Tensor Optimization Problems in Optimal Transport

Georgiy Antonovich Bondar

Ph.D. Candidate, Applied Mathematics

University of California, Santa Cruz

February 25, 2025

Transport of a Probability Measure

Random variable $X \sim \mu known$

Given differentiable $\tau(\,\cdot\,)$

Random variable $Y = \tau(X) \sim ?$

Transport of a Probability Measure

Random variable $X \sim \mu known$

Given differentiable $\tau(\,\cdot\,)$

Random variable $Y = \tau(X) \sim ?$

Notation: $\nu = \tau_{\mu}\mu$, read as: ν is the pushforward of μ under transport map τ

Computation:
$$\mu(dx) = f(x) dx$$
, $\nu(dy) = \tau_{\#}\mu = \frac{f(\tau^{-1}(y))}{|\nabla \tau(\tau^{-1}(y))|} dy$

Example: 1D Transport of a Probability Measure

Measure Density

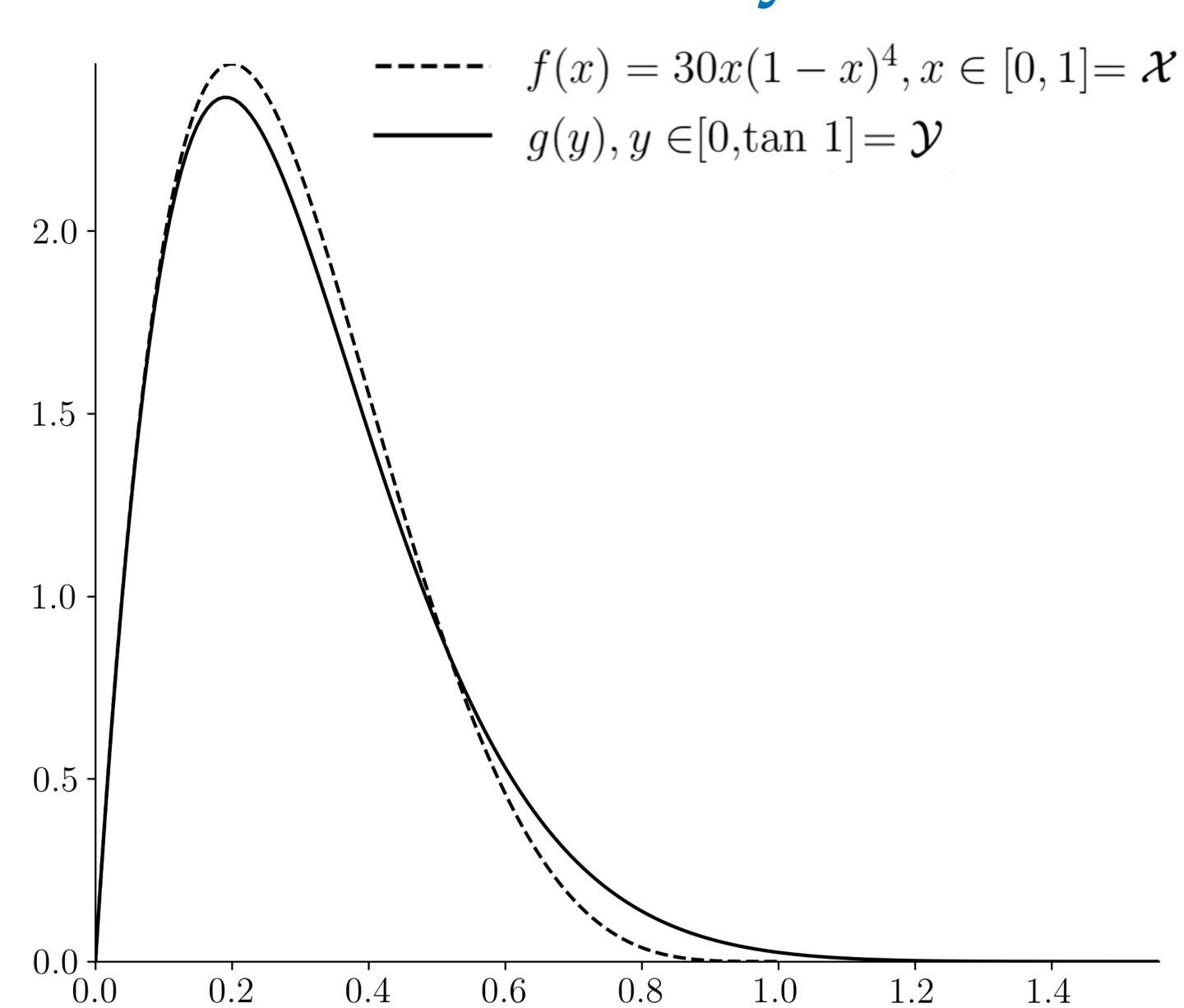
$$\mu(\mathrm{d}x) = f(x) \, \mathrm{d}x, x \in \mathcal{X}$$

$$\tau(\,\cdot\,)=\tan(\,\cdot\,)$$

$$\nu(dy) = g(y) dy, y \in \mathcal{Y}$$

$$= \frac{f(\arctan y)}{1 + y^2} dy$$

In general, $\mu\left(\tau^{-1}\left(\mathcal{U}\right)\right)=\nu\left(\mathcal{U}\right)$ \forall Borel $\mathcal{U}\subseteq\mathcal{Y}$



What is Optimal Transport (OT)?

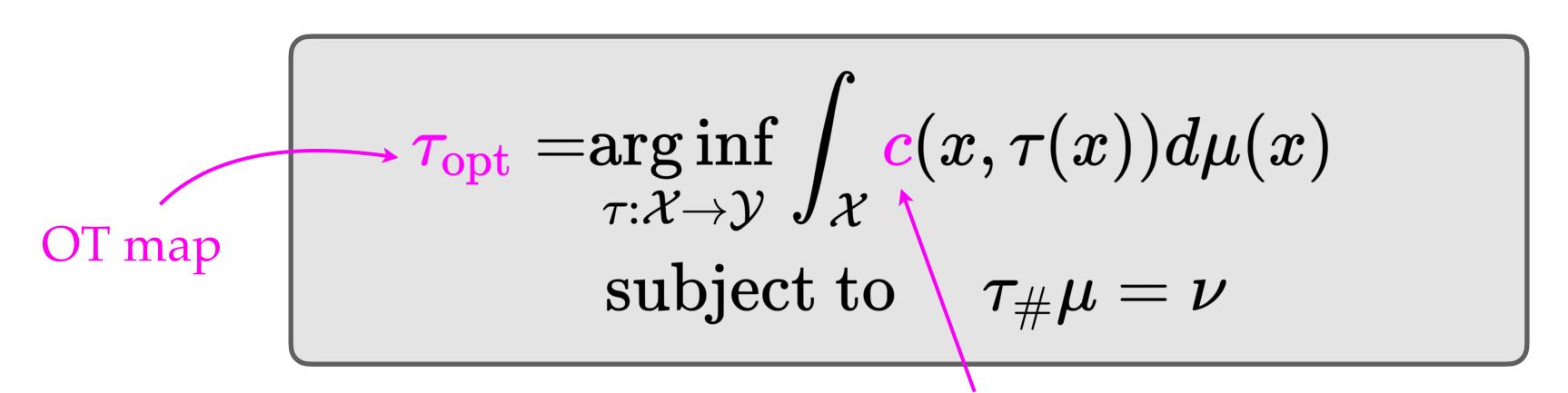
Given μ , τ , the new measure ν is unique: nothing to optimize

Inverse problem: Given μ, ν , the map τ is underdetermined

What is Optimal Transport (OT)?

Given μ , τ , the new measure ν is unique: nothing to optimize

Inverse problem: Given μ, ν , the map τ is underdetermined



Monge formulation, 1781

Ground cost = cost of transporting unit amount of mass from x to $\tau(x)$

Example: $c(x, y) = ||x - y||_2^2$, squared minimal geodesic length, etc.

Very Brief History

Gaspard Monge: OT map formulation in 1781 with $c(x, y) = ||x - y||_1$

Erwin Schrödinger: attempts stochastic interpretation of quantum mechanics in 1931-32

Now called the Schrödinger Bridge (SB): diffusive version of OT

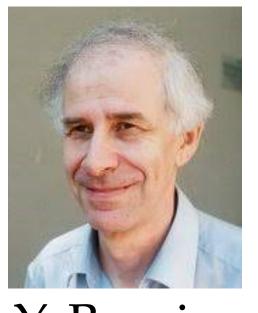
Leonid Kantorovich: OT plan reformulation in 1941

Wins 1975 Nobel prize in Economics for this work

Math for OT takes shape in late 20th - early 21st century

C. Villani

A. Figalli



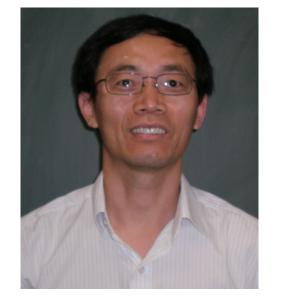
Y. Brenier

J-D. Benamou

R.J. McCann

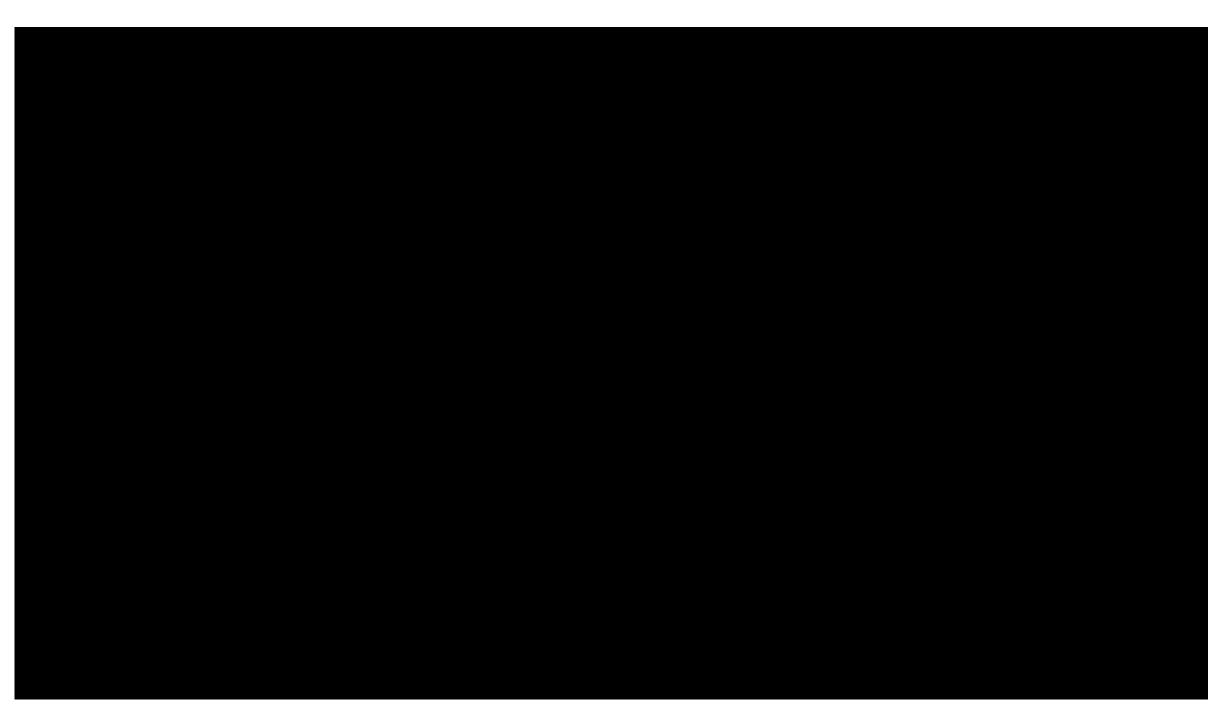
X-N. Ma

N. Trudinger X-J. Wang

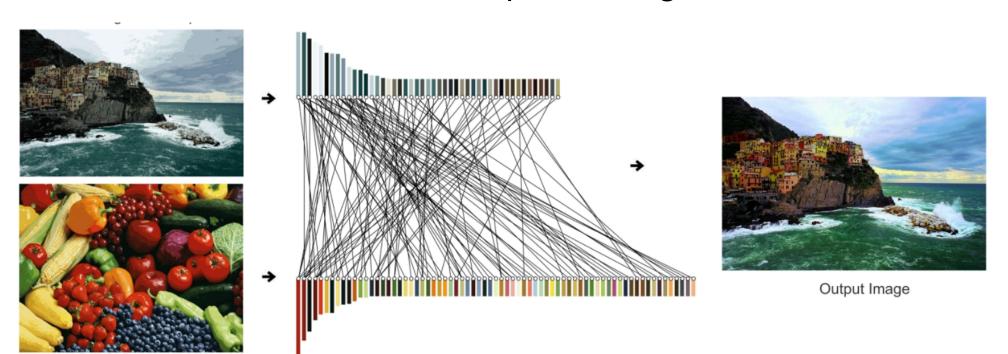


AI/ML Applications

OT of color



Credit: https://oriel.github.io/color_transfer.html

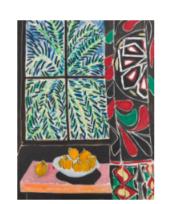


OT of style

Picasso

Dürer

Matisse



Credit: Kolkin, Salavon, Shakhnarovich, CVPR 2019

SB in diffusion model generative AI

Stable diffusion, DALL-E

Credit: https://github.com/Stability-Al/generative-models

Science Applications of SB

Protein synthesis

UAI 2023

Aligned Diffusion Schrödinger Bridges

Vignesh Ram Somnath*1,2

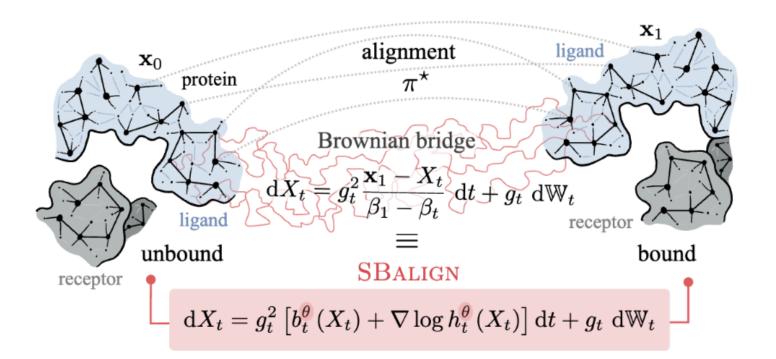
Maria Rodriguez Martinez²

Matteo Pariset*1,3

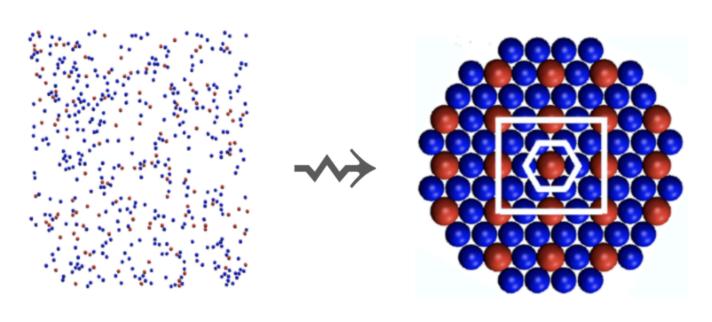
Andreas Krause¹

Ya-Ping Hsieh¹ Charlotte Bunne¹

¹Department of Computer Science, ETH Zürich ²IBM Research Zürich ³Department of Computer Science, EPFL



