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Transport of a Probability Measure
Random variable  knownX ∼ μ

Given differentiable  τ( ⋅ )

Random variable Y = τ(X) ∼ ?
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Transport of a Probability Measure

Notation: ν = τ#μ , read as:  is the pushforward of  under transport map ν μ τ

Computation: μ(dx) = f(x) dx, ν(dy) = τ#μ =
f (τ−1(y))

|∇τ (τ−1(y)) |
dy

Random variable  knownX ∼ μ

Given differentiable  τ( ⋅ )

Random variable Y = τ(X) ∼ ?
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μ(dx) = f(x) dx, x ∈

Example: 1D Transport of a Probability Measure

ν(dy) = g(y) dy, y ∈

=
f(arctan y)

1 + y2
dy

Measure      Density

τ( ⋅ ) = tan( ⋅ )
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In general,

 Borel ∀



Given the new measure  is unique: nothing to optimizeμ, τ, ν

What is Optimal Transport (OT)?

Inverse problem: Given the map  is underdeterminedμ, ν, τ
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Given the new measure  is unique: nothing to optimizeμ, τ, ν

Inverse problem: Given the map  is underdeterminedμ, ν, τ

Example: , squared minimal geodesic length, etc.c(x, y) = ∥x − y∥2
2

What is Optimal Transport (OT)?

Monge formulation, 1781

Ground cost = cost of transporting unit amount of mass from  to x τ(x)

OT map
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Very Brief History
Gaspard Monge: OT map formulation in 1781 with c(x, y) = ∥x − y∥1

Leonid Kantorovich: OT plan reformulation in 1941

Wins 1975 Nobel prize in Economics for this work

Erwin Schrödinger: attempts stochastic interpretation of quantum mechanics in 1931-32

Now called the Schrödinger Bridge (SB): diffusive version of OT

Math for OT takes shape in late 20th - early 21st century

C. Villani A. Figalli Y. Brenier J-D. Benamou R.J. McCann N. TrudingerX-N. Ma X-J. Wang 7



AI/ML Applications
OT of color

OT of style

μ

ν1 ν2 ν3

Credit: https://oriel.github.io/color_transfer.html

SB in diffusion model generative AI 
Stable diffusion, DALL-E

Credit: https://github.com/Stability-AI/generative-models

Credit: Kolkin, Salavon, Shakhnarovich, CVPR 2019

Picasso Dürer Matisse
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Science Applications of SB

Protein synthesis Material synthesis Superresolution

2024 Hugo Schuck Award by American Automatic Control Council 
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Outline of This Talk

Mathematical Background

Tensor Optimization for OT Regularity

Tensor Optimization for Graph-structured Multimarginal SB

First computational method for OT regularity

Application in learning computational resource usage
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Monge formulation, 1781
Ground cost

OT map

Kantorovich formulation, 1941

OT plan

Nonlinear nonconvex program

Linear program

Background: OT Formulation

The inf value is called the squared Wasserstein distance
11



Background: OT Regularity
Question: is          continuous?

Answer: Yes if  abs. continuous + extra condition on  and manifold μ, ν c
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Background: OT Regularity
Question: is          continuous?

Answer: Yes if  abs. continuous + extra condition on  and manifold μ, ν c

Defn: Ma-Trudinger-Wang (MTW) tensor (2005, 2009)
N. TrudingerX-N. Ma X-J. Wang

13



Background: OT Regularity
Defn: MTW( ) and MTW0 (κ), κ > 0

If then  satisfies MTW(0)c

If then  satisfies MTW( )c κ

Defn: Nonnegative Cost Curvature (NNCC)

If then  satisfies NNCCc

Difficult to verify analytically. Our approach: computational certificate
14



Background: Schrödinger Bridge Problem (SBP)

Strictly convex program

Static SBP = Kantorovich OT + entropic regularization

Continuous SBP = optimization over measure-valued path space

Generates the maximum likelihood trajectory on path space
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Background: Discrete SBP
Bi-marginal a.k.a. classical SBP

Weighted scattered data:

 {ξi(τσ)}n
i=1, μσ =

1
n

n

∑
i=1

δ (ξ − ξi(τσ))

Darker distributional path = more likely
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Background: Discrete SBP
Bi-marginal a.k.a. classical SBP

Weighted scattered data:

 {ξi(τσ)}n
i=1, μσ =

1
n

n

∑
i=1

δ (ξ − ξi(τσ))

Darker distributional path = more likely

Multimarginal SBP (MSBP)
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Background: Sinkhorn Iteration to Solve MSBP 

Step 1: Let                                                  , initialize

Step 2: Perform Sinkhorn iterations until (linear) convergence

Step 3:                               where
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Background: Sinkhorn Iteration to Solve MSBP 

