Uncertainties in Control Systems

Abhishek Halder

Dept. of Applied Mathematics University of California, Santa Cruz

ahalder@ucsc.edu

All rights reserved. These slides cannot be shared, modified or distributed without instructor's permission.

©Abhishek Halder

Recap: modeling control systems

All our analysis, MATLAB simulation, control design used standard state space form

In practice, we often encounter difference equations with time delay/memory

Difference equations can be brought to state space forms by re-writing

Recap: discrete time control systems in state space form

Example (linear control system): two process states (x_1, x_2) and one control *u*

$$x_1(t+1) = a_{11}x_1(t) - x_2(t+1) = a_{21}x_1(t) - x_2(t+1) = a_{21}x_1(t) - x_2(t+1) = a_{21}x_1(t) - x_2(t+1) - x_2(t+1) - x_2(t+1) = a_{21}x_1(t) - x_2(t+1) - x_2(t+1) - x_2(t+1) = a_{21}x_1(t) - x_2(t+1) - x_$$

where the coefficients a's and b's are known constants

$$x_1(t+1) = x_1(t) + V$$
$$x_2(t+1) = x_2(t) + V$$
$$\theta(t+1) = \theta(t) + \Delta$$

- $+ a_{12}x_2(t) + b_{11}u(t)$ $+ a_{22}x_2(t) + b_{21}u(t)$
- **Example (nonlinear control system):** three process states (x_1, x_2, θ) and two controls (V, ω)
 - $V(t)\Delta t \times \cos\theta(t)$ $V(t)\Delta t \times \sin\theta(t)$ $dt \times \omega(t) + w(t)$

Recap: write the following in state space form

- x(t+1) + 2x(t) 5x(t)
- y(t) = 4x(t) + 5x(t t)
- **Solution:** introduce new variables: $x_1(t) :=$ $x_2(t) :=$ $x_3(t) :=$
- Therefore

 $x_1(t+1) =$ $x_2(t+1) =$ $x_3(t+1) =$

 $y(t) = 4x_1(t) + 5x_2(t)$

$$x(t-1) + 7x(t-2) = 3u(t)$$
-1)

$$x(t)$$

$$x(t-1) = x_1(t-1)$$

$$x(t-2) = x_2(t-1)$$

$$-2x_1(t) + 5x_2(t) - 7x_3(t) + 3u(t)$$

$$x_1(t)$$

$$x_2(t)$$
sensor/measurement model

MATLAB exercise: controllable or not?

General state space form: without noise

Process model:

$$x_{1}(t+1) = f_{1} \left(x_{1}(t), \dots, x_{n}(t), u_{1}(t), \dots, u_{m}(t) \right)$$

$$x_{2}(t+1) = f_{2} \left(x_{1}(t), \dots, x_{n}(t), u_{1}(t), \dots, u_{m}(t) \right)$$

$$\vdots = \vdots$$

$$x_{n}(t+1) = f_{n} \left(x_{1}(t), \dots, x_{n}(t), u_{1}(t), \dots, u_{m}(t) \right)$$

Measurement model:

$$y_{1}(t) = g_{1} \left(x_{1}(t), \dots, x_{n}(t), u_{1}(t), \dots, u_{m}(t) \right)$$

$$y_{2}(t) = g_{2} \left(x_{1}(t), \dots, x_{n}(t), u_{1}(t), \dots, u_{m}(t) \right)$$

$$\vdots = \vdots$$

$$y_{p}(t) = g_{p} \left(x_{1}(t), \dots, x_{n}(t), u_{1}(t), \dots, u_{m}(t) \right)$$

n states x_1, \ldots, x_n *m* controls u_1, \ldots, u_m *p* outputs y_1, \ldots, y_p

General state space form: with noise

Process model:

$$x_{1}(t+1) = f_{1}\left(x_{1}(t), \dots, x_{n}(t), u_{1}(t), \dots, u_{m}(t), w_{1}(t), \dots, w_{q}(t)\right)$$

$$x_{2}(t+1) = f_{2}\left(x_{1}(t), \dots, x_{n}(t), u_{1}(t), \dots, u_{m}(t), w_{1}(t), \dots, w_{q}(t)\right)$$

$$\vdots = \vdots$$

$$x_{n}(t+1) = f_{n}\left(x_{1}(t), \dots, x_{n}(t), u_{1}(t), \dots, u_{m}(t), w_{1}(t), \dots, w_{q}(t)\right)$$