Material synthesis



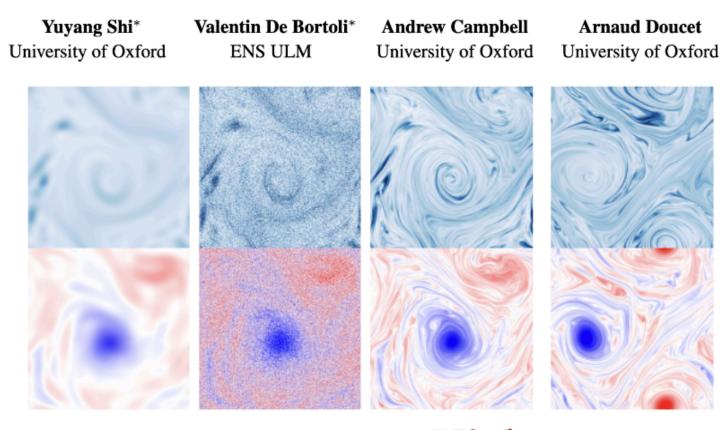
Dispersed particles

Ordered structure

Superresolution

NeurIPS 2024

Diffusion Schrödinger Bridge Matching



Low res

High res

Outline of This Talk

Mathematical Background

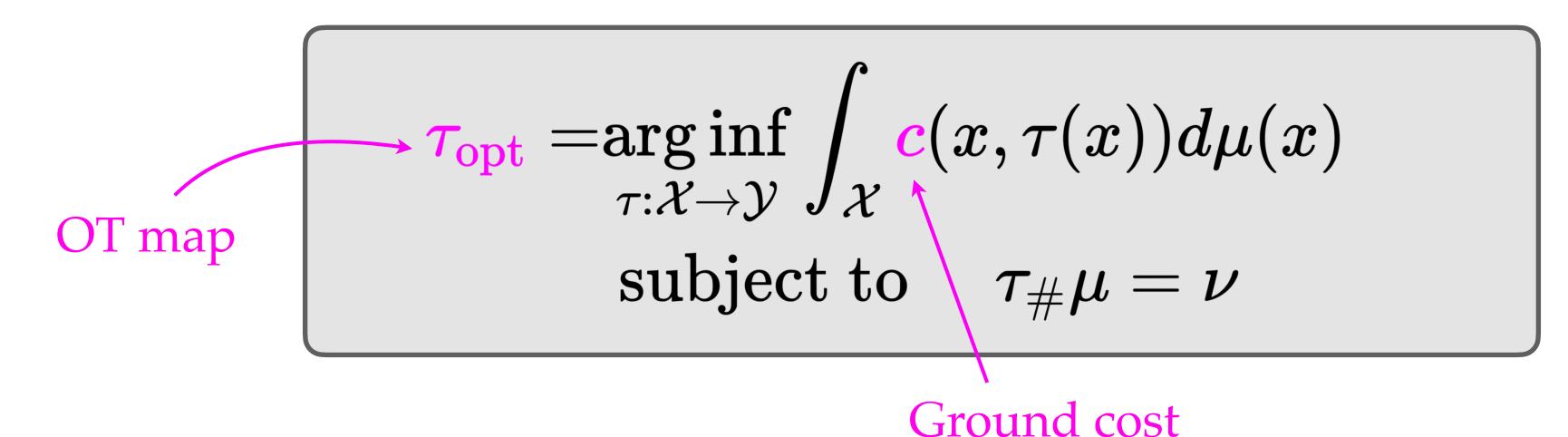
Tensor Optimization for OT Regularity

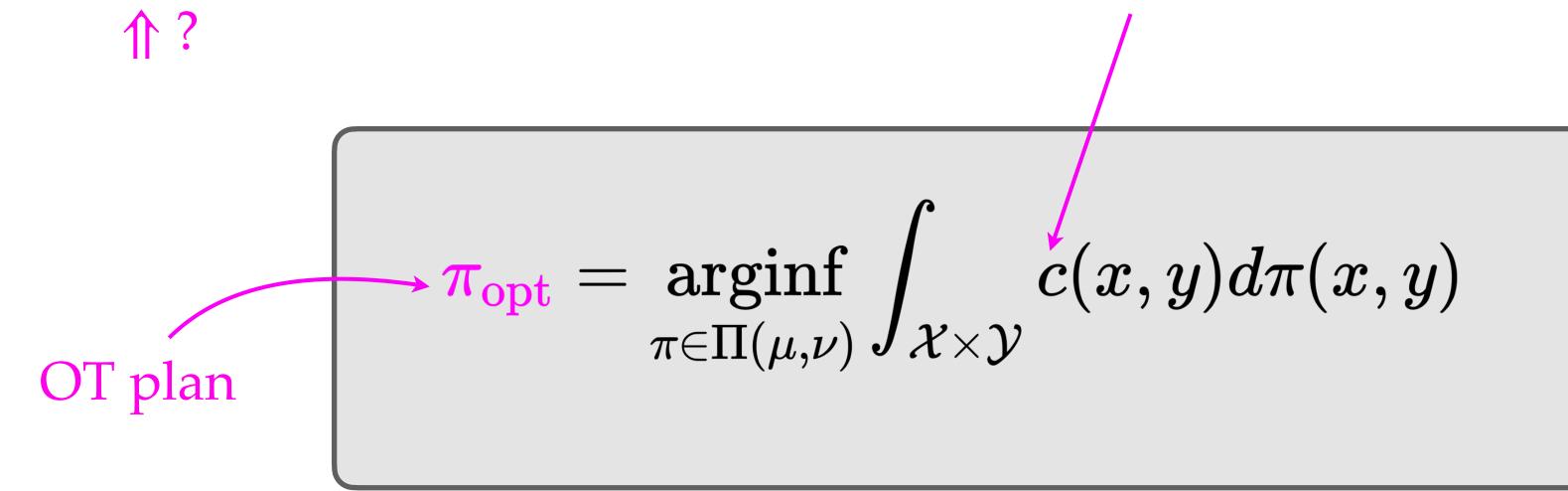
First computational method for OT regularity

Tensor Optimization for Graph-structured Multimarginal SB

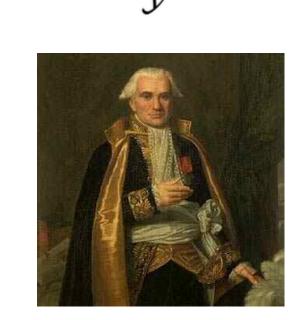
Application in learning computational resource usage

Background: OT Formulation





The inf value is called the squared Wasserstein distance

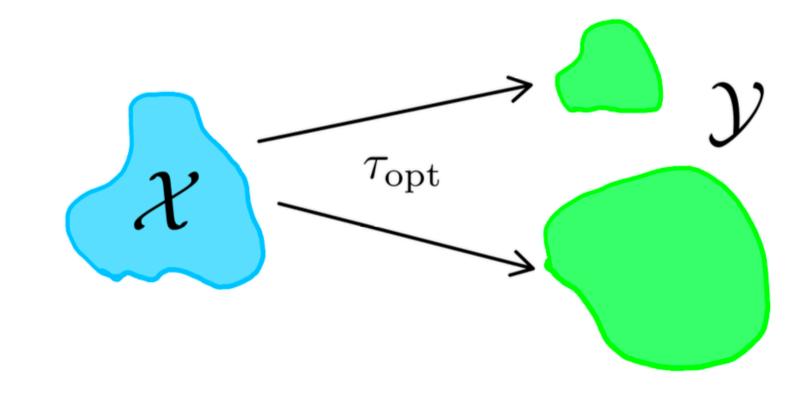


Monge formulation, 1781 Nonlinear nonconvex program

Kantorovich formulation, 1941 Linear program

Background: OT Regularity

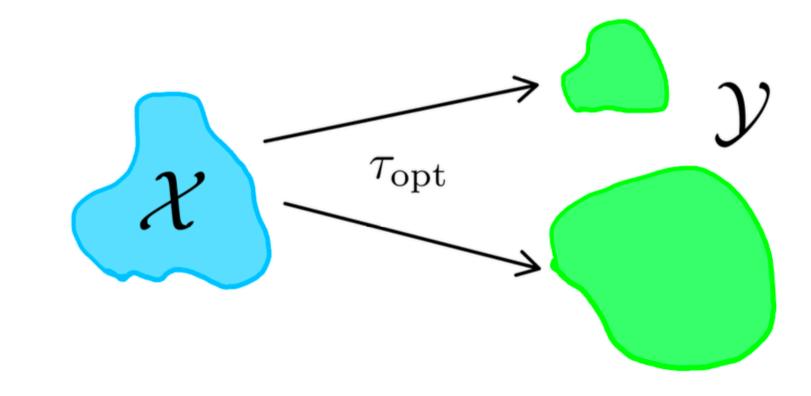
Question: is τ_{opt} continuous?



Answer: Yes if μ , ν abs. continuous + extra condition on c and manifold

Background: OT Regularity

Question: is τ_{opt} continuous?



Answer: Yes if μ , ν abs. continuous + extra condition on c and manifold

Defn: Ma-Trudinger-Wang (MTW) tensor (2005, 2009)

X-N. Ma N. Trudinger X-J. Wang

$$\mathfrak{S}_{(x,y)}(\xi,\eta) := \sum_{i,j,k,l,p,q,r,s} (c_{ij,p}c^{p,q}c_{q,rs} - c_{ij,rs})c^{r,k}c^{s,l}\xi_i\xi_j\eta_k\eta_l \ orall \ x \in \mathcal{X}, y \in \mathcal{Y}, \xi \in T_x\mathcal{X}, \eta \in T_y^*\mathcal{Y}$$

$$c_{ij,kl} = \partial_{x_i}\partial_{x_j}\partial_{y_k}\partial_{y_l}c(x,y), \quad c^{i,j}(x,y) = \left\lfloor ((
abla_x\otimes
abla_y)c)^{-1}
ight
floor_{i,j}$$

Background: OT Regularity

Defn: MTW(0) and MTW(κ), $\kappa > 0$

If
$$\mathfrak{S}_{(\cdot,\cdot)}(\xi,\eta) \geq 0 \ \forall (\xi,\eta) \text{ s.t. } \eta(\xi) = 0 \text{ then } c \text{ satisfies MTW}(0)$$

If
$$\exists k > 0 \text{ s.t. } \mathfrak{S}_{(\cdot,\cdot)}(\xi,\eta) \geq \kappa \|\xi\|^2 \|\eta\|^2$$
 then c satisfies MTW(κ)

Defn: Nonnegative Cost Curvature (NNCC)

If
$$\mathfrak{S}_{(\cdot,\cdot)}(\xi,\eta)\geq 0\ \forall\ (\xi,\eta)$$
 then c satisfies NNCC

Difficult to verify analytically. Our approach: computational certificate

Background: Schrödinger Bridge Problem (SBP)

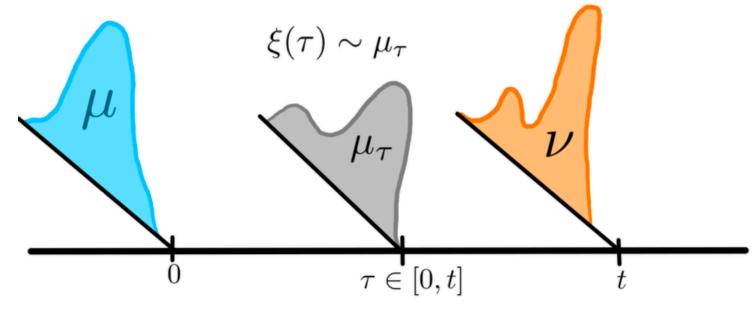
Static SBP = Kantorovich OT + entropic regularization

$$\pi_{ ext{opt}} = rginf_{\pi \in \Pi(\mu,
u)} \int_{\mathcal{X} imes \mathcal{Y}} (c(x, y) + arepsilon \log \pi(x, y)) d\pi(x, y)$$

Strictly convex program

Continuous SBP = optimization over measure-valued path space

Generates the maximum likelihood trajectory on path space



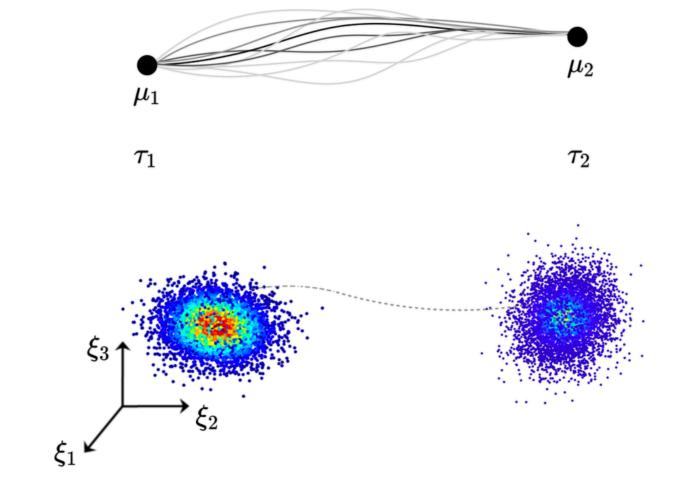
$$\operatorname*{arg\,inf}_{M \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})} \int_{\mathcal{X} \times \mathcal{Y}} (c(\boldsymbol{\xi}(0), \boldsymbol{\xi}(t)) + \varepsilon \log M(\boldsymbol{\xi}(0), \boldsymbol{\xi}(t))) M(\boldsymbol{\xi}(0), \boldsymbol{\xi}(t)) d\boldsymbol{\xi}(0) d\boldsymbol{\xi}(t)$$
 subject to
$$\int_{\mathcal{X}} M(\boldsymbol{\xi}(0), \boldsymbol{\xi}(t)) d\boldsymbol{\xi}(0) = \nu, \quad \int_{\mathcal{Y}} M(\boldsymbol{\xi}(0), \boldsymbol{\xi}(t)) d\boldsymbol{\xi}(t) = \mu$$

Background: Discrete SBP

Bi-marginal a.k.a. classical SBP

$$egin{aligned} M_{ ext{opt}} &= rg\min_{M \in \mathbb{R}_{\geq 0}^{n imes n}} ra{\langle C + arepsilon \log M, M
angle} \ & ext{subject to} & \operatorname{proj}_{\sigma}\left(M
ight) = oldsymbol{\mu}_{\sigma} \ orall \sigma \in \{1, 2\} \ racepsilon_{\Delta^{n-1}}^{\cap} \end{aligned}$$

Darker distributional path = more likely



Weighted scattered data:

$$\{\boldsymbol{\xi}^{i}(\tau_{\sigma})\}_{i=1}^{n}, \, \mu_{\sigma} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\boldsymbol{\xi} - \boldsymbol{\xi}^{i}(\tau_{\sigma})\right)$$

Background: Discrete SBP

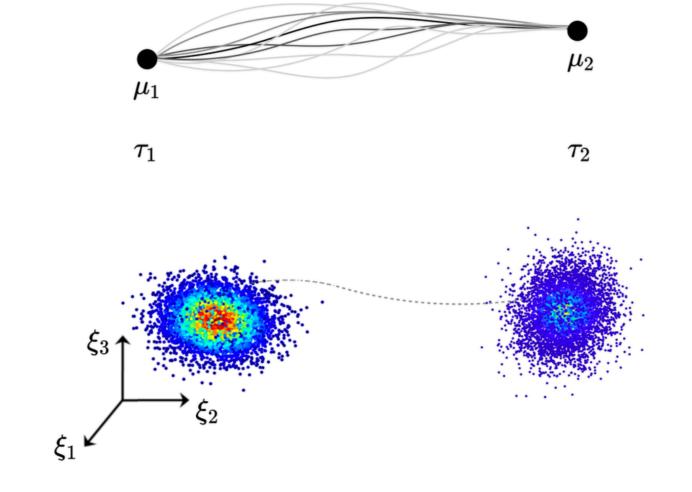
Bi-marginal a.k.a. classical SBP

$$egin{aligned} M_{ ext{opt}} &= rg \min_{M \in \mathbb{R}^{n imes n} \geq 0} \ \langle C + arepsilon \log M, M
angle \ \operatorname{subject} \ \operatorname{to} \ \operatorname{proj}_{\sigma} (M) = oldsymbol{\mu}_{\sigma} \ orall \sigma \in \{1, 2\} \ \stackrel{\cap}{\Delta}^{n-1} \end{aligned}$$

Multimarginal SBP (MSBP)