Step 1: Let                                                  , initialize

Step 2: Perform Sinkhorn iterations until (linear) convergence

Step 3:                               where

Trouble: computing

has           complexity …. more on this later
19



Tensor Optimization for OT Regularity
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Problem Formulation
Assumption A1: MTW tensor is rational in                             semialgebraic

Sufficient but not necessary:  is rational in                             semialgebraicc
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Problem Formulation
Assumption A1: MTW tensor is rational in                             semialgebraic

Sufficient but not necessary:  is rational in                             semialgebraicc

Forward problem:

Given              as per A1, certify/falsify if the ground cost 

satisfies either MTW(0) or MTW( ) or NNCC conditionκ

Inverse problem:

Given              as per A1, find semialgebraic                               such that
satisfies either MTW(0) or MTW( ) or NNCC conditionκ
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Sum-of-Squares (SOS) Polynomials
if

for some

≥ 0SOS decomposition:

for some
where             with monomial entries                      of length 
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SOS Programming
Defn: Semialgebraic set

Finite union of sets of the form 

Defn: Polynomial Optimization

For 

⇕

Computationally intractable
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SOS Programming (contd.)

⇓ Putinar’s Positivstellensatz (1993)

Defn: SOS tightening of Polynomial Optimization 

Semidefinite program (SDP)  software SOSTOOLS, YALMIP, SOSOPT⇝

 Semidefinite program⇝
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Back to Forward Problem
Forward problem:
Given              as per A1, certify/falsify if the ground cost 
satisfies either MTW(0) or MTW( ) or NNCC conditionκ

NNCC forward problem:

MTW( ) forward problem:κ
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Solution to (NNCC) Forward Problem

Thm: SOS Tightening of NNCC Forward Problem

For if such that 

then  satisfies NNCC condition on c

 SDP⇝
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Computational Complexity: Forward Problem

NNCC complexity:

MTW( ) complexity:κ

Parameters:

# of polynomial constraints defining               semialgebraic

Sub-quadratic in  polynomial in ℓ, n
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Solution to (NNCC) Inverse Problem
Thm: SOS Tightening of NNCC Inverse Problem
For compact
chosen a priori, let                    solve

then  satisfies NNCC onc

 SDP⇝
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Numerical Results: Forward Problem
Example 1: Perturbed Euclidean Cost

Lee & Li (2009): for  small enough, MTW(0) holds onε

But how small is small enough? 

We used SOS SDP + bisection to find  such that MTW(0) holdsεmax

in Lee & Li (2009) via nontrivial analysis

No analytical 
computation known
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Numerical Results: Forward Problem
Example 2: Log Partition Cost (Pal & Wong, 2018; Khan & Zhang, 2020)

used in stochastic portfolio theory

Our method still applies because

No analytical method exists to verify MTW(0) for n > 2

We can verify MTW(0) for 
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Numerical Results: Forward Problem
Example 2: Log Partition Cost (Pal & Wong, 2018; Khan & Zhang, 2020)
For  our method discovered SOS decomposition:n = 3,

where
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Numerical Results: Inverse Problem
Example 3: Perturbed Euclidean Cost Revisited

Lee & Li (2009): for , MTW(0) fails onε ≫ 0

Inner approx. of region 
where MTW tensor ≥ 0

Solve MTW(0) inverse problem

Fix 

Parameterize

Exec time 115 sec, solve time 0.97 sec
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Numerical Results: Inverse Problem
Example 4: Squared Distance Cost for a Surface of Positive Curvature

MTW holds around 
Fix

Parameterize
Inner approx. of region 
where MTW tensor ≥ 0Solve MTW(0) inverse problem

Exec time 119 sec, solve time 19.6 sec
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Recap: SOS Programming for OT Regularity
NNCC, MTW( ), MTW(0) conditions  regularity of the OT map κ ⇒ τopt

Assumption A1: MTW tensor is rational in                             semialgebraic

⇓

SOS tightening of forward & inverse problems

⇓

Solve SDP using SOSTOOLS + YALMIP  computational certificates⇝
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Tensor Optimization for Graph-structured 
Multi-marginal SB 

& 

Learning Computational Resource Usage 
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Motivation: Computational Resource Usage of 
Multicore Software 
Software running on  CPU cores J ∈ ℕ

Resource usage stochastic process 

Example:

“Profiling” in RTOS community: sample where
Time/resource 
intensive!
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Problem Formulation
Use (weighted scattered) profile data

to learn

Typical profiles 

( ) :τ = 4, J = 1
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Challenges
Difficult to have first-principle physics based model for combined 

S/W+H/W level stochasticity

Learning must be over joint resources (e.g., processor & cache correlated)

Correlation structure among resource states changes with time

Need: nonparametric learning, also desire: learning with optimality 
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Main Idea
Step 1: Model the spatio-temporal correlation induced by HW+SW 
architecture by graph structures

  Step 2: Solve MSBP over the resulting graph

  Step 3: Use the MSBP solution to predict most likely 
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Steps 1,2: Discrete Graph-structured MSBP
Problem template:

index set capturing graph structure

Prop: (Strong duality  Sinkhorn recursions,                                   )⇝  complexity: 

