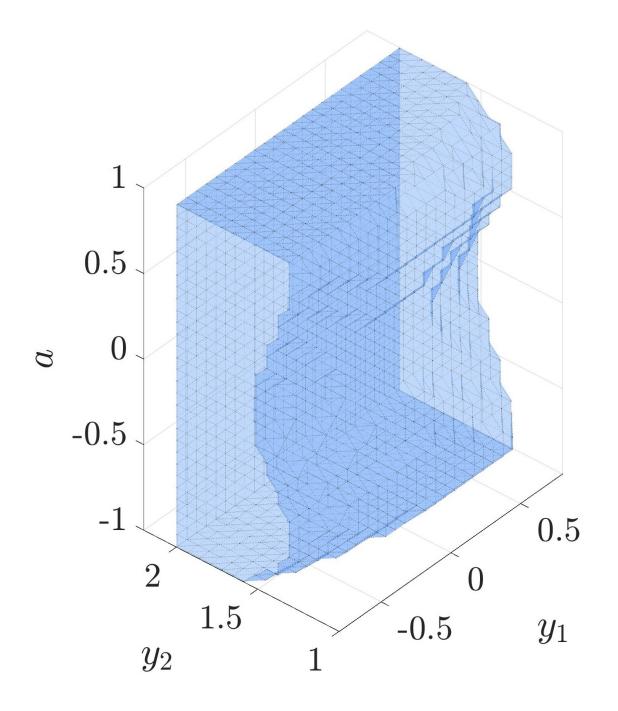
Generative profiling (MSBP)



Forward problem: Computational certificate of NNCC and MTW(κ) **Inverse problem:** Inner approximation of region of regularity



Tensor Optimization for Regularity of OT Maps Polynomial complexity for forward problem c rational over $\mathcal{X} \times \mathcal{Y}$ semi algebraic \Longrightarrow SOS tightening \Longrightarrow SDP

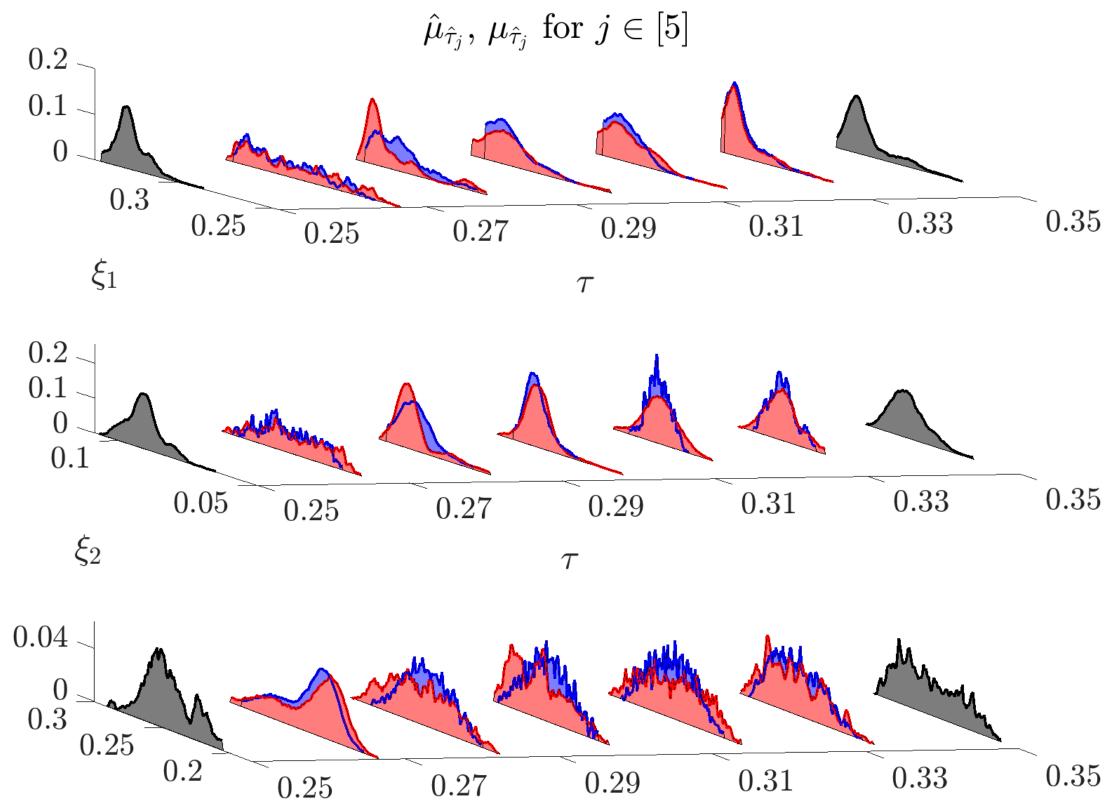


Tensor Optimization for Graph-structured SB

Graph-structured SBP \implies Solve via Sinkhorn Complexity $\mathcal{O}(n^{|\Lambda|})$ Path, BC, SP graph Complexity $\mathcal{O}((Js)n^2)$

Linear convergence Reduce profiling workload

 ξ_3



au

Publications

control software. American Control Conference 2024

Bridge. Accepted, IEEE Trans. Control Syst. Technology, arXiv:2405.12463.

Generative Profiling. *arXiv*:2501.08484.

- G.A.B., Gifford, R., Phan, L.T.X., & Halder, A. Path structured multimarginal Schrödinger bridge for probabilistic learning of hardware resource usage by
- G.A.B., Gifford, R., Phan, L. T. X., & Halder, A. (2024). Stochastic Learning of Computational Resource Usage as Graph Structured Multimarginal Schrödinger
- Shivakumar, S., G.A.B., Khan, G., & Halder, A. Sum-of-Squares Programming for Ma-Trudinger-Wang Regularity of Optimal Transport Maps. *arXiv*:2412.13372.
- Gifford, R., Eisenklam, A., G.A.B., Cai, Y., Sial, T., Phan, L. T. X., & Halder, A. CORD: Co-design of Resource Allocation and Deadline Decomposition with

Future Work Plan Winter-Summer 2025:

Improving efficiency and tractability in dimension of the SOS-based technique for verification of MTW conditions

Further application of graph-structured SBs for synthetic profiling (e.g., the use of synthetic profiles as system dynamics, accounting for asynchrony)

Generalization of the graph-structured SB problem to include enumeration of optimal graph structure on a set of distributions

Fall-Winter 2025-2026: Publication of theoretical and applied results Spring-Summer 2026: Composition and defense of dissertation

Acknowledgements Collaborators

University of Pennsylvania: Robert Gifford, Linh Thi Xuan Phan, Abby Eisenklam, and Yifan Cai Iowa State University: Sachin Shivakumar, Gabriel Khan, and Tushar Sial

Committee

Professor Qi Gong (Chair) Professor Hongyun Wang Associate Professor Abhishek Halder (Advisor) Johan Karlsson

Funding

UC Santa Cruz Dean's Fellowship (2022-2023) NSF grant 2111688

Thank you!