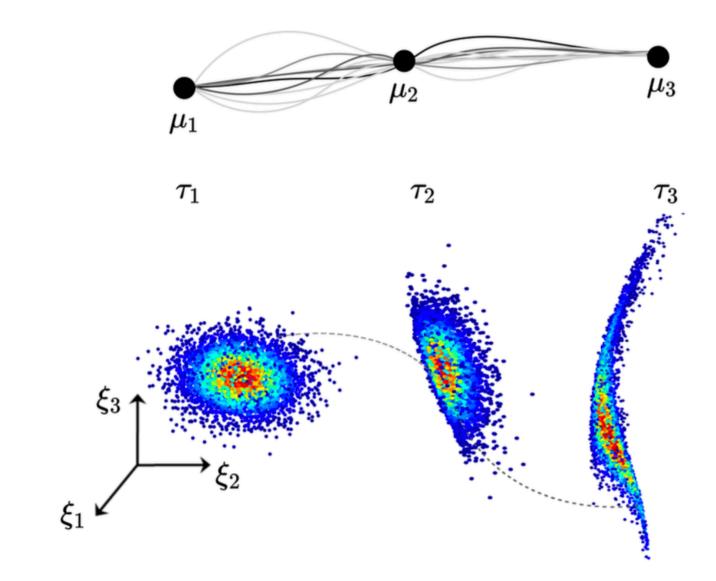
$$egin{aligned} m{M}_{\mathrm{opt}} &= rg \min_{m{M} \in (\mathbb{R}^n)_{\geq 0}^{\otimes s}} & \langle m{C} + arepsilon \log m{M}, m{M}
angle \ m{M} \in (\mathbb{R}^n)_{\geq 0}^{\otimes s} & (\mathbb{R}^n)_{\geq 0}^{\otimes s} \ & \mathrm{subject\ to} & \mathrm{proj}_{\sigma}(m{M}) = m{\mu}_{\sigma} & orall m{\sigma} \in \llbracket m{s}
rbrace \ m{N}_{\geq 2} \end{aligned}$$

Darker distributional path = more likely



Weighted scattered data:

$$\{\boldsymbol{\xi}^{i}(\tau_{\sigma})\}_{i=1}^{n}, \, \mu_{\sigma} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\boldsymbol{\xi} - \boldsymbol{\xi}^{i}(\tau_{\sigma})\right)$$



Background: Sinkhorn Iteration to Solve MSBP

Step 1: Let
$$m{K} := \exp\left(-m{C}/arepsilon
ight) \in (\mathbb{R}^n)_{>0}^{\otimes s}$$
, initialize $m{u}_\sigma := \exp\left(m{\lambda}_\sigma/arepsilon
ight) \in \mathbb{R}^n_{>0}$

Step 2: Perform Sinkhorn iterations until (linear) convergence

$$oldsymbol{u}_{\sigma} \leftarrow oldsymbol{u}_{\sigma} \otimes oldsymbol{\mu}_{\sigma} \oslash \operatorname{proj}_{\sigma}(oldsymbol{K} \odot oldsymbol{U}) \quad orall \sigma \in \llbracket s
Vert$$

Step 3:
$$m{M}_{\mathrm{opt}} = m{K} \odot m{U}$$
 where $m{U} := \otimes_{\sigma=1}^s m{u}_{\sigma} \in (\mathbb{R}^n)_{>0}^{\otimes s}$

Background: Sinkhorn Iteration to Solve MSBP

Step 1: Let
$$m{K} := \exp\left(-m{C}/\varepsilon\right) \in (\mathbb{R}^n)_{>0}^{\otimes s}$$
, initialize $m{u}_\sigma := \exp\left(m{\lambda}_\sigma/\varepsilon\right) \in \mathbb{R}^n_{>0}$

Step 2: Perform Sinkhorn iterations until (linear) convergence

$$oldsymbol{u}_{\sigma} \leftarrow oldsymbol{u}_{\sigma} \otimes oldsymbol{\mu}_{\sigma} \otimes oldsymbol{\mathrm{proj}}_{\sigma}(oldsymbol{K} \odot oldsymbol{U}) \quad orall \sigma \in \llbracket s
bracket$$

Step 3:
$$m{M}_{\mathrm{opt}} = m{K} \odot m{U}$$
 where $m{U} := \otimes_{\sigma=1}^s m{u}_{\sigma} \in (\mathbb{R}^n)_{>0}^{\otimes s}$

Trouble: computing
$$\left[\operatorname{proj}_{\sigma}\left(\boldsymbol{M}\right)\right]_{j}=\sum_{i_{1},\ldots,i_{\sigma-1},i_{\sigma+1},\ldots,i_{s}}\boldsymbol{M}_{i_{1},\ldots,i_{\sigma-1},j,i_{\sigma+1},\ldots,i_{s}}$$

has $O(n^s)$ complexity more on this later

Tensor Optimization for OT Regularity

Problem Formulation

Assumption A1: MTW tensor is rational in $(x,y) \in \mathcal{X} \times \mathcal{Y}$ semialgebraic

Sufficient but not necessary: c is rational in $(x,y) \in \mathcal{X} \times \mathcal{Y}$ semialgebraic

Problem Formulation

Assumption A1: MTW tensor is rational in $(x,y) \in \mathcal{X} \times \mathcal{Y}$ semialgebraic

Sufficient but not necessary: c is rational in $(x,y) \in \mathcal{X} \times \mathcal{Y}$ semialgebraic

Forward problem:

Given $c, \mathcal{X}, \mathcal{Y}$ as per **A1**, certify/falsify if the ground cost $c: \mathcal{X} \times \mathcal{Y} \mapsto \mathbb{R}_{\geq 0}$ satisfies either MTW(0) or MTW(κ) or NNCC condition

Inverse problem:

Given $c, \mathcal{X}, \mathcal{Y}$ as per **A1**, find semialgebraic $\mathcal{U} \times \mathcal{V} \subseteq \mathcal{X} \times \mathcal{Y}$ such that $c: \mathcal{U} \times \mathcal{V} \mapsto \mathbb{R}_{\geq 0}$ satisfies either MTW(0) or MTW(κ) or NNCC condition

Sum-of-Squares (SOS) Polynomials

$$exttt{poly}(x) \in \sum\limits_{ exttt{SOS}}[x] ext{ if } exttt{poly}(x) = (exttt{poly}_1(x))^2 + (exttt{poly}_2(x))^2 + \ldots + (exttt{poly}_m(x))^2$$

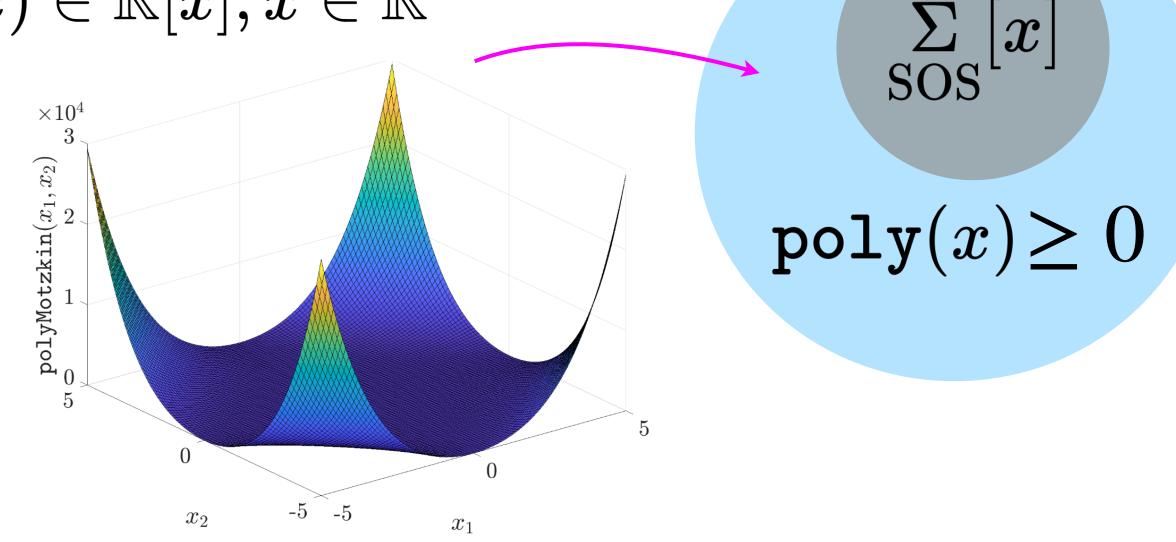
for some $\operatorname{\mathsf{poly}}_1(x), \operatorname{\mathsf{poly}}_2(x), \ldots, \operatorname{\mathsf{poly}}_m(x) \in \mathbb{R}[x], x \in \mathbb{R}^n$

SOS decomposition:

$$s \in \sum_{ ext{sos}} [x] \ \Rightarrow s = Z_d(x)^ op S Z_d(x)$$

for some $S \succeq 0$, $d \in \mathbb{N}$

where $Z_d(x)$ with monomial entries $(1,x,\ldots,x^d)$ of length $\zeta \coloneqq \sum_{r=0}^d \binom{n+r-1}{r}$



polyMotzkin $(x_1,x_2):=x_1^4x_2^2+x_1^2x_2^4-3x_1^2x_2^2+1$

SOS Programming

Defn: Semialgebraic set

Finite union of sets of the form $\{x\in\mathbb{R}^n\mid g(x)\leq 0,g\in\mathbb{R}_{d_g}[x],d_g\in\mathbb{N}\}$

Defn: Polynomial Optimization

Computationally intractable

For
$$f,g_{i\in[n_g]}\in\mathbb{R}[x]$$

$$\min_{x \in \mathbb{R}^n} f(x) \quad ext{such that} \quad x \in \mathcal{C} := \{x \in \mathbb{R}^n \mid g_i(x) \leq 0 orall i \in \llbracket n_g
rbracket \}$$

$$\max_{\gamma \in \mathbb{R}} \ \gamma \quad ext{subject to} \quad f(x) - \gamma \geq 0 \quad orall x \in \mathcal{C} ext{ semialgebraic}$$

SOS Programming (contd.)

$$f(x) - \gamma \ge 0 \quad \forall x \in \mathcal{C} \text{ Archimedean}$$

Putinar's Positivstellensatz (1993)

$$\exists s_0, s_1, \dots, s_{n_g} \in \sum_{\mathrm{sos}} [x] ext{ such that } f(x) - \gamma = s_0(x) - \sum_{i \in [n_g]} s_i(x) g_i(x)$$

Defn: SOS tightening of Polynomial Optimization --> Semidefinite program

$$\max_{\left(\gamma,S_{0},S_{1},\ldots,S_{n_{g}}
ight)\in\mathbb{R}}\sum_{+}^{\zeta}\sum_{+}^{\chi}\sum_{i=1}^{\chi}\sum_{m_{g}+1 ext{ times}}^{\zeta}\gamma_{i}$$

$$ext{subject to} \quad f(x) - \gamma = Z_d(x)^ op S_0 Z_d(x) - \sum_{i \in [n_g]} Z_d(x)^ op S_i Z_d(x) g_i(x)$$

Semidefinite program (SDP) --> software SOSTOOLS, YALMIP, SOSOPT

Back to Forward Problem

Forward problem:

Given c, \mathcal{X} , \mathcal{Y} as per **A1**, certify/falsify if the ground cost satisfies either MTW(0) or MTW(κ) or NNCC condition

$$\mathcal{X} imes \mathcal{Y} = \{(x,y) \in \mathbb{R}^n imes \mathbb{R}^n \mid m_i(x,y) \leq 0, \; m_i(x,y) \in \mathbb{R}_{d_m}[x,y] \; orall i \in \llbracket \ell
bracket \}$$

NNCC forward problem:

 $\min \ 0$ $\mathfrak{S}_{(x,y)}(\xi,\eta) \geq 0, \quad orall (x,y) \in \mathcal{X} imes \mathcal{Y}, \ \xi \in T_x \mathcal{X}, \ \eta \in T_y^* \mathcal{Y}$

MTW(*k*) forward problem:

subject to $\mathfrak{S}_{(x,y)}(\xi,\eta) \geq \kappa \|\xi\|^2 \|\eta\|^2,$ $orall (x,y) \in \mathcal{X} imes \mathcal{Y}, \xi \in T_x \mathcal{X}, \eta \in T_y^* \mathcal{Y} ext{ s.t. } \eta(\xi) = 0.$

Solution to (NNCC) Forward Problem

$$egin{aligned} T_x\mathcal{X},T_y^*\mathcal{Y}&\cong\mathbb{R}^n &\Longrightarrow &\mathfrak{S}_{(x,y)}(\xi,\eta)=(\xi\otimes\eta)^{ op}\widetilde{F(x,y)}(\xi\otimes\eta) \ &[F(x,y)]_{i+n(j-1),k+n(l-1)}=\sum_{p,q,r,s}(c_{ij,p}c^{p,q}c_{q,rs}-c_{ij,rs})c^{r,k}c^{s,l} \end{aligned}$$

Thm: SOS Tightening of NNCC Forward Problem --> SDP

For
$$F=rac{F_N}{F_D}\in\mathbb{R}_{N,D}[x,y], N,D\in\mathbb{N}, ext{ if } \exists s_0,s_1,\ldots,s_\ell\in\sum_{ ext{sos}}^{n^z}[x,y] ext{ such that }$$

$$ig(F_N(x,y)+F_N^ op(x,y)ig)-s_0(x,y)F_D(x,y)+\sum_{i\in[\ell]}s_i(x,y)m_i(x,y)\in\sum_{\mathrm{sos}}^n[x,y]$$

then c satisfies NNCC condition on $\mathcal{X} \times \mathcal{Y}$

Computational Complexity: Forward Problem

Parameters: $\omega \in [2.376, 3]$

$$F=rac{F_N}{F_D}\in \mathbb{R}_{N,D}[x,y], N,D\in \mathbb{N} \quad \Rightarrow \quad [F]_{i,j}\in \mathbb{R}_{(n^4-1)d_D+d_N,n^4d_D}[x,y]$$

$$d_N, d_D = \mathcal{O}\left(ND\right)$$

 $\ell=$ # of polynomial constraints defining $\mathcal{X} imes\mathcal{Y}$ semialgebraic

NNCC complexity:
$$\mathcal{O}\left(\ell^{5/4}n^{9+5d_N/4}+n^{\omega(4+d_N)}+\ell^{\omega/2}n^{\omega(2+d_N/2)}\right)$$

MTW(
$$\kappa$$
) complexity: $\mathcal{O}\left(\ell^{5/4}n^{9d_N/4}+\ell^{\omega/2+1/4}n^{(\omega/2+1/4)d_N}\right)$

Sub-quadratic in ℓ , polynomial in n

Solution to (NNCC) Inverse Problem

Thm: SOS Tightening of NNCC Inverse Problem --> SDP

For compact
$$\Lambda := \{(x,y) \in \mathcal{X} \times \mathcal{Y} \mid \lambda(x,y) \leq 0, \lambda(x,y) \in \mathbb{R}_{d_{\lambda}}[x,y], d_{\lambda} \in \mathbb{N}\}$$
 chosen a priori, let $V_{\pm} : \Lambda \mapsto \mathbb{R}$ solve

$$egin{aligned} \min_{V \in \mathbb{R}_d[x,y]} & \int_{\Lambda} V(x,y) dx dy, \ ext{subject to} & V(x,y) - m_i(x,y) + r_i(x,y) \lambda(x,y) \in \sum_{ ext{sos}} [x,y], \quad orall \, i \in \llbracket \ell
rbracket, \ & V(x,y) \pm F_D(x,y) + s_0(x,y) \lambda(x,y) \in \sum_{ ext{sos}} [x,y], \ & V(x,y) \pm f_j(x,y) + s_j(x,y) \lambda(x,y) \in \sum_{ ext{sos}} [x,y], \, orall \, j \in \llbracket | ext{pminor}(F_N) |
rbracket, \ & s_0(x,y), s_j(x,y), r_i(x,y) \in \sum_{ ext{sos}} [x,y] \quad orall \, i \in \llbracket \ell
rbracket, j \in \llbracket | ext{pminor}(F_N) |
rbracket, \ & s_0(x,y), s_j(x,y), r_i(x,y) \in \sum_{ ext{sos}} [x,y] \quad orall \, i \in \llbracket \ell
rbracket, j \in \llbracket | ext{pminor}(F_N) |
rbracket, \ & s_0(x,y), s_j(x,y), r_i(x,y) \in \sum_{ ext{sos}} [x,y] \quad orall \, i \in \llbracket \ell
rbracket, j \in \llbracket | ext{pminor}(F_N) |
rbracket, \ & s_0(x,y), s_j(x,y), r_i(x,y) \in \sum_{ ext{sos}} [x,y] \quad orall \, i \in \llbracket \ell
rbracket, j \in \llbracket | ext{pminor}(F_N) |
rbracket, \ & s_0(x,y), s_j(x,y), r_i(x,y) \in \sum_{ ext{sos}} [x,y] \quad \forall i \in \llbracket \ell
rbracket, j \in \llbracket | ext{pminor}(F_N) |
rbracket, \ & s_0(x,y), s_j(x,y), r_i(x,y) \in \sum_{ ext{sos}} [x,y] \quad \forall i \in \llbracket \ell
rbracket, j \in$$

then c satisfies NNCC on $\{(x,y)\in\Lambda\mid V_+(x,y)\leq 0\}\cup\{(x,y)\in\Lambda\mid V_-(x,y)\leq 0\}$

129

Numerical Results: Forward Problem

Example 1: Perturbed Euclidean Cost

$$c(x,y) = \|x-y\|_2^2 - arepsilon \|x-y\|_2^4, \quad x,y \in \mathbb{R}^n, arepsilon > 0$$

Lee & Li (2009): for ε small enough, MTW(0) holds on

$$\mathcal{X} imes \mathcal{Y} := \{(x,y) \in \mathbb{R}^n imes \mathbb{R}^n \mid \|x-y\|_2 \leq 0.5\}$$

But how small is small enough?