Measurement model:

$$y_{1}(t) = g_{1} \left(x_{1}(t), \dots, x_{n}(t), u_{1}(t), \dots, u_{m}(t), v_{1}(t), \dots, v_{r}(t) \right)$$

$$y_{2}(t) = g_{2} \left(x_{1}(t), \dots, x_{n}(t), u_{1}(t), \dots, u_{m}(t), v_{1}(t), \dots, v_{r}(t) \right)$$

$$\vdots = \vdots$$

$$y_{p}(t) = g_{p} \left(x_{1}(t), \dots, x_{n}(t), u_{1}(t), \dots, u_{m}(t), v_{1}(t), \dots, v_{r}(t) \right)$$

n states x_1, \ldots, x_n *m* controls u_1, \ldots, u_m *p* outputs y_1, \ldots, y_p *q* process noises w_1, \ldots, w_q *r* measurement noises v_1, \ldots, v_r

General state space form: with noise

Process model:

$$x_{1}(t+1) = f_{1}\left(x_{1}(t), \dots, x_{n}(t), u_{1}(t), \dots, u_{m}(t), w_{1}(t), \dots, w_{q}(t)\right)$$

$$x_{2}(t+1) = f_{2}\left(x_{1}(t), \dots, x_{n}(t), u_{1}(t), \dots, u_{m}(t), w_{1}(t), \dots, w_{q}(t)\right)$$

$$\vdots = \vdots$$

$$x_{n}(t+1) = f_{n}\left(x_{1}(t), \dots, x_{n}(t), u_{1}(t), \dots, u_{m}(t), w_{1}(t), \dots, w_{q}(t)\right)$$

Measurement model:

$$y_{1}(t) = g_{1} \left(x_{1}(t), \dots, x_{n}(t), u_{1}(t), \dots, u_{m}(t), v_{1}(t), \dots, v_{r}(t) \right)$$

$$y_{2}(t) = g_{2} \left(x_{1}(t), \dots, x_{n}(t), u_{1}(t), \dots, u_{m}(t), v_{1}(t), \dots, v_{r}(t) \right)$$

$$\vdots = \vdots$$

$$y_{p}(t) = g_{p} \left(x_{1}(t), \dots, x_{n}(t), u_{1}(t), \dots, u_{m}(t), v_{1}(t), \dots, v_{r}(t) \right)$$

n states x_1, \ldots, x_n *m* controls u_1, \ldots, u_m *p* outputs y_1, \ldots, y_p *q* process noises w_1, \ldots, w_q *r* measurement noises v_1, \ldots, v_r

In addition, there could be (static) parameters p_1, \ldots, p_s

In simple pendulum, what are the parameters and states?

Sources of uncertainties in control systems

Initial conditions: $x_1(0), \ldots, x_n(0)$ may not be exactly known

Parameters: p_1, \ldots, p_s may not be exactly known

Noises: w_1, \ldots, w_q and v_1, \ldots, v_r if present, are unknown and unmeasured

Question: What do the noises actually represent?

Sources of uncertainties in control systems

Initial conditions: $x_1(0), \ldots, x_n(0)$ may not be exactly known

Parameters: p_1, \ldots, p_s may not be exactly known

Noises: w_1, \ldots, w_q and v_1, \ldots, v_r if present, are unknown and unmeasured

Question: What do the noises actually represent?

Answer: (i) external disturbance (example: wind gust in an airplane)

(ii) unmodeled process dynamics (example: unknown or complicated physics)

Types of uncertainties

One way to classify: epistemic/structured versus aleatoric/unstructured uncertainties

Meanings of these nomenclature

 $x(t) = a \sin(bt)$ where a, b unknown **Examples:**

x(t) = sin(t) + random white noise

Another way to classify: deterministic versus stochastic/probabilisitic uncertainties

Examples: x(t + 1) = 2x(t) + w(t) where w(t) is a Gaussian white noise

x(t + 1) = 2x(t) + w(t) where $-1 \le w(t) \le 1$

Deterministic uncertainties

Deterministic uncertainties \equiv set valued uncertainties

In the above plot, the set = interval [-1,1]

If $-1 \le w_1(t) \le +1$, $2 \le w_2(t) \le 3$, $0 \le w_3(t) \le 4$, then the set is

Deterministic uncertainties

Deterministic uncertainties \equiv set valued uncertainties

If $-1 \le w_1(t) \le +1$, $2 \le w_2(t) \le 3$, $0 \le w_3(t) \le 4$, then the set is

Deterministic uncertainties

Deterministic uncertainties \equiv set valued uncertainties

If $w_1^2 + w_2^2 + w_3^2 \le 625$ then the set is

