Path Structured Schrödinger Bridge for Probabilistic Learning of Hardware Resource Usage by Control Software

Georgiv Antonovich Bondar

Department of Applied Mathematics at University of California, Santa Cruz

2024 American Control Conference, July 12

In collaboration with

Robert Gifford (UPenn)

Abhishek Halder (Iowa State)

Georgiy Antonovich Bondar

Motivation

This model must be learned from data! $(\mu_{\tau_1}, \mu_{\tau_2}, \ldots, \mu_{\tau_s})$

The Classical (Bimarginal) Schrödinger Bridge Problem

Problem (Discrete SBP)

Let $\mu_1, \mu_2 \in \Delta^{n-1} \subset \mathbb{R}^n$ and $C \in \mathbb{R}^{n \times n}_{>0}$.

 $\min_{M \in \mathbb{R}^{n \times n}_{\geq 0}} \langle C + \varepsilon \log M, M \rangle \text{ subject to } \operatorname{proj}_{\sigma}(M) = \mu_{\sigma} \quad \forall \sigma \in \{1, 2\}$

Georgiy Antonovich Bondar

The Discrete Multimarginal Schrödinger Bridge Problem

 $\textit{\textbf{M}}_{\rm opt}$ most likely distributional path

Strictly convex program in n^s decision variables

Not computationally tractable!

Numerical Solution of the MSBP

The Sinkhorn Iterative Scheme

1 Define
$$\mathbf{K} := \exp(-\mathbf{C}/\varepsilon) \in (\mathbb{R}^n)_{>0}^{\otimes s}$$
 and initialize $\mathbf{u}_{\sigma} := \exp(\mathbf{\lambda}_{\sigma}/\varepsilon)$.

Perform the Sinkhorn iterations until (linear) convergence:

$$oldsymbol{u}_{\sigma} \leftarrow oldsymbol{u}_{\sigma} \otimes oldsymbol{\mu}_{\sigma} \oslash \mathsf{proj}_{\sigma}(oldsymbol{K} \odot oldsymbol{U}) \quad orall \sigma \in \llbracket s
rbracket$$

3
$$\pmb{M}_{ ext{opt}}=\pmb{K}\odot \pmb{U}$$
, where $\pmb{U}:=\otimes_{\sigma=1}^{s}\pmb{u}_{\sigma}\in (\mathbb{R}^{n})_{>0}^{\otimes s}$.

$$\left[\operatorname{proj}_{\sigma}(\boldsymbol{M})_{j}\right] = \sum_{i_{1},\dots,i_{\sigma-1},i_{\sigma+1},\dots,i_{s}} \boldsymbol{M}_{i_{1},\dots,i_{\sigma-1},j,i_{\sigma+1},\dots,i_{s}}$$

$$\downarrow$$

$$\mathcal{O}(\boldsymbol{n}^{s}) \quad \text{asymptotical complexity in all}$$

 $\mathcal{O}(n^s)$ – exponential complexity in s!

Numerical Solution of the Path-Structured MSBP

Main Idea

Exploit structure of $\mathbf{K} = \exp(-\mathbf{C}/\varepsilon)$ to efficiently compute $\operatorname{proj}_{\sigma}(\mathbf{K} \odot \mathbf{U})$

Path-structured cost:
$$[\mathbf{C}_{i_1,...,i_s}] = \sum_{\sigma=1}^{s-1} \left[C_{i_{\sigma},i_{\sigma+1}}^{\sigma \to \sigma+1} \right]$$

$$\operatorname{proj}_{\sigma}(\mathbf{K} \odot \mathbf{U}) = \left(\mathbf{u}_1^{\top} \mathbf{K}^{1 \to 2} \prod_{j=2}^{\sigma-1} \operatorname{diag}(\mathbf{u}_j) \mathbf{K}^{j \to j+1} \right)^{\top} \odot \mathbf{u}_{\sigma} \odot \qquad \mathcal{O}((s-1)n^2)$$

$$\left(\left(\prod_{j=\sigma+1}^{s-1} \mathbf{K}^{j-1 \to j} \operatorname{diag}(\mathbf{u}_j) \right) \mathbf{K}^{s-1 \to s} \mathbf{u}_s \right) \quad \forall \sigma \in [\![s]\!]$$
Linear in $s!$

