Modeling Control Systems

Abhishek Halder
Dept. of Applied Mathematics
University of California, Santa Cruz
ahalder@ucsc.edu

All rights reserved. These slides cannot be shared, modified or distributed without instructor's permission.

Recap: controllability

Linear feedback control algorithm given the process model in state space form

Controllability: idea and examples

Testing controllability in MATLAB for linear control systems in state space form

Discrete time control systems in state space form

Example (linear control system): two process states (x_{1}, x_{2}) and one control u

$$
\begin{aligned}
& x_{1}(t+1)=a_{11} x_{1}(t)+a_{12} x_{2}(t)+b_{11} u(t) \\
& x_{2}(t+1)=a_{21} x_{1}(t)+a_{22} x_{2}(t)+b_{21} u(t)
\end{aligned}
$$

where the coefficients a^{\prime} s and b^{\prime} s are known constants

Example (nonlinear control system): three process states $\left(x_{1}, x_{2}, \theta\right)$ and two controls (V, ω)

$$
\begin{aligned}
x_{1}(t+1) & =x_{1}(t)+V(t) \Delta t \times \cos \theta(t) \\
x_{2}(t+1) & =x_{2}(t)+V(t) \Delta t \times \sin \theta(t) \\
\theta(t+1) & =\theta(t)+\Delta t \times \omega(t)+w(t)
\end{aligned}
$$

But how to write control systems in state space form

Sometimes we have: memory up to few previous time steps, one control u

Example:

$$
x(t+1)+a_{1} x(t)+a_{2} x(t-1)=b u(t)
$$

Question: How to write the above in state space form?

But how to write control systems in state space form

Sometimes we have difference equation: memory up to few previous time steps, one control u
Example:

$$
x(t+1)+a_{1} x(t)+a_{2} x(t-1)=b u(t)
$$

Question: How to write the above in state space form?

Hint: introduce new variables: $\quad x_{1}(t):=x(t)$

$$
x_{2}(t):=x(t-1)=x_{1}(t-1)
$$

But how to write control systems in state space form

Sometimes we have difference equation: memory up to few previous time steps, one control u

Example:

$$
x(t+1)+a_{1} x(t)+a_{2} x(t-1)=b u(t)
$$

Question: How to write the above in state space form?

Hint: introduce new variables: $\quad x_{1}(t):=x(t)$

$$
x_{2}(t):=x(t-1)=x_{1}(t-1)
$$

Answer:

$$
\begin{aligned}
& x_{1}(t+1)=-a_{1} x_{1}(t)-a_{2} x_{2}(t)+b u(t) \\
& x_{2}(t+1)=x_{1}(t)
\end{aligned}
$$

Exercise: write the following in state space form

$$
x(t+1)+2 x(t)-5 x(t-1)+7 x(t-2)=3 u(t)
$$

Exercise: write the following in state space form

$$
x(t+1)+2 x(t)-5 x(t-1)+7 x(t-2)=3 u(t)
$$

Solution: introduce new variables: $\quad x_{1}(t):=x(t)$

$$
\begin{aligned}
& x_{2}(t):=x(t-1)=x_{1}(t-1) \\
& x_{3}(t):=x(t-2)=x_{2}(t-1)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& x_{1}(t+1)=-2 x_{1}(t)+5 x_{2}(t)-7 x_{3}(t)+3 u(t) \\
& x_{2}(t+1)=x_{1}(t) \\
& x_{3}(t+1)=x_{2}(t)
\end{aligned}
$$

Is this a linear or nonlinear control system?

MATLAB exercise: controllable or not?

Recap: check controllability in MATLAB

Create linear control system in state space form:

Then check if the output of the following is equal to number of process state variables:
>> rank(ctrb(sys))

If YES, then controllable

If NO, then NOT controllable

Exercise: write the following in state space form

$$
x(t+1)+2 x^{3}(t)-5 x^{4}(t-1)+7 \sin (x(t-2))=3 u(t)-9 u(t-1)
$$

Exercise: write the following in state space form

$$
x(t+1)+2 x^{3}(t)-5 x^{4}(t-1)+7 \sin (x(t-2))=3 u(t)-9 u(t-1)
$$

Solution: introduce new variables: $\quad x_{1}(t):=x(t)$

$$
\begin{aligned}
& x_{2}(t):=x(t-1)=x_{1}(t-1) \quad u_{2}(t):=u(t-1)=u_{1}(t-1) \\
& x_{3}(t):=x(t-2)=x_{2}(t-1)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& x_{1}(t+1)=-2 x_{1}^{3}(t)+5 x_{2}^{4}(t)-7 \sin \left(x_{3}(t)\right)+3 u_{1}(t)-9 u_{2}(t) \\
& x_{2}(t+1)=x_{1}(t) \\
& x_{3}(t+1)=x_{2}(t)
\end{aligned}
$$

Exercise: write the following in state space form

$$
\begin{aligned}
& x(t+1)+2 x(t)-5 x(t-1)+7 x(t-2)=3 u(t) \\
& y(t)=4 x(t)+5 x(t-1)
\end{aligned}
$$

Exercise: write the following in state space form

$$
\begin{aligned}
& x(t+1)+2 x(t)-5 x(t-1)+7 x(t-2)=3 u(t) \\
& y(t)=4 x(t)+5 x(t-1)
\end{aligned}
$$

Solution: introduce new variables: $\quad x_{1}(t):=x(t)$

$$
\begin{aligned}
& x_{2}(t):=x(t-1)=x_{1}(t-1) \\
& x_{3}(t):=x(t-2)=x_{2}(t-1)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
x_{1}(t+1) & =-2 x_{1}(t)+5 x_{2}(t)-7 x_{3}(t)+3 u(t) \\
x_{2}(t+1) & =x_{1}(t) \\
x_{3}(t+1) & =x_{2}(t) \\
y(t) & =4 x_{1}(t)+5 x_{2}(t) \quad \text { sensor / measurement model }
\end{aligned}
$$

