Fixed Points and Stability

Abhishek Halder

Dept. of Applied Mathematics University of California, Santa Cruz

ahalder@ucsc.edu

All rights reserved. These slides cannot be shared, modified or distributed without instructor's permission.

©Abhishek Halder

Recap: Stability and stabilization

Examples from engineering and biology

In engineering, we often need to design the process to be unstable but stabilizable

Different notions: stable (S), asymptotically stable (AS), globally asymptotically stable (GAS)

Example 1: Fixed point in discrete time dynamics

 $\begin{pmatrix} x_1(t+1) &= & -x_1(t+1) \\ x_2(t+1) &= & x_2(t+1) \\ x_3(t+1) &= & x_3(t+1) \\ x_3(t+1) &= & x$

$$-2x_{1}(t) - 5x_{2}(t)$$
$$x_{1}(t) + 3x_{2}(t)$$

Equilibrium / fixed point \Leftrightarrow From where process states do not change over time

Example 1: Fixed point in discrete time dynamics

 $\begin{pmatrix} x_1(t+1) &= -\\ x_2(t+1) &= - \\ x_2(t+1) &= - \\ x_3(t+1) &= - \\ x_4(t+1) &= - \\ x_5(t+1) &$

 $x_1(t+1) = x_1(t)$ and $x_2(t+1) = x_2(t)$

$$-2x_{1}(t) - 5x_{2}(t) \\ x_{1}(t) + 3x_{2}(t) \end{pmatrix}$$

Equilibrium / fixed point \Leftrightarrow From where process states do not change over time

\therefore (x_1, x_2) is an equilibrium / fixed point if and only if

Example 1: Fixed point in discrete time dynamics

$$\begin{pmatrix} x_1(t+1) &= & -2x_1(t) - 5x_2(t) \\ x_2(t+1) &= & x_1(t) + 3x_2(t) \end{pmatrix}$$

Equilibrium / fixed point \Leftrightarrow From where process states do not change over time

 \therefore (x_1, x_2) is an equilibrium / fixed point if and only if

 $x_1(t+1) = x_1(t)$

Substituting this in our given dynamics, we get $(x_1, x_2) = (0, 0)$

) and
$$x_2(t+1) = x_2(t)$$

Unique fixed point

Verify this calculation yourself!

Example 2: Fixed point in discrete time dynamics

 $\begin{pmatrix} x_1(t+1) &= -0.2x_1(t) - 0.5x_2(t) \\ x_2(t+1) &= x_1(t) + 0.3x_2(t) \end{pmatrix}$

Find the equilibrium / fixed point(s)

Example 2: Fixed point in discrete time dynamics

 $\begin{pmatrix} x_1(t+1) = -0.2x_1(t) - 0.5x_2(t) \\ x_2(t+1) = x_1(t) + 0.3x_2(t) \end{pmatrix}$

Find the equilibrium / fixed point(s)

Example 3: Fixed point in discrete time dynamics

x(t+1) = 2x(t)(1 - x(t))

Find the equilibrium / fixed point(s)

Example 3: Fixed point in discrete time dynamics

x(t+1) = 2x(t)

Find the equilibrium / fixed point(s)

We get x = 0, and 0.5.

$$t)\big(1-x(t)\big)$$

Example 1

 $\begin{pmatrix} x_1(t+1) &= -2x_1(t) - 5x_2(t) \\ x_2(t+1) &= x_1(t) + 3x_2(t) \end{pmatrix}$

Example 2

 $\begin{pmatrix} x_1(t+1) &= & -0.2x_1(t) - 0.5x_2(t) \\ x_2(t+1) &= & x_1(t) + 0.3x_2(t) \end{pmatrix}$

Example 3

x(t+1) = 2x(t)(1 - x(t))

Example 1

 $\begin{pmatrix} x_1(t+1) &= -2x_1(t) - 5x_2(t) \\ x_2(t+1) &= x_1(t) + 3x_2(t) \end{pmatrix}$

Example 2

 $\begin{pmatrix} x_1(t+1) = -0.2x_1(t) - 0.5x_2(t) \\ x_2(t+1) = x_1(t) + 0.3x_2(t) \end{pmatrix}$

Example 3

x(t+1) = 2x(t)(1 - x(t))

→ $(x_1, x_2) = (0, 0)$ is unstable

$\rightsquigarrow (x_1, x_2) = (0, 0)$ is GAS

 $\Rightarrow x = 0$ is unstable, x = 0.5 is AS but not GAS

