Signals in Control Systems

Abhishek Halder

Dept. of Applied Mathematics University of California, Santa Cruz

ahalder@ucsc.edu

All rights reserved. These slides cannot be shared, modified or distributed without instructor's permission.

©Abhishek Halder

Recap: so far we have introduced

Block diagrams: boxes and arrows

Different types of controls: open loop (feedforward), closed loop (feedback), mixed

Advantages and disadvantages of these control architectures

Application examples

Natural pancreas

Artificial pancreas

Image credit: Institut de Researches Cliniques de Montreal

Image credit: A. Haidar, The artificial pancreas: how closed-loop control is revolutionizing Diabetes, IEEE Control Systems Magazine, Oct. 2016

ponents of block diagrams

Exercise 3: identify components of block diagrams

Image credit: M. Li, and Y. Bao, Methods for Interpreting Continuous Glucose Monitoring Graphs, Continuous Glucose Monitoring, pp. 35-46, 2018

The Concept of Signals

Other names for "signal": "trajectory", "time series" (usually for discrete time)

We can have a collection of different signals

Continuous time

called a "vector"/"array" of functions

Discrete (sampled) time

t	$S_1(t)$	$S_2(t)$	• • •	$S_n(t)$
t_0	$S_1(t_0)$	$S_2(t_0)$	• • •	$S_n(t_0)$
t_1	$S_1(t_1)$	$S_2(t_1)$	• • •	$S_n(t_1)$
t_2	$S_1(t_2)$	$S_2(t_2)$	• • •	$S_n(t_2)$
t_3	$S_1(t_3)$	$S_2(t_3)$		$S_n(t_3)$
•	•	•	•	•