The MSBP for Software Resource Usage Prediction

Fix a context $\boldsymbol{c} := \begin{pmatrix} \boldsymbol{c}_{cyber} & \boldsymbol{c}_{phys} \end{pmatrix}^{\top}$. Profiling: *n* times, *s* snapshots at $\tau_1 \equiv 0 < \tau_2 < \cdots < \tau_{s-1} < \tau_s = t$

$$\boldsymbol{\xi}^{i \in \llbracket n \rrbracket}(au_{\sigma}), \quad scattered \ data \ at \ au_{\sigma}$$

∜

$$\mu_{\sigma} := rac{1}{n} \sum_{i=1}^n \delta(oldsymbol{\xi} - oldsymbol{\xi}^i(au_{\sigma})), \quad ext{marginals}$$

 \Downarrow Solve path-structured MSBP ($M_{\rm opt}$)

$$\hat{\mu}_{\tau} := \sum_{i=1}^{n} \sum_{j=1}^{n} \left[M_{i,j}^{\sigma \to \sigma+1} \right] \delta(\boldsymbol{\xi} - \hat{\boldsymbol{\xi}}(\tau, \boldsymbol{\xi}^{i}(\tau_{\sigma}), \boldsymbol{\xi}^{j}(\tau_{\sigma+1}))), \quad \text{prediction}$$

Case Study: A KBM Path-tracking NMPC

 $\boldsymbol{c}_{ ext{cyber}} = \begin{pmatrix} \text{alloc. last-level cache} \\ \text{alloc. memory bandwidth} \end{pmatrix}, \, \boldsymbol{c}_{ ext{phys}} = y_{ ext{des}}(x) \in \operatorname{GP}\left([x_{ ext{min}}, x_{ ext{max}}]\right)$

$$\boldsymbol{\xi} := \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} \text{instructions retired} \\ \text{LLC requests} \\ \text{LLC misses} \end{pmatrix}$$

Plant: Kinematic bicycle model

Controller: Nonlinear MPC

Case Study (Profiling)

$$n = 500$$
, $\boldsymbol{c}_{\mathrm{cyber}} = \begin{bmatrix} 15 & 15 \end{bmatrix}^{\top}$, $\boldsymbol{c}_{\mathrm{phys}} = y_{\mathrm{des}}^{1}(x)$

Case Study (Profiling)

Sampling period = 5ms

Hardware-level stochasticty, fixed context c

~ .			
0000000	htopov/	ich Konda	•
GEOLETA /	ATTORIOV		

Case Study (Solving MSBP)

Num. marginals: $s := 1 + n_c(s_{int} + 1)$; Euclidean $C^{\sigma o \sigma + 1} \ \forall \sigma \in \llbracket s - 1
rbracket$

$$\mathsf{Hilbert}\;(\mathsf{proj.})\;\;\mathsf{metric}\;\; d_{\mathrm{H}}\left(\boldsymbol{u},\boldsymbol{v}\right) = \log\left(\frac{\max_{i=1,...,n}u_i/v_i}{\min_{i=1,...,n}u_i/v_i}\right)\!\!,\;\boldsymbol{u},\boldsymbol{v}\in\mathbb{R}^n_{>0}$$

Case Study (Results)

 $\textit{s}_{\mathrm{int}} \in \{0, 1, 2, 3, 4\}$; $\textit{s}_{\mathrm{int}} + 1$ interpolations/control cycle

$s_{ m int}$	W_1	W_2	W ₃	W_4	W_5
0	2.0489	-	-	-	-
1	2.2695	1.1750	-	-	-
2	5.7717	0.9163	0.3794	-	-
3	2.2413	1.6432	1.2345	0.6010	-
4	0.6372	1.2691	0.9176	0.6689	0.2111

Table: Number of intracycle marginals s_{int} vs. Wasserstein distances $W_j := W(\hat{\mu}_{\hat{\tau}_j}, \mu_{\hat{\tau}_j})$, where $j \in [\![s_{int} + 1]\!]$. All entries are scaled up by 10^4 .

$$\uparrow s_{\mathrm{int}} \implies \downarrow \mathbb{E}[W_j]$$

Case Study (Results)

Figure: Predicted $\hat{\mu}_{\hat{\tau}_j}$ vs. measured $\mu_{\hat{\tau}_j}$ at times $\hat{\tau}_{j \in [\![5]\!]}$ during the 3rd control cycle with $s_{int} = 4$. Distributions at the control cycle boundaries are in *black*.

Ongoing Work

Extension to multi-core software \Rightarrow more complex graph structure of **C**:

Preprint: arXiv:2405.12463

Dynamic scheduling using the learned model for prediction (joint with UPenn)

Thank You

Georgiy Antonovich Bondar