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Recap: uncertainties in control systems

Sources of uncertainties: initial conditions, parameters, process and measurement noise

Deterministic uncertainties  set valued uncertainties≡

Types of uncertainties: epistemic versus aleatoric, deterministic versus probabilistic



Exercise: deterministic uncertainties in control systems

A robot moving in 2D is experiencing process noise  such that for all time :(wx(t), wy(t)) t
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So the disturbance set is



Exercise: deterministic uncertainties in control systems

w2
x + 3w2

y ≤ 10 OR 5w2
x + w2

y ≤ 20

So the disturbance set is union of elliptical discs

A robot moving in 2D is experiencing process noise  such that for all time :(wx(t), wy(t)) t



Probabilistic/stochastic uncertainties

Initial conditions:  may not be exactly known [but we may know that some
values are “more likely” than the other] 

x1(0), . . . , xn(0)

Parameters:  may not be exactly known [ditto]p1, . . . , ps

Noises:  and  if present, are unknown and unmeasured [ditto]w1, . . . , wq v1, . . . , vr

This is more information than simply specifying the set where the values must belong to



Example: probabilistic/stochastic uncertainties by density

With high probability (x, y) = (0,0)



State estimation problem in control

Process
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Process noise/disturbance

Actuator
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2
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Error+

-
xc(t)

If present, xc(t) represents algorithmic state
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Process noise/disturbance
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Given process model + process noise,
measurement model + measurement noise.

Compute the “best” estimate of the process state 

State estimation problem in control
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Given process model + process noise,
measurement model + measurement noise.

Compute the “best” estimate of the process state 

State estimation problem in control

Filter = an algorithm to solve this problem



From Lec. 14, slide 6:

x1(t + 1) = f1 (x1(t), . . . , xn(t), u1(t), . . . , um(t), w1(t), . . . , wq(t))
x2(t + 1) = f2 (x1(t), . . . , xn(t), u1(t), . . . , um(t), w1(t), . . . , wq(t))

⋮ = ⋮

xn(t + 1) = fn (x1(t), . . . , xn(t), u1(t), . . . , um(t), w1(t), . . . , wq(t))

y1(t) = g1 (x1(t), . . . , xn(t), u1(t), . . . , um(t), v1(t), . . . , vr(t))
y2(t) = g2 (x1(t), . . . , xn(t), u1(t), . . . , um(t), v1(t), . . . , vr(t))

⋮ = ⋮
yp(t) = gp (x1(t), . . . , xn(t), u1(t), . . . , um(t), v1(t), . . . , vr(t))

Process model:

Measurement model:

Given f1, . . . , fn, g1, . . . , gp,

and feedback u1, . . . , um,

as well as probabilistic descriptions

of w1, . . . , wq, v1, . . . , vr,

estimate x1, . . . , xn

We also have the history of noisy 
measurements (raw data) up until 
the time  t



What do we mean by “best estimate”

True process states  are probabilisticx1(t), . . . , xn(t)

Example (nonlinear control system): three process states  and two controls (x1, x2, θ) (V, ω)

x1(t + 1) = x1(t) + V(t)Δt × cos θ(t)
x2(t + 1) = x2(t) + V(t)Δt × sin θ(t)
θ(t + 1) = θ(t) + Δt × ω(t) + w(t)

We know what the statistics of the process noise  isw(t)

So our estimates  will be probabilistiĉx1(t), ̂x2(t), ̂θ(t)



What do we mean by “best estimate”

Common way to measure “best”: minimum mean squared error (MMSE)

Expected value of [(x(t) − ̂x(t))2 ∣ history of measurements up until time t]

Find  that minimizeŝx (t)

It turns out that the minimizer is what is called “conditional expectation of the process state”

Many algorithms: Kalman filter, particle filters