We used SOS SDP + bisection to find $\varepsilon_{\rm max}$ such that MTW(0) holds

Dimensions, n	1	2	
$arepsilon_{ ext{max}}$	$0.67 (pprox rac{2}{3})$	$1.05\cdot 10^{-2}$	
Residual	$1.19\cdot 10^{-7}$	$4.18\cdot 10^{-7}$	computation known

Numerical Results: Forward Problem

Example 2: Log Partition Cost (Pal & Wong, 2018; Khan & Zhang, 2020)

used in stochastic portfolio theory

$$c(x,y) = \Psi_{ ext{IsoMulNor}}(x-y), \; \Psi_{ ext{IsoMulNor}}(x) := rac{1}{2} \left(-\log x_1 + \sum_{i=2}^n x_i^2/x_1
ight)$$

Our method still applies because $\mathfrak{S}_{(x,y)}(\xi,\eta) \propto \mathfrak{A}_x(\xi,\eta) = \mathrm{poly}(x,\xi,\eta)/x_1^2\xi_n^2$

No analytical method exists to verify MTW(0) for n > 2

We can verify MTW(0) for
$$\mathcal{X} = \mathcal{Y} = \{x \in \mathbb{R}^n \mid x_1 > 0\} \ \forall n \in \mathbb{N}$$

Dimensions, n	3	4	5	6
Residual	$1.034 \cdot 10^{-7}$	$4.804 \cdot 10^{-8}$	$4.683 \cdot 10^{-8}$	$3.475 \cdot 10^{-11}$
Total time (s)	0.7220	0.8050	1.2520	1.6690

not rational!

Numerical Results: Forward Problem

Example 2: Log Partition Cost (Pal & Wong, 2018; Khan & Zhang, 2020)

For n = 3, our method discovered SOS decomposition:

$$\operatorname{poly}(x,\xi,\eta) = s(x,\xi,\eta)^ op s(x,\xi,\eta)$$

	Γ0	-1.4	0	0.24	0	0
	2.4	0	-0.17	0	0	0
	0	1.4	0	-0.24	0	0
	-2.4	0	0.17	0	-0.0002	0
	0	-1.4	0	0.25	0	-1.2
where $s(x, \xi, \eta) =$	2.4	0	-0.17	0	-0.0002	0
	-1.6	0	-1.9	0	0	0
	0	0.52	0	1.3	0	0
	0	1.4	0	-0.25	00000	0
	-0.84	0	2	0	0	0
	0	-0.52	0	-1.3	0	0

 $egin{array}{c} \eta_1 \xi_1^2 \xi_2 \ \eta_1 \xi_1^2 \xi_3 \ \eta_1 \xi_1 \xi_2 \xi_1 \ \eta_1 \xi_1 \xi_3 \xi_1 \ \eta_2 \xi_1 \xi_2 \xi_2 \ \eta_2 \xi_1 \xi_2 \xi_3 \ \end{bmatrix}$

Numerical Results: Inverse Problem

Example 3: Perturbed Euclidean Cost Revisited

$$c(x,y) = \|x-y\|_2^2 - arepsilon \|x-y\|_2^4, \quad x,y \in \mathbb{R}^n, arepsilon > 0$$

Lee & Li (2009): for $\varepsilon \gg 0$, MTW(0) fails on

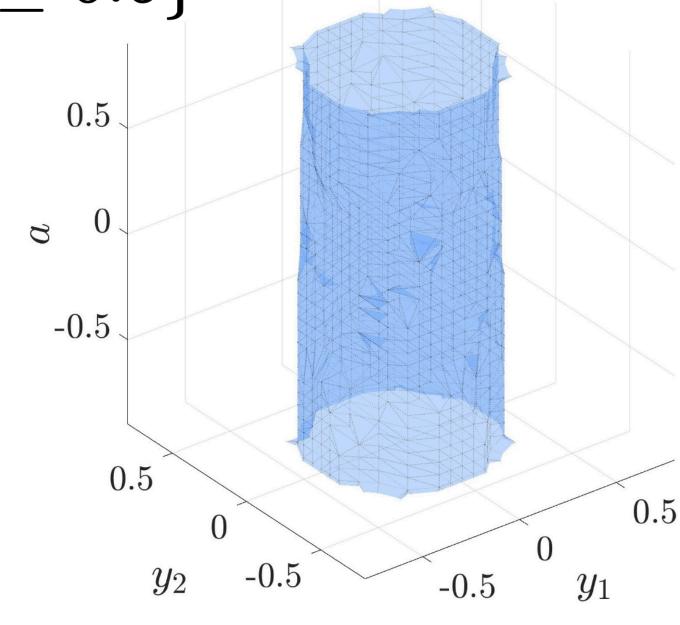
$$\mathcal{X} imes \mathcal{Y} := \{(x,y) \in \mathbb{R}^n imes \mathbb{R}^n \mid \|x-y\|_2 \leq 0.5\}$$

Fix
$$\varepsilon = 1, \Lambda = [-1, 1]^2, \mathcal{X} = \{[0, 0]\}$$

Parameterize $(\xi, \eta) = ([a, 1]^\top, [-1, a]^\top)$

Solve MTW(0) inverse problem

Exec time 115 sec, solve time 0.97 sec



Inner approx. of region where MTW tensor ≥ 0

Numerical Results: Inverse Problem

Example 4: Squared Distance Cost for a Surface of Positive Curvature

$$c(x,y) = 3(x_1-y_1)^2(x_2+y_2) + 4(x_2^3+y_2^3) - (4x_2y_2-(x_1-y_1)^2)^{rac{3}{2}}$$

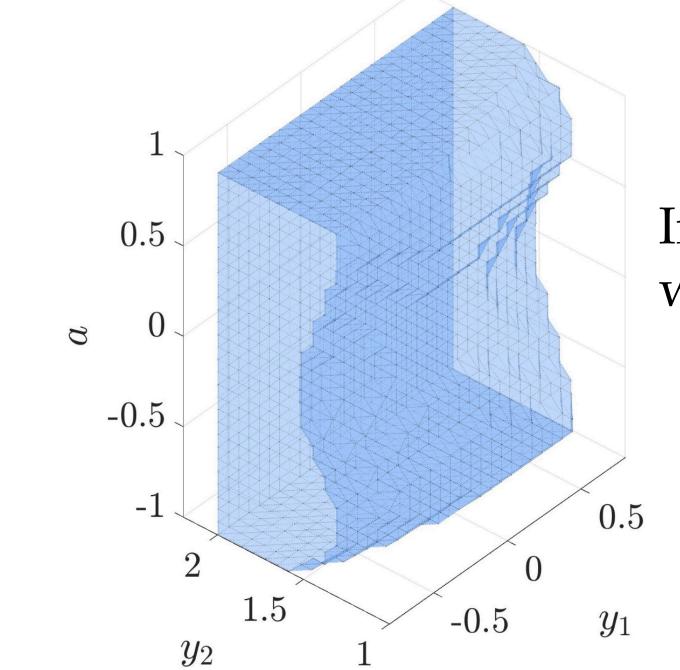
MTW holds around $\{x = y\}$

$$\text{Fix } \Lambda = [-1,1] \times [0,2], \ \mathcal{X} \times \mathcal{Y} = \{[0,1]\} \times \{(y_1,y_2) \in [-1,2] \times [0,2] \mid 4y_2 - y_1^2 \geq 0\}$$

Parameterize $(\xi, \eta) = \left([a, 1]^\top, [-1, a]^\top\right)$

Solve MTW(0) inverse problem

Exec time 119 sec, solve time 19.6 sec



Inner approx. of region where MTW tensor ≥ 0

Recap: SOS Programming for OT Regularity

NNCC, MTW(κ), MTW(0) conditions \Rightarrow regularity of the OT map $\tau_{\rm opt}$

Assumption A1: MTW tensor is rational in $(x,y) \in \mathcal{X} \times \mathcal{Y}$ semialgebraic

SOS tightening of forward & inverse problems

Solve SDP using SOSTOOLS + YALMIP --> computational certificates

Tensor Optimization for Graph-structured Multi-marginal SB

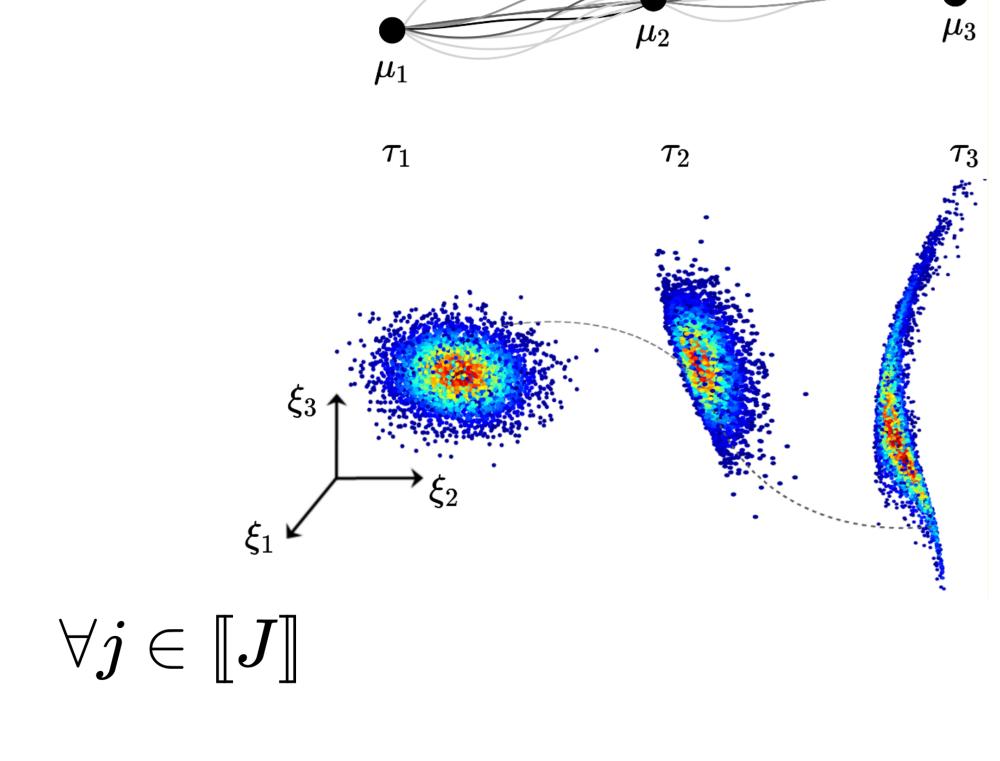
Learning Computational Resource Usage

Motivation: Computational Resource Usage of Multicore Software

Software running on $J \in \mathbb{N}$ CPU cores

Resource usage stochastic process $\xi(\tau) \sim \mu_{\tau}$

Example:
$$\boldsymbol{\xi}^j := egin{pmatrix} \boldsymbol{\xi}^j_1 \ \boldsymbol{\xi}^j_2 \ \boldsymbol{\xi}^j_2 \end{pmatrix} = egin{pmatrix} \text{instructions retired} \\ \text{LLC requests} \\ \text{LLC misses} \end{pmatrix} \quad \forall j \in \llbracket J \rrbracket$$



"Profiling" in RTOS community: sample $\{\boldsymbol{\xi}^{i,j}(\tau_{\sigma})\}_{i=1}^n \ \forall \sigma \in [\![s]\!]$ where

Time/resource intensive!

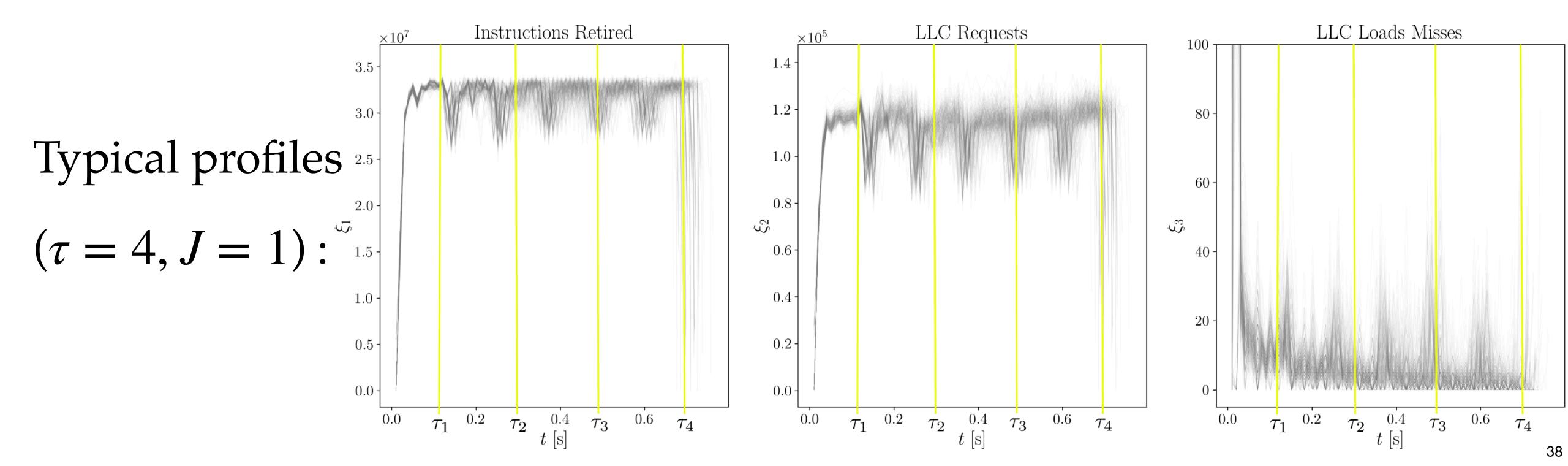
$$\tau_1 \equiv 0 < \tau_2 < \ldots < \tau_{s-1} < \tau_s \equiv t, \quad s \geq 2$$

Problem Formulation

Use (weighted scattered) profile data

$$\{oldsymbol{\xi}^{i,j}(au_{\sigma})\}_{i=1}^{n}, \mu_{\sigma}^{j} := rac{1}{n} \sum_{i=1}^{n} \delta\left(oldsymbol{\xi}^{j} - oldsymbol{\xi}^{i,j}\left(au_{\sigma}
ight)
ight) orall (j,\sigma) \in \llbracket J
rbracket imes \llbracket s
rbracket$$

to learn $\hat{\mu}_{ au} \, orall au \in [0,t]$



Challenges

Difficult to have first-principle physics based model for combined S/W+H/W level stochasticity

Learning must be over joint resources (e.g., processor & cache correlated)

Correlation structure among resource states changes with time

Need: nonparametric learning, also desire: learning with optimality

Main Idea

Step 1: Model the spatio-temporal correlation induced by HW+SW architecture by graph structures

