Introduction to Control

Abhishek Halder

Dept. of Applied Mathematics University of California, Santa Cruz

ahalder@ucsc.edu

All rights reserved. These slides cannot be shared, modified or distributed without instructor's permission.

©Abhishek Halder

What is control?

Science

- of decision making and taking actions
- to make systems do what you want them to d°
- behind all technologies

Q(t)

Q(t)

 k_{a1} k_{a2} k_{a3} S_t S_d S_e Q t u(t)Q t_m national ransmission - ANTA transformer

Very strong interactions with

traditional disciplines

- Electrical engineering
- Mechanical engineering
- Civil engineering
- Aerospace engineering
- Chemical engineering
- Biomedical engineering
- Economics

interdisciplinary areas

- Machine learning
- Robotics
- Neuroscience
- Biology
- Theoretical computer science
- Statistics

Components of a control system

- Process/plant: system that we would like to control (e.g., car, spacecraft, glucose level in blood)
- Sensor: device to measure some appropriate signal (e.g., eyes for human-driven car)
- **Controller:** decision-making module/algorithm (e.g., human brain, computer)
- Actuator: device to force the corrective action (e.g., brake/accelerator/steering wheel in car)

Think of your favorite control system and identify these components

Block diagrams

Conceptual way to think about complex systems

What does a block diagram have?

- Components drawn as boxes: plant + sensor + controller + actuator
- Interconnections between the components drawn as arrows
 - Which signal/information is going from where to where

Different types of block diagrams for different types of control systems

- Open loop OR feedforward control
- Closed loop OR feedback control

Open loop and closed loop controls: block diagrams

Open loop or feedforward control

Open loop and closed loop controls: block diagrams

Mixed feedforward-feedback control

We also have noise/disturbance

Mixed feedforward-feedback control

Open loop (feedforward) versus closed loop (feedback)

Open loop (feedforward) control

- control can be designed offline
 - no real-time sensing
- low implementation cost
- great if model is perfectly known

Closed loop (feedback) control

good performance with uncertainties

more complex and expensive to design

risk of destabilizing a stable process

