Modeling Control Systems

Abhishek Halder

Dept. of Applied Mathematics University of California, Santa Cruz

ahalder@ucsc.edu

All rights reserved. These slides cannot be shared, modified or distributed without instructor's permission.

©Abhishek Halder

Recap: controllability

Linear feedback control algorithm given the process model in state space form

Controllability: idea and examples

Testing controllability in MATLAB for linear control systems in state space form

Discrete time control systems in state space form

Example (linear control system): two process states (x_1, x_2) and one control *u*

$$x_1(t+1) = a_{11}x_1(t) - x_2(t+1) = a_{21}x_1(t) - x_2(t+1) = a_{21}x_1(t) - x_2(t+1) = a_{21}x_1(t) - x_2(t+1) - x_2(t+1) - x_2(t+1) = a_{21}x_1(t) - x_2(t+1) - x_2(t+1) - x_2(t+1) = a_{21}x_1(t) - x_2(t+1) - x_$$

where the coefficients a's and b's are known constants

Example (nonlinear control system): three process states (x_1, x_2, θ) and two controls (V, ω)

$$x_1(t+1) = x_1(t) + V$$
$$x_2(t+1) = x_2(t) + V$$
$$\theta(t+1) = \theta(t) + \Delta$$

- $+ a_{12}x_2(t) + b_{11}u(t)$ $+ a_{22}x_2(t) + b_{21}u(t)$

 $V(t)\Delta t \times \cos\theta(t)$ $V(t)\Delta t \times \sin\theta(t)$ $dt \times \omega(t) + w(t)$

But how to write control systems in state space form

Sometimes we have: memory up to few previous time steps, one control *u*

Example:

 $x(t+1) + a_1 x(t) + a_2 x(t)$

Question: How to write the above in state space form?

$$x_2x(t-1) = bu(t)$$
1 time step delayed state

But how to write control systems in state space form

Sometimes we have difference equation: memory up to few previous time steps, one control *u*

Example: $x(t+1) + a_1 x(t) + a_2 x(t-1) = b u(t)$

Question: How to write the above in state space form?

Hint: introduce new variables: $x_1(t) := x(t)$

 $x_2(t) := x(t-1) = x_1(t-1)$

But how to write control systems in state space form

Sometimes we have difference equation: memory up to few previous time steps, one control *u*

Example: $x(t+1) + a_1 x(t) + a_2 x(t-1) = b u(t)$

Question: How to write the above in state space form?

Hint: introduce new variables: $x_1(t) := x(t)$ $x_2(t) := x(t)$

Answer:

 $x_1(t+1) =$ $x_2(t+1) =$

$$(t) (t-1) = x_1(t-1)$$

$$= -a_1 x_1(t) - a_2 x_2(t) + bu(t)$$

= $x_1(t)$

Is this a linear or nonlinear control system?

x(t+1) + 2x(t) - 5x(t-1) + 7x(t-2) = 3u(t)

x(t+1) + 2x(t) - 5x

Solution: introduce new variables: $x_1(t) :=$ $x_2(t) :=$ $x_3(t) :=$

Therefore

 $x_1(t+1) =$ $x_2(t+1) =$ $x_3(t+1) =$

$$x(t-1) + 7x(t-2) = 3u(t)$$

$$x(t)$$

$$x(t-1) = x_1(t-1)$$

$$x(t-2) = x_2(t-1)$$

$$-2x_{1}(t) + 5x_{2}(t) - 7x_{3}(t) + 3u(t)$$

$$x_{1}(t)$$

$$x_{2}(t)$$

Is this a linear or nonlinear control system?

MATLAB exercise: controllable or not?

Recap: check controllability in MATLAB

Create linear control system in state space form:

>> sys = ss(A, B, [], [], dt) collection of *a* coefficients

Then check if the output of the following is equal to number of process state variables:

>> rank(ctrb(sys))

If YES, then controllable

If NO, then NOT controllable

 $x(t+1) + 2x^{3}(t) - 5x^{4}(t-1) + 7\sin(x(t-2)) = 3u(t) - 9u(t-1)$

$$x(t+1) + 2x^{3}(t) - 5x^{4}(t-1) + 7\sin(x(t-2)) = 3u(t) - 9u(t-1)$$

Solution: introduce new variables: $x_1(t) :=$ $x_2(t) := x_3(t) :=$

Therefore

 $x_1(t+1) =$ $x_2(t+1) =$ $x_3(t+1) =$

$$x(t) u_1(t) := u(t) x(t-1) = x_1(t-1) u_2(t) := u(t-1) = u_1(t) x(t-2) = x_2(t-1)$$

$$-2x_1^3(t) + 5x_2^4(t) - 7\sin(x_3(t)) + 3u_1(t) - 9u_2(t)$$

$$x_1(t)$$

$$x_2(t)$$

Is this a linear or nonlinear control system?

x(t+1) + 2x(t) - 5x

y(t) = 4x(t) + 5x(t-1)

$$x(t-1) + 7x(t-2) = 3u(t)$$

- x(t+1) + 2x(t) 5x
- y(t) = 4x(t) + 5x(t t)
- **Solution:** introduce new variables: $x_1(t) :=$ $x_2(t) :=$ $x_3(t) :=$
- Therefore

 $x_1(t+1) =$ $x_2(t+1) =$ $x_3(t+1) =$

$$f(t) - 5x(t - 1) + 7x(t - 2) = 3u(t)$$

$$f(t) - 5x(t - 1)$$

$$x_1(t) = x(t)$$

$$x_2(t) = x(t - 1) = x_1(t - 1)$$

$$x_3(t) = x(t - 2) = x_2(t - 1)$$

$$f(t) + 1) = -2x_1(t) + 5x_2(t) - 7x_3(t) + 3u(t)$$

$$f(t) + 1) = x_1(t)$$

$$f(t) = 4x_1(t) + 5x_2(t)$$

sensor/measurements

$$y(t) = 4x_1(t) + 5x_2(t)$$

MATLAB exercise: controllable or not?