Step 2: Solve MSBP over the resulting graph

Step 3: Use the MSBP solution to predict most likely $\hat{\mu}_{\tau}$

Steps 1,2: Discrete Graph-structured MSBP

Problem template:

$$rg \min \ \langle m{C} + arepsilon \log m{M}, m{M}
angle$$

$$M \in (\mathbb{R}^n)_{>0}^{\otimes |\Lambda|}$$

index set capturing graph structure

$$ext{subject to } \operatorname{proj}_{(j,\sigma)}\left(oldsymbol{M}
ight) = oldsymbol{\mu}_{\sigma}^{j} \quad orall (j,\sigma) \in \Lambda^{oldsymbol{\lambda}^{j}}$$

Prop: (Strong duality \rightsquigarrow Sinkhorn recursions, complexity: $\mathcal{O}\left(n^{|\Lambda|}\right)$)

Lagrange multipliers

Let

$$oldsymbol{K} := \exp(-oldsymbol{C}/arepsilon) \ , \ oldsymbol{u}^j_\sigma := \exp(oldsymbol{\lambda}^j_\sigma/arepsilon) \ , \ oldsymbol{U} := \otimes_{(j,\sigma) \in \Lambda} oldsymbol{u}^j_\sigma \ \in (\mathbb{R}^n)^{\otimes |\Lambda|} \ \in (\mathbb{R}^n)^{\otimes |\Lambda|}$$

The multi-marginal Sinkhorn recursions

$$oldsymbol{u}_{\sigma}^{j} \leftarrow oldsymbol{u}_{\sigma}^{j} \odot oldsymbol{\mu}_{\sigma}^{j} \oslash \operatorname{proj}_{(j,\sigma)} \left(oldsymbol{K} \odot oldsymbol{U}
ight) orall (j,\sigma) \in \Lambda,$$

converges with linear rate to minimizer $m{M}^{ ext{opt}} = m{K} \odot m{U}$

4

J = 1: Single CPU Core: Path-structured MSBP

Correlation induced by time

Graph structure:
$$(\mu_1)$$
 (μ_2) \cdots (μ_s)

Ground cost tensor decomposes: $C(\boldsymbol{\xi}(\tau_1), \dots, \boldsymbol{\xi}(\tau_s)) = \sum_{\sigma=1}^{\infty} c_{\sigma}(\boldsymbol{\xi}(\tau_{\sigma}), \boldsymbol{\xi}(\tau_{\sigma+1}))$

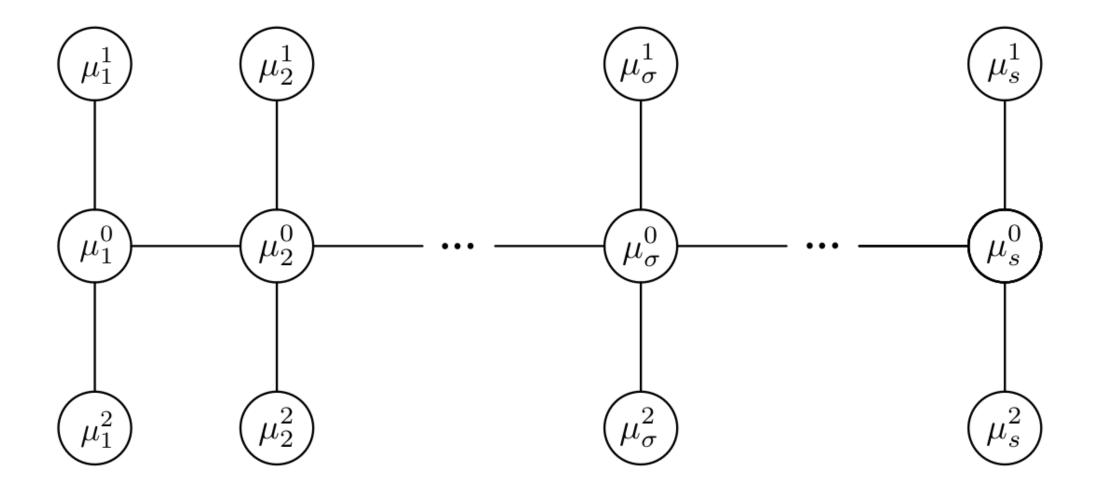
Discrete version:
$$[m{C}]_{i_1,\ldots,i_s} = \sum_{\sigma=1}^{s-1} \left[C^\sigma \right]_{i_\sigma,i_{\sigma+1}}$$

J > 1: Multiple CPU Cores

Correlation induced by time + CPU cores

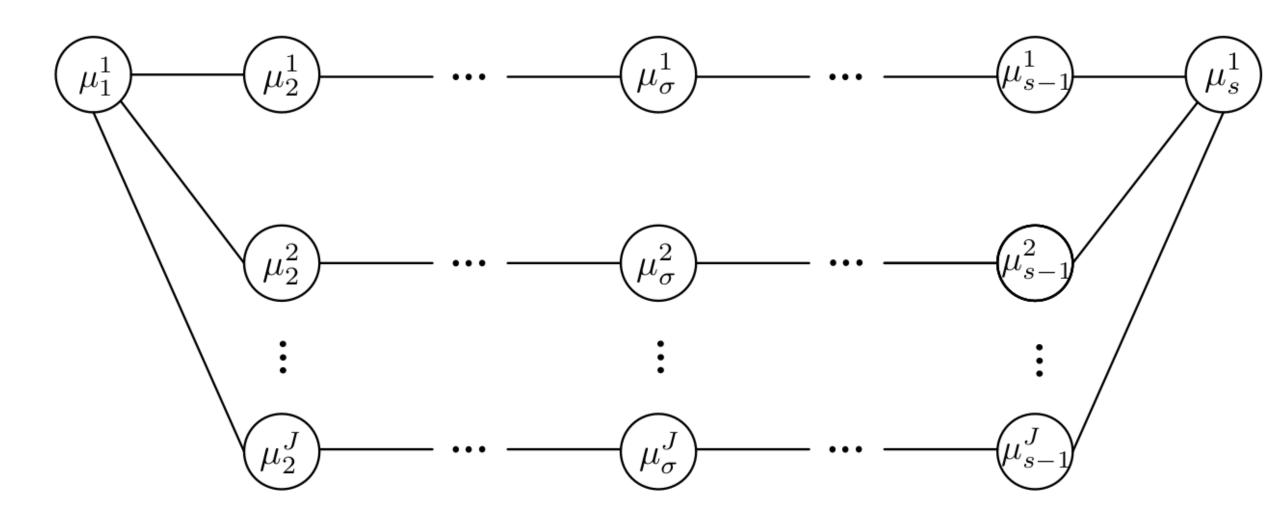
Graph structure:

barycentric (BC)



inter-CPU communication

series-parallel (SP)



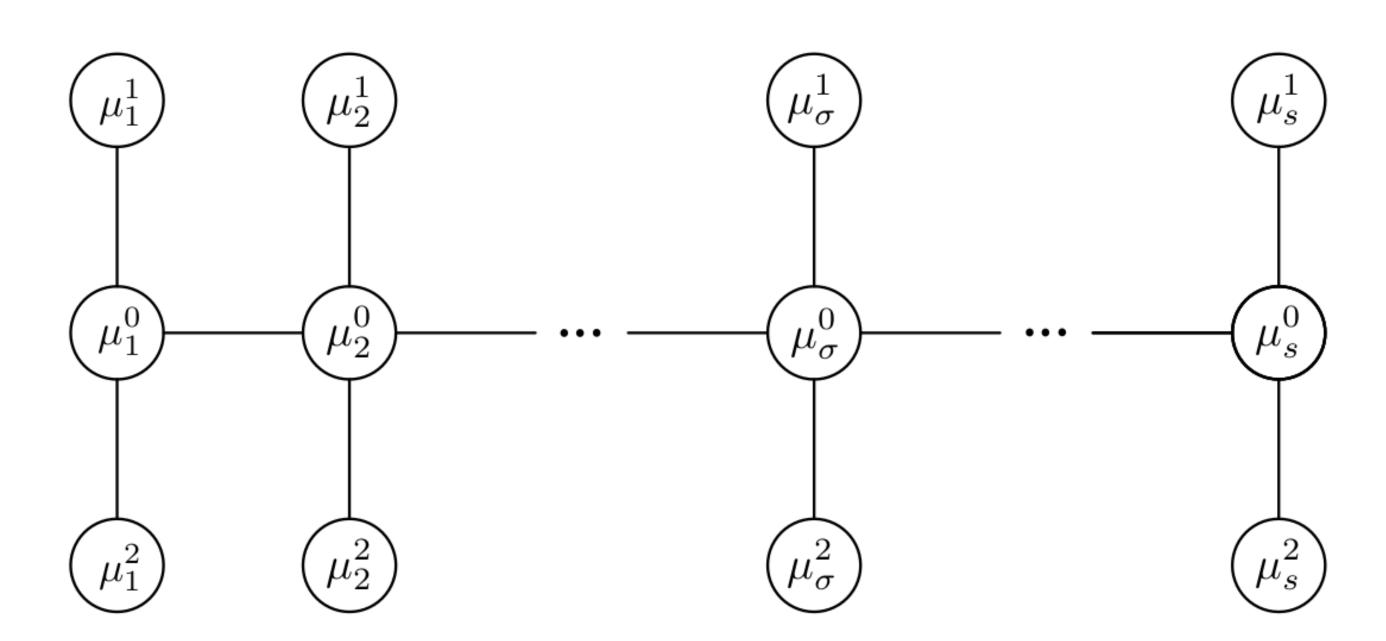
parallel execution

J > 1: Multiple CPU Cores: Barycentric MSBP

Idea: phantom CPU resource statistics $\mu_{\sigma}^{0} = \text{barycenter of } \{\mu_{\sigma}^{j}\}_{j \in [J]} \forall \sigma \in [s]$

Index set:

$$\Lambda_{\mathrm{BC}} := (\{0\} \cup \llbracket J
rbracket) imes \llbracket s
rbracket$$



Ground cost tensor decomposition:

$$oldsymbol{C}(oldsymbol{\xi}(au_1),\ldots,oldsymbol{\xi}(au_s)) = \sum_{\sigma=1}^{s-1} c_{0,\sigma}\left(oldsymbol{\xi}^0(au_\sigma),oldsymbol{\xi}^0(au_{\sigma+1})
ight) + \sum_{\sigma=1}^{s} \sum_{j=1}^{J} c_{j,\sigma}\left(oldsymbol{\xi}^j(au_\sigma),oldsymbol{\xi}^0(au_\sigma)
ight)$$

J > 1: Multiple CPU Cores: Series-parallel MSBP

Idea: fork and merge

Index set:

Ground cost tensor decomposition:

$$oldsymbol{C}(oldsymbol{\xi}(au_1),\ldots,oldsymbol{\xi}(au_s)) = \sum_{j=1}^J \left\{ c_{j,1}\left(oldsymbol{\xi}^j(au_1),oldsymbol{\xi}^j(au_2)
ight) + c_{j,s-1}\left(oldsymbol{\xi}^j(au_{s-1}),oldsymbol{\xi}^j(au_s)
ight)
ight\} + \sum_{\sigma=2}^{s-1} \sum_{j=1}^J c_{j,\sigma}\left(oldsymbol{\xi}^j(au_\sigma,oldsymbol{\xi}^j(au_{\sigma+1})
ight)$$

J > 1: Computational Complexity for MSBP

	Structure	General	Path	BC	SP
	Index set	Λ	[s]	$\Lambda_{ m BC}$	$\Lambda_{ m SP}$
	# of indices	\[\ \	S	(J+1)s	J(s-2)+2
linear in J , s —	$\mathcal{O}(\cdot)$ for $proj_{\sigma}(\boldsymbol{M})$	$n^{ \Lambda }$	$(s-1)n^2$	$(Js)n^2$	$(Js)n^3$

Exact flop count for BC:

$$Js(n_0n + n_0) + (2n_0) + (2s - 2)n_0^2$$

$$Js(n_0n + n_0) + (3n_0 + n + 2n_0n) + (2s - 2)n_0^2$$

Exact flop count for SP:

$$J(1+2(s-2))n^3 + (J+1)n^2 + n$$
 end dist.

$$\underbrace{(J(1+2(s-2))+3)n^3+(J-1)n^2+n}_{\text{other dist.}}$$

Step 3: MSBP Solution to Predicting $\hat{\mu}_{\tau}$

Given $\tau \in [0, t)$, $j \in \llbracket J \rrbracket$, find $\sigma \in \{\llbracket s \rrbracket \mid \tau_{\sigma} \leq \tau < \tau_{\sigma+1}\}$

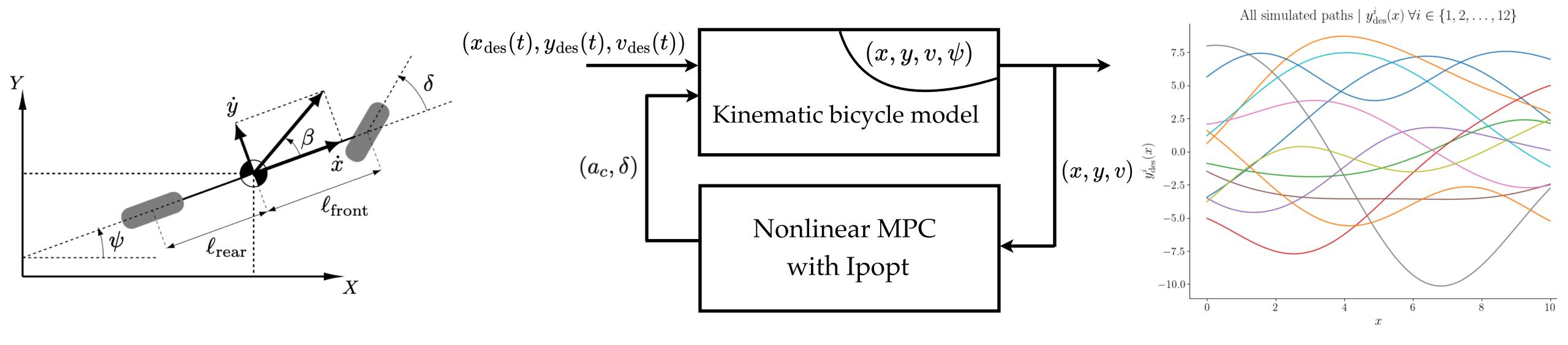
$$M^{j,\sigma} := \operatorname{proj}_{(j,\sigma),(j,\sigma+1)}(oldsymbol{M}^{\operatorname{opt}}) : \mu^j_\sigma o \mu^j_{\sigma+1} \quad \left(\in \mathbb{R}^{n imes n}_{\geq 0}
ight)$$

Compute measure interpolating μ_{σ}^{j} and $\mu_{\sigma+1}^{j}$ as:

$$\hat{\mu}^j_{ au} := \sum_{r=1}^n \sum_{\ell=1}^n \left[M^{j,\sigma}_{r,\ell}
ight] \delta(oldsymbol{\xi}^j - \widehat{oldsymbol{\xi}}^j(au, oldsymbol{\xi}^{r,j}(au_\sigma), oldsymbol{\xi}^{\ell,j}(au_{\sigma+1})))$$

and its support:

$$\widehat{oldsymbol{\xi}}^{j}(au, oldsymbol{\xi}^{r,j}(au_{\sigma}), oldsymbol{\xi}^{\ell,j}(au_{\sigma+1})) := (1-\lambda)oldsymbol{\xi}^{r,j}(au_{\sigma}) + \lambdaoldsymbol{\xi}^{\ell,j}(au_{\sigma+1}), \; \lambda := rac{ au - au_{\sigma}}{ au_{\sigma+1} - au_{\sigma}} \in [0,1]$$



$$m{c}_{ ext{cyber}} = egin{pmatrix} ext{alloc. last-level cache} \ ext{alloc. memory bandwidth} \end{pmatrix}, \ m{c}_{ ext{phys}} = y_{ ext{des}}(x) \in ext{GP}\left([x_{ ext{min}}, x_{ ext{max}}]
ight)$$

$$m{\xi} := egin{pmatrix} \xi_1 \ \xi_2 \ \xi_3 \end{pmatrix} = egin{pmatrix} ext{instructions retired} \ ext{LLC requests} \ ext{LLC misses} \end{pmatrix}$$