Let
Lagrange multipliers

The multi-marginal Sinkhorn recursions

converges with linear rate to minimizer 
41



: Single CPU Core: Path-structured MSBPJ = 1
Correlation induced by time

Graph structure:

Ground cost tensor decomposes:

Discrete version:
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: Multiple CPU CoresJ > 1
Correlation induced by time + CPU cores

Graph structure:

barycentric (BC) series-parallel (SP)

inter-CPU communication parallel execution
43



: Multiple CPU Cores: Barycentric MSBPJ > 1
Idea: phantom CPU resource statistics       = barycenter of

Index set:

Ground cost tensor decomposition:
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: Multiple CPU Cores: Series-parallel MSBPJ > 1
Idea: fork and merge

Index set:

Ground cost tensor decomposition:
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: Computational Complexity for MSBPJ > 1

Exact flop count for BC:

Exact flop count for SP:

linear in J, s
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Step 3: MSBP Solution to Predicting ̂μτ

Given                                find       

Compute measure interpolating       and          as:

and its support:
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Case Study: Path Tracking Control Software

Nonlinear MPC
 with Ipopt

Kinematic bicycle model

Single core  Path-structured MSBP⇒
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Case Study: Path Tracking Control Software
, 30 MB LLC, mem. bandwidth

Each profile with               control cycles

Sampling period = 5 ms
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Case Study: Path Tracking Control Software
Profiles:

H/W-level stochasticity, fixed context c
50



Case Study: Path Tracking Control Software
MSBP convergence:

# of marginals                                       Euclidean

Cost tensor element:

Convergence in 10 s
in MATLAB

≈
Hilbert projective metric
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Case Study: Path Tracking Control Software
MSBP prediction vs “hold out” observation, 3rd control cycle, :sint = 4

Measured μ

Predicted ̂μ

 at control-cycle boundariesμ
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Case Study: Path Tracking Control Software
MSBP accuracy:

# of intra-cycle marginals Wasserstein distances
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Case Study: Multicore Benchmark
Canneal: quad-core ( ) benchmark from PARSECJ = 4

Profiled  times atn = 400

Multicore  both BC and SP MSBP⇒

BC:  decision variables40035

SP:  decision variables40022

Convergence in  s in MATLAB0.5
54



Case Study: Multicore Benchmark
Profiles:
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Case Study: Multicore Benchmark
MSBP convergence:

BC SP
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MSBP accuracy:
Case Study: Multicore Benchmark

Wasserstein distancesCPU core

SP:

BC:
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Augment

Apply Bayes’ theorem to obtain

Case Study: Context-dependent Resource Usage

⇓

Solve path-structured MSBP for

Idea: account for software’s resource allocation/execution context

to form distributions

⇓
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Benchmarks: , , , 𝖽𝖾𝖽𝗎𝗉 𝖼𝖺𝗇𝗇𝖾𝖺𝗅 𝖿𝖿𝗍 𝗋𝖺𝖽𝗂𝗈𝗌𝗂𝗍𝗒

Profile over

⇓
Generate  for all ξ(τ) |β τ ∈ {0,0.01,…, τns

},

Profiling: Context-dependent Resource Usage

τ = 0.05 ⋅ (σ − 1)

⇓
Generate mean, max-likelihood, and avg. empirical profiles for all
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Maximum-likelihood synthetic profile, mean synthetic profile, mean 
empirical profile, and all empirical profiles

Empirical Profiles for Benchmarks
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Task scheduling and resource allocation

Profiles  required∀β ∈ ℬ

⇓

Generative profiling (MSBP)

CORD: A Practical Application
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Summary
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Forward problem: Computational certificate of NNCC and MTW( )κ
 rational over  semi algebraic  SOS tightening  SDP c 𝒳 × 𝒴 ⟹ ⟹

Polynomial complexity for forward problem

Inverse problem: Inner approximation of region of regularity

Tensor Optimization for Regularity of OT Maps
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Complexity 𝒪(n|Λ|)

Graph-structured SBP  Solve via Sinkhorn⟹

⇓
Path, BC, SP graph

⇓
Complexity 𝒪((Js)n2)

Tensor Optimization for Graph-structured SB

Linear convergence
Reduce profiling workload
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Publications

65



Winter-Summer 2025: 

Improving efficiency and tractability in dimension of the SOS-based 
technique for verification of MTW conditions

Further application of graph-structured SBs for synthetic profiling (e.g., 
the use of synthetic profiles as system dynamics, accounting for 
asynchrony)

Generalization of the graph-structured SB problem to include 
enumeration of optimal graph structure on a set of distributions

Fall-Winter 2025-2026: Publication of theoretical and applied results

Spring-Summer 2026: Composition and defense of dissertation

Future Work Plan
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Thank you!
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