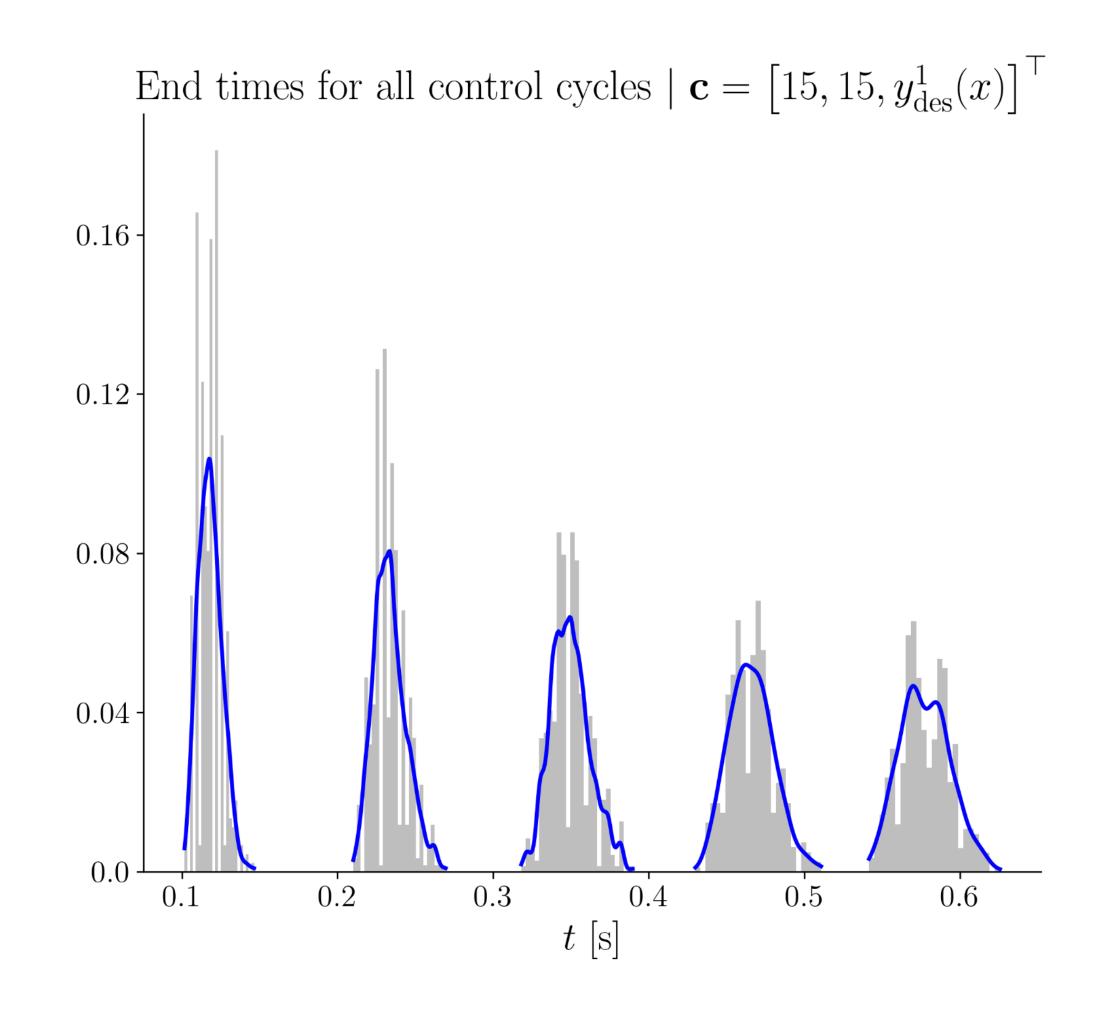
Single core ⇒ Path-structured MSBP

$$n=500,~oldsymbol{c}_{ ext{cyber}}=\begin{bmatrix}15&15\end{bmatrix}^{ op},~oldsymbol{c}_{ ext{phys}}=y_{ ext{des}}^1(x)$$
, 30 MB LLC, mem. bandwidth

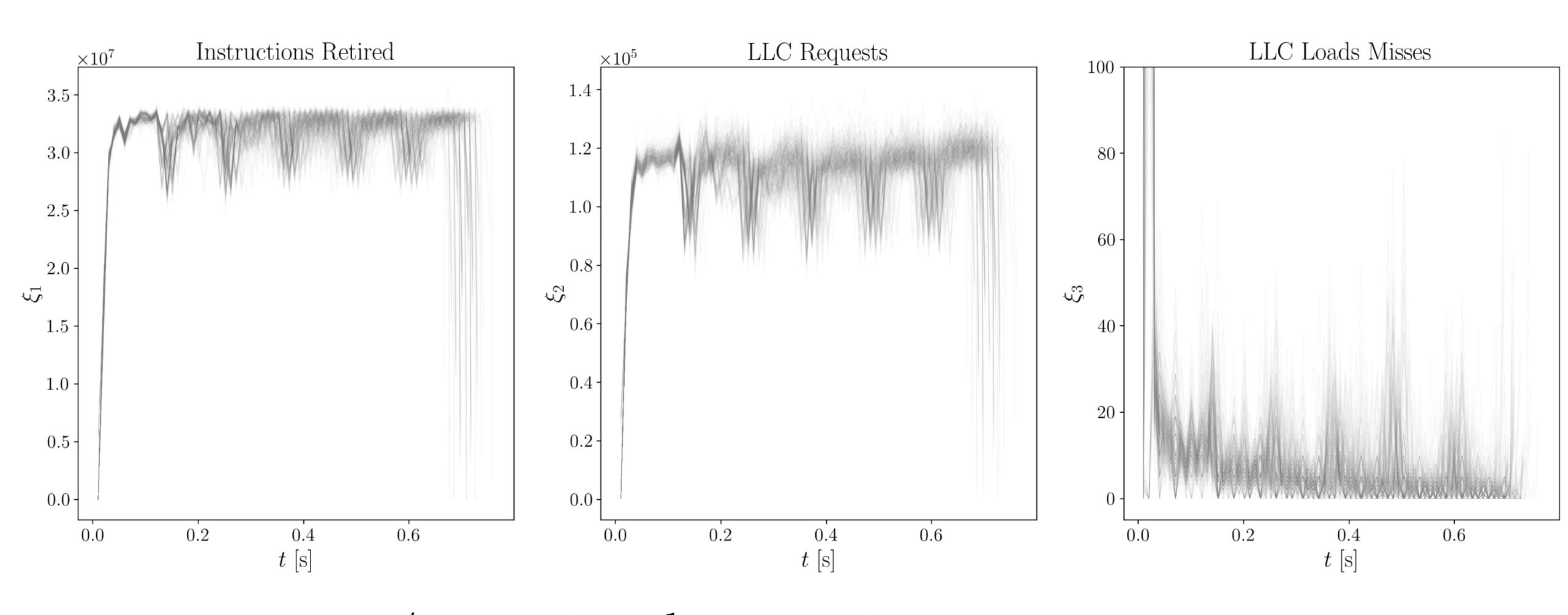
Each profile with $n_c = 5$ control cycles

Cycle No.	Mean	Std. Dev.
#1	0.1181	0.0076
#2	0.2336	0.0106
#3	0.3495	0.0127
#4	0.4660	0.0143
#5	0.5775	0.0159

Sampling period = 5 ms



Profiles:



H/W-level stochasticity, fixed context *c*

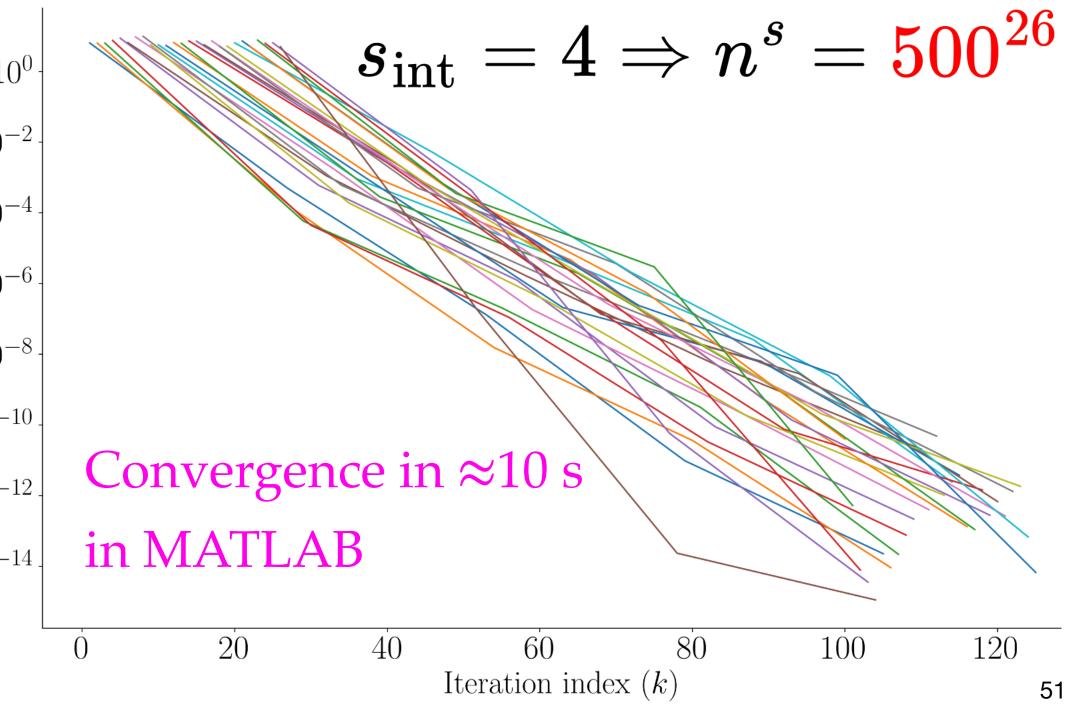
MSBP convergence:

of marginals $s:=1+n_c(s_{\mathrm{int}}+1);$ Euclidean $C^\sigma \forall \sigma \in \llbracket s-1
rbracket$

Cost tensor element:
$$[C]_{i_1,\ldots,i_s} = \sum_{\sigma=1}^{s-1} [C]_{i_\sigma,i_{\sigma+1}}^{\sigma}$$

$$d_{\mathrm{H}}\left(oldsymbol{u},oldsymbol{v}
ight) = \log\left(rac{\max_{i=1,\ldots,n}u_i/v_i}{\min_{i=1,\ldots,n}u_i/v_i}
ight), \ oldsymbol{u},oldsymbol{v}\in\mathbb{R}_{>0}^n egin{array}{c} 10^{-2} \ \hline \widehat{\mathbb{Q}}_{p,-10^{-6}} \end{array}
ight]$$

Hilbert projective metric ~

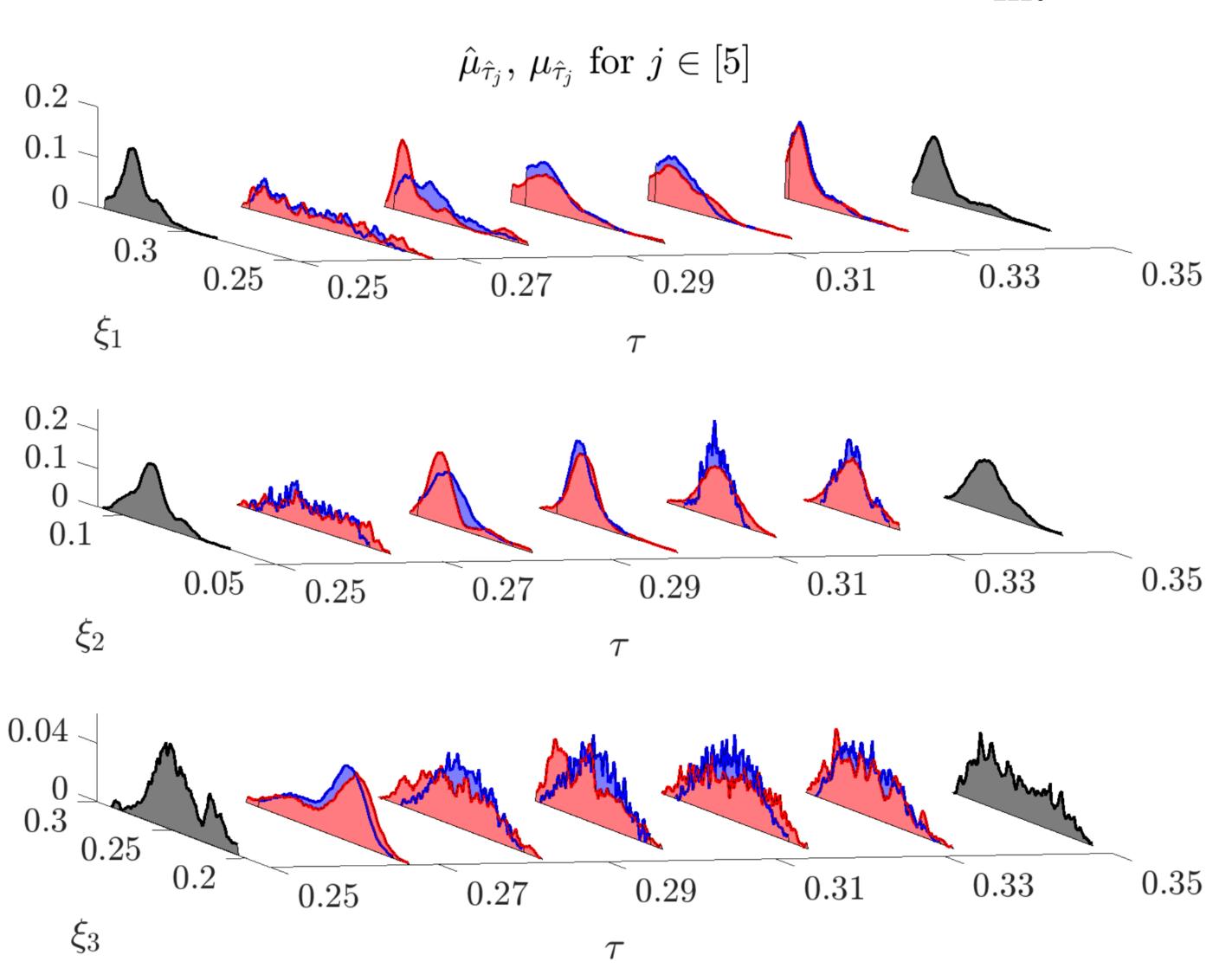


MSBP prediction vs "hold out" observation, 3rd control cycle, $s_{int} = 4$:

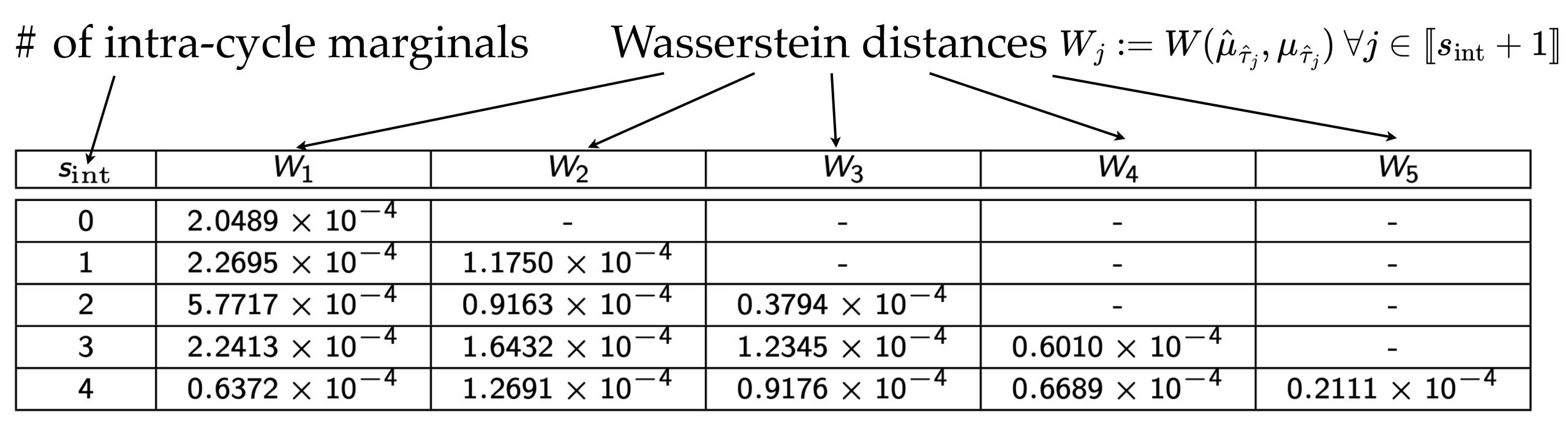
Predicted $\hat{\mu}$

Measured μ

 μ at control-cycle boundaries



MSBP accuracy:



$$\uparrow s_{ ext{int}} \implies \downarrow \mathbb{E}[W_j]$$

Canneal: quad-core (J = 4) benchmark from PARSEC

$$m{c}_{ ext{cyber}} = egin{pmatrix} ext{alloc. last-level cache (MB)} \ ext{alloc. memory bandwidth (MBps)} \end{pmatrix} := egin{pmatrix} 24 & 10 & 4 & 2 \ 125 & 25 & 5 & 1 \end{pmatrix}$$

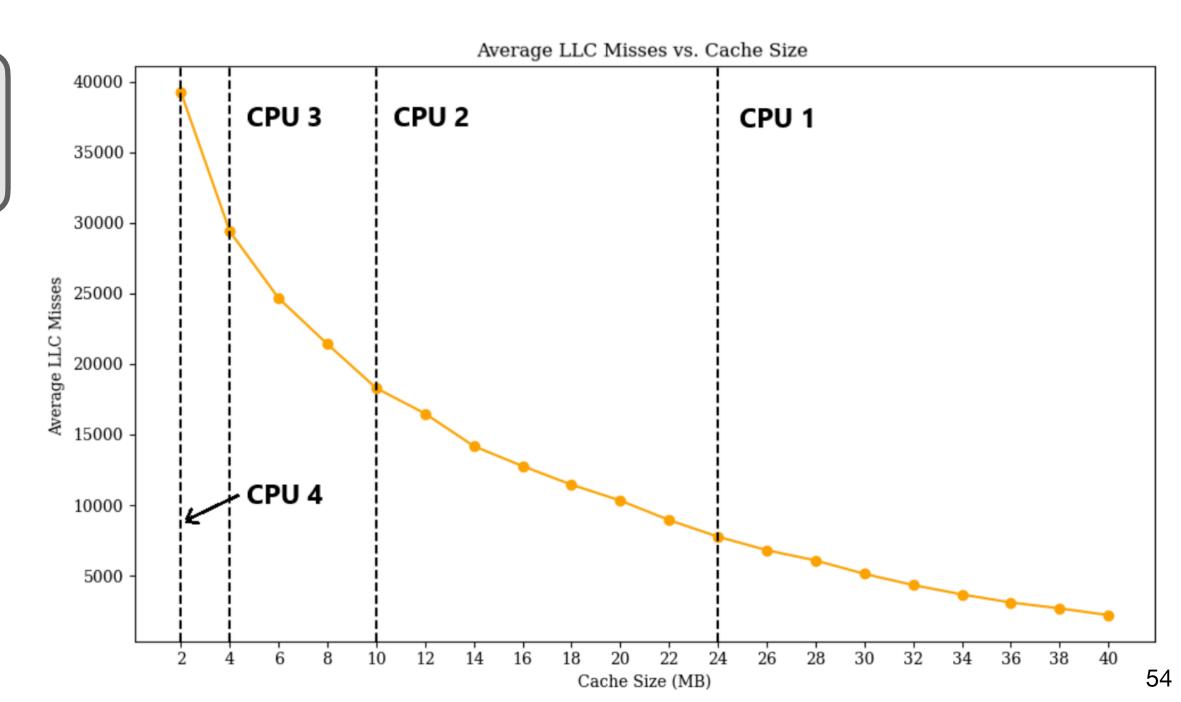
Profiled n = 400 times at $\tau_{\sigma} \in \{0.0, 0.5, 1.5, 2.5, 5.0, 9.5, 10.5\}$, i.e., s = 7

Multicore ⇒ both BC and SP MSBP

BC: 400³⁵ decision variables

SP: 400²² decision variables

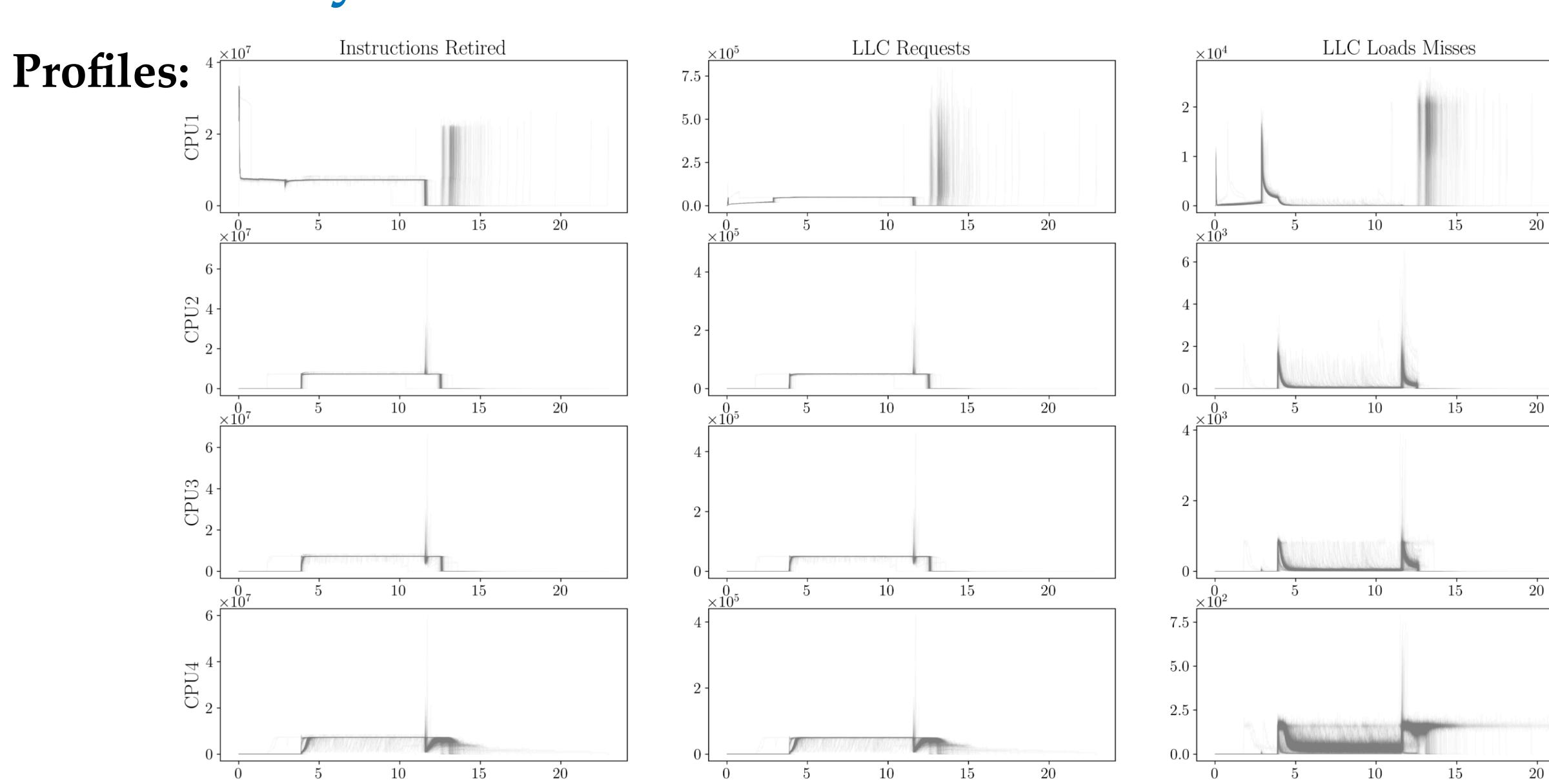
Convergence in 0.5 s in MATLAB



15

t [s]

20



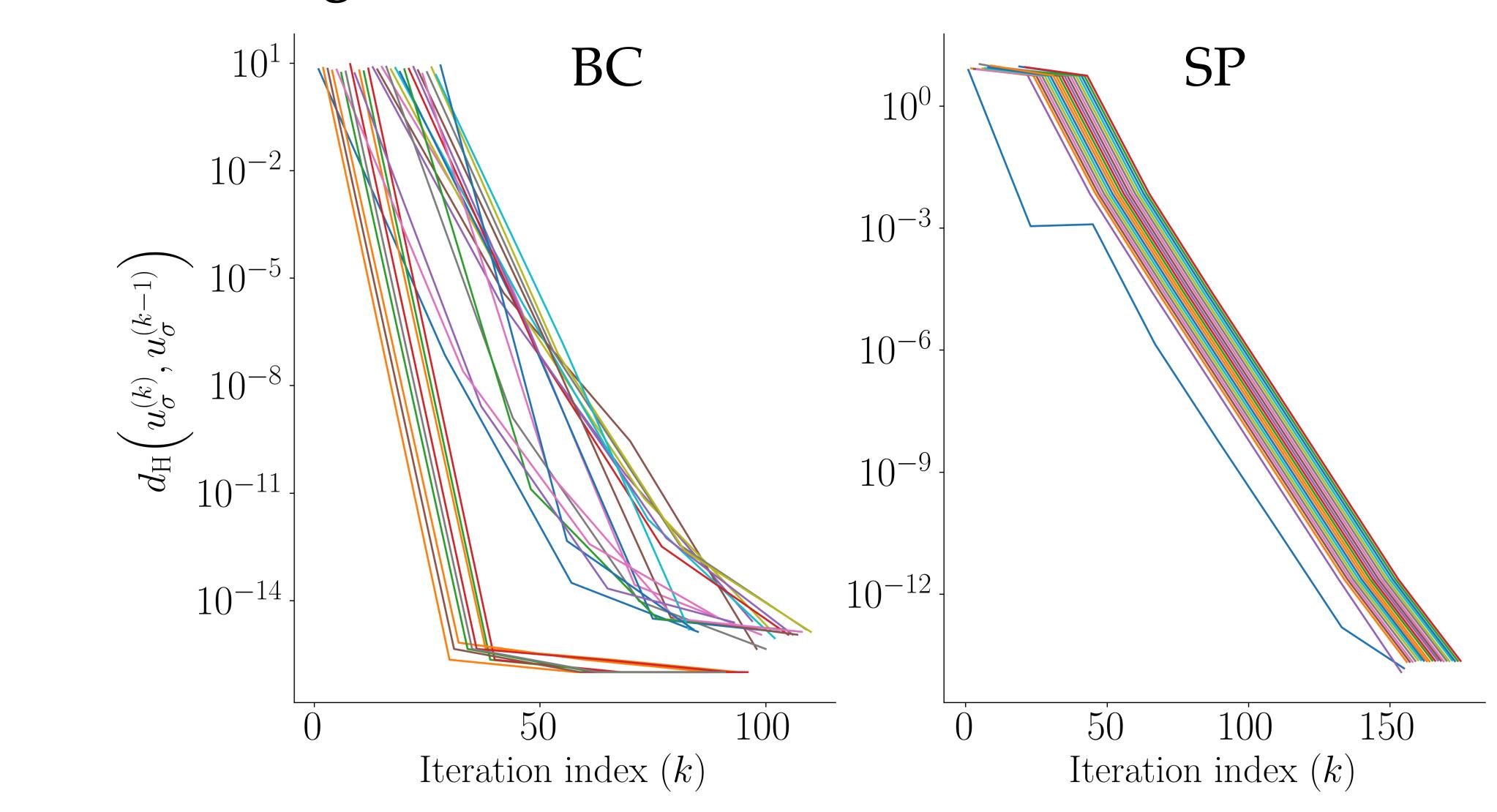
20

t [s]

10

t [s]

MSBP convergence:



MSBP accuracy:

BC:

CPU core

Wasserstein distances $W_j := W(\hat{\mu}_{\hat{ au}_j}, \mu_{\hat{ au}_j}) \ \forall j \in \llbracket s_{\mathrm{int}} + 1
rbracket$

\int_{j}	W_1^j	W_2^j	W_3^j	W_4^j	W_5^j
1	4.077×10^{-5}	1.009×10^{-7}	2.131×10^{-7}	1.976×10^{-7}	1.509×10^{-7}
2	0	1.135×10^{-7}	2.342×10^{-7}	7.684×10^{-8}	8.805×10^{-8}
3	0	1.149×10^{-7}	1.534×10^{-7}	5.752×10^{-8}	6.538×10^{-8}
4	0	3.647×10^{-8}	2.146×10^{-7}	1.906×10^{-7}	9.713×10^{-8}

SP:

j	W_1^j	W_2^j	W_3^j	W_4^j	W_5^j
1	4.254×10^{-5}	1.020×10^{-7}	2.023×10^{-7}	1.412×10^{-7}	2.589×10^{-7}
2	0	2.386×10^{-7}	2.329×10^{-7}	8.962×10^{-8}	1.908×10^{-7}
3	0	2.392×10^{-7}	1.513×10^{-7}	4.693×10^{-8}	1.100×10^{-7}
4	0	4.868×10^{-8}	2.050×10^{-7}	1.617×10^{-7}	1.204×10^{-7}

Case Study: Context-dependent Resource Usage

Idea: account for software's resource allocation/execution context

$$eta = (eta_1, eta_2, \dots, eta_b)^ op \in \mathcal{B} \subset \mathbb{R}^b$$

Augment $\eta := \begin{bmatrix} \xi & \beta \end{bmatrix}^{\top} \in \mathcal{X} \times \mathcal{B} \subset \mathbb{R}^{d+b}$ to form distributions

$$\mu_{\sigma} := rac{1}{n_d n_b} \sum_{i=1}^{n_d} \sum_{j=1}^{n_b} \delta(\eta - \eta^{i,j}(au_{\sigma})), \quad orall \sigma \in \llbracket n_s
rbracket$$

Solve path-structured MSBP for μ_{τ} , $\eta(\tau) \sim \mu_{\tau} \quad \forall \tau \in [\tau_1, \tau_{n_s}]$

$$\bigvee$$

Apply Bayes' theorem to obtain $\xi(\tau) \mid \beta \sim \frac{\mu_{\tau}}{\int_{\mathcal{X}} \mu_{\tau} d\xi}$

Profiling: Context-dependent Resource Usage

Benchmarks: dedup, canneal, fft, radiosity

$$N_{\mathsf{ca}} = N_{\mathsf{bw}} = 20 \Longrightarrow \mathcal{B} = \llbracket N_{\mathsf{ca}}
right] imes \llbracket N_{\mathsf{bw}}
right]$$

Profile over $\mathcal{B}' = \{1, 5, 10, 15, 20\}^2 \subsetneq \mathcal{B}, \ n_b = |\mathcal{B}'| = 25, \ n_d = 10 \quad \forall \beta \in \mathcal{B}'$

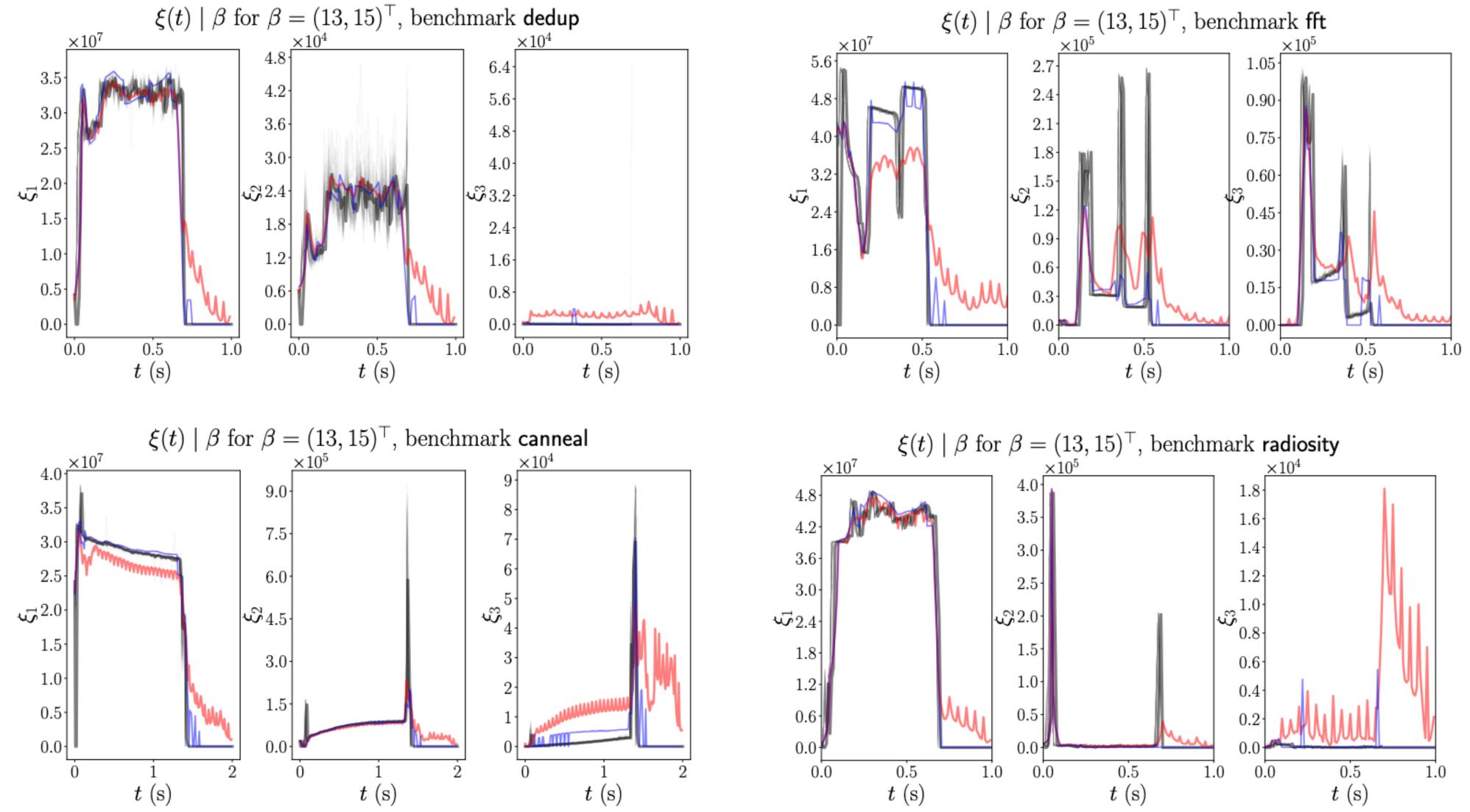
$$\tau = 0.05 \cdot (\sigma - 1)$$

 \bigvee

Generate
$$\xi(\tau) \mid \beta$$
 for all $\tau \in \{0,0.01,...,\tau_{n_s}\}, \beta \in \mathcal{B}$

Generate mean, max-likelihood, and avg. empirical profiles for all $\beta \in \mathcal{B}$

Empirical Profiles for Benchmarks



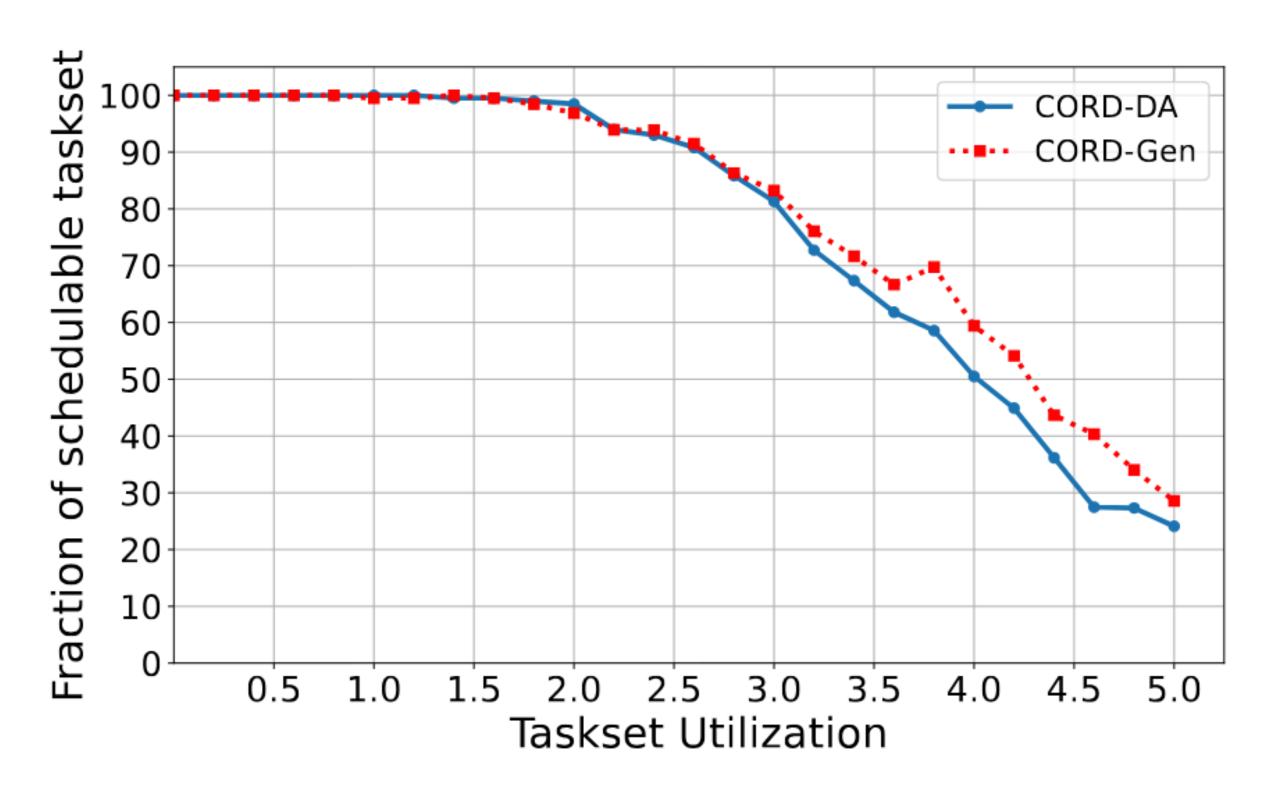
Maximum-likelihood synthetic profile, mean synthetic profile, mean empirical profile, and all empirical profiles

CORD: A Practical Application

Task scheduling and resource allocation

Profiles $\forall \beta \in \mathcal{B}$ required

Generative profiling (MSBP)



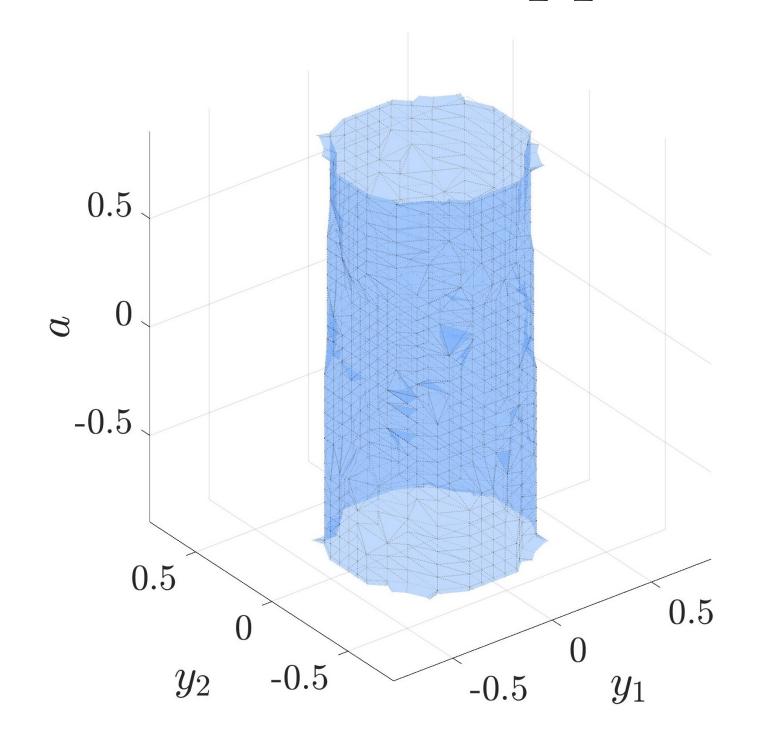
Summary

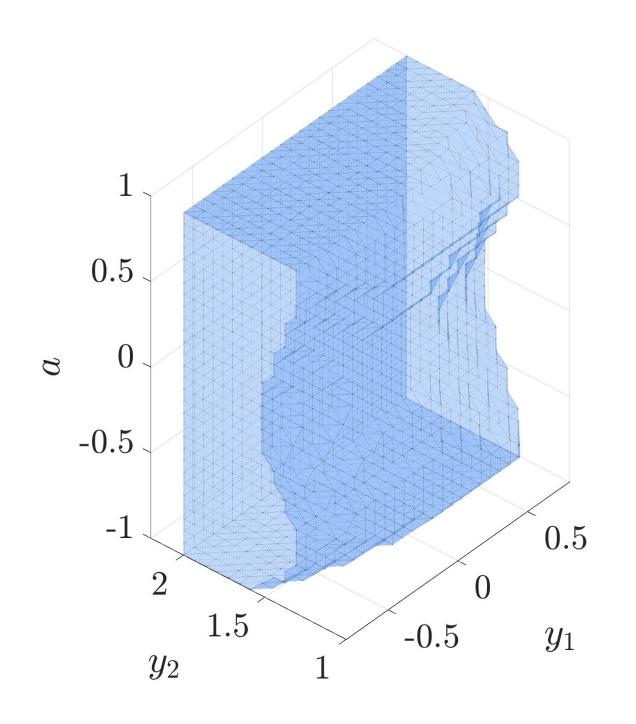
Tensor Optimization for Regularity of OT Maps

Polynomial complexity for forward problem

c rational over $\mathcal{X} \times \mathcal{Y}$ semi algebraic \Longrightarrow SOS tightening \Longrightarrow SDP

Forward problem: Computational certificate of NNCC and MTW(κ) **Inverse problem:** Inner approximation of region of regularity





Tensor Optimization for Graph-structured SB

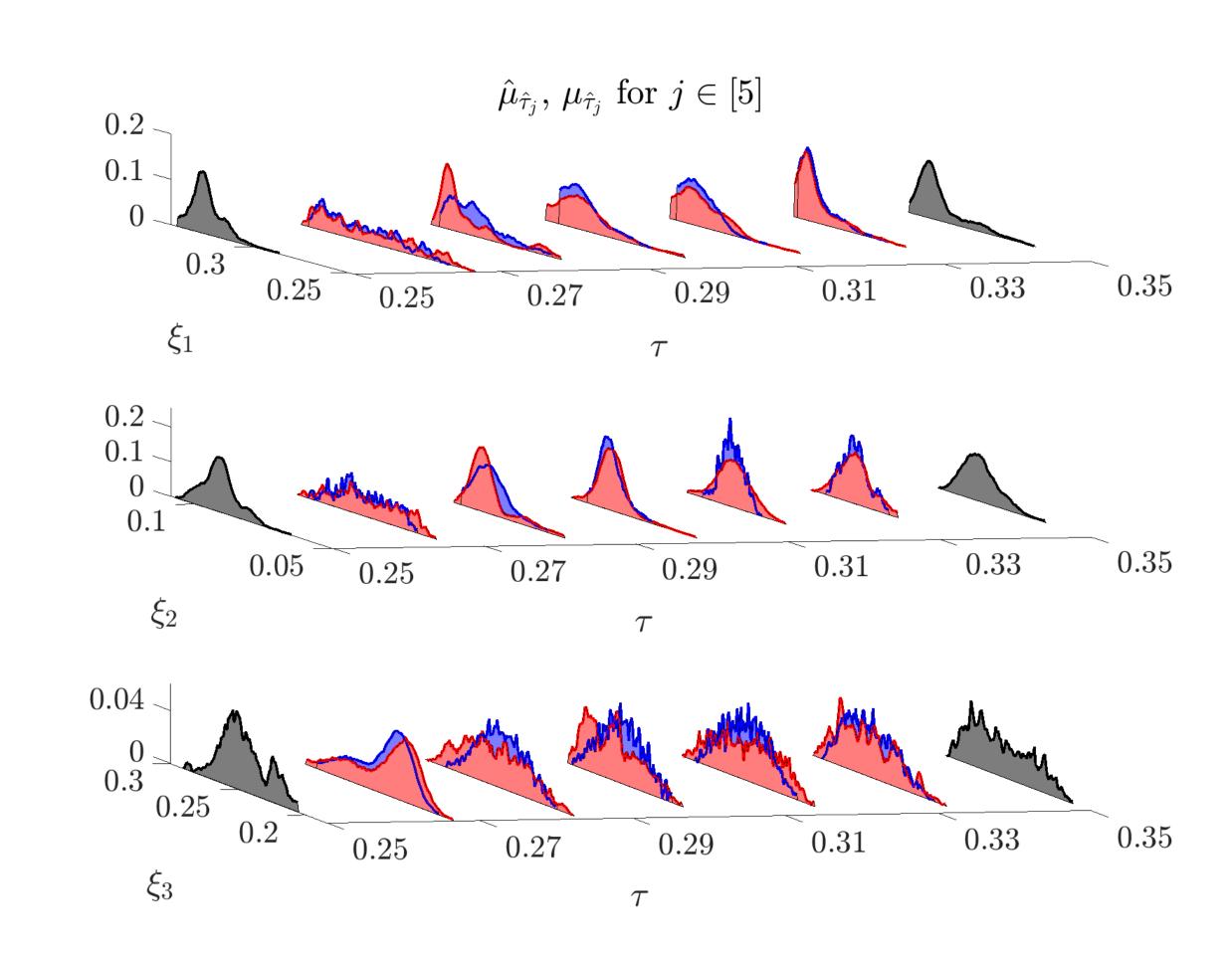
Graph-structured SBP \Longrightarrow Solve via Sinkhorn

Complexity $\mathcal{O}(n^{|\Lambda|})$

Path, BC, SP graph

Complexity $\mathcal{O}((Js)n^2)$

Linear convergence Reduce profiling workload



Publications

G.A.B., Gifford, R., Phan, L.T.X., & Halder, A. Path structured multimarginal Schrödinger bridge for probabilistic learning of hardware resource usage by control software. *American Control Conference* 2024

G.A.B., Gifford, R., Phan, L. T. X., & Halder, A. (2024). Stochastic Learning of Computational Resource Usage as Graph Structured Multimarginal Schrödinger Bridge. *Accepted*, *IEEE Trans. Control Syst. Technology, arXiv*:2405.12463.

Shivakumar, S., **G.A.B.**, Khan, G., & Halder, A. Sum-of-Squares Programming for Ma-Trudinger-Wang Regularity of Optimal Transport Maps. *arXiv*:2412.13372.

Gifford, R., Eisenklam, A., **G.A.B.**, Cai, Y., Sial, T., Phan, L. T. X., & Halder, A. CORD: Co-design of Resource Allocation and Deadline Decomposition with Generative Profiling. *arXiv:2501.08484*.

Some Directions for Future Work

Theoretical

- Extend SOS programming approach to higher dimensions
- Learning of optimal tree structures for the MSBP
- MSBP with dynamical constraints

Practical/Applied

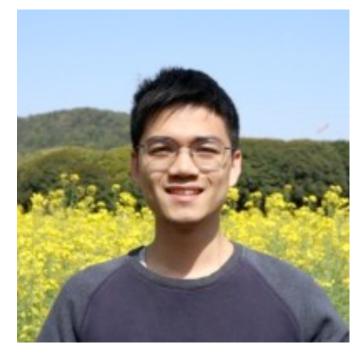
- Networked systems
- 3D reconstruction
- Prediction of environmental dynamics (e.g. fire, weather)

Acknowledgements University of Pennsylvania:

Robert Gifford

Linh T.X. Phan

Abby Eisenklam



Yifan Cai

Iowa State University:

Sachin Shivakumar

Gabriel Khan

Tushar Sial

Abhishek Halder

Funding

UC Santa Cruz Dean's Fellowship (2022-2023), NSF grant 2111688

Thank you!