Fixed Points and Stability

Abhishek Halder
Dept. of Applied Mathematics
University of California, Santa Cruz
ahalder@ucsc.edu

All rights reserved. These slides cannot be shared, modified or distributed without instructor's permission.

Recap: Stability and stabilization

Different notions: stable (S), asymptotically stable (AS), globally asymptotically stable (GAS)

Examples from engineering and biology

In engineering, we often need to design the process to be unstable but stabilizable

Example 1: Fixed point in discrete time dynamics

$$
\binom{x_{1}(t+1)=-2 x_{1}(t)-5 x_{2}(t)}{x_{2}(t+1)=x_{1}(t)+3 x_{2}(t)}
$$

Equilibrium / fixed point \Leftrightarrow From where process states do not change over time

Example 1: Fixed point in discrete time dynamics

$$
\binom{x_{1}(t+1)=-2 x_{1}(t)-5 x_{2}(t)}{x_{2}(t+1)=x_{1}(t)+3 x_{2}(t)}
$$

Equilibrium / fixed point \Leftrightarrow From where process states do not change over time
$\therefore\left(x_{1}, x_{2}\right)$ is an equilibrium / fixed point if and only if

$$
x_{1}(t+1)=x_{1}(t) \text { and } x_{2}(t+1)=x_{2}(t)
$$

Example 1: Fixed point in discrete time dynamics

$$
\binom{x_{1}(t+1)=-2 x_{1}(t)-5 x_{2}(t)}{x_{2}(t+1)=x_{1}(t)+3 x_{2}(t)}
$$

Equilibrium / fixed point \Leftrightarrow From where process states do not change over time
$\therefore\left(x_{1}, x_{2}\right)$ is an equilibrium / fixed point if and only if

$$
x_{1}(t+1)=x_{1}(t) \text { and } x_{2}(t+1)=x_{2}(t)
$$

Substituting this in our given dynamics, we get $\left(x_{1}, x_{2}\right)=(0,0)$

Verify this calculation yourself!

Example 2: Fixed point in discrete time dynamics

$$
\left(\begin{array}{ccc}
x_{1}(t+1) & = & -0.2 x_{1}(t)-0.5 x_{2}(t) \\
x_{2}(t+1) & = & x_{1}(t)+0.3 x_{2}(t)
\end{array}\right)
$$

Find the equilibrium / fixed point(s)

Example 2: Fixed point in discrete time dynamics

$$
\left(\begin{array}{ccc}
x_{1}(t+1) & = & -0.2 x_{1}(t)-0.5 x_{2}(t) \\
x_{2}(t+1) & = & x_{1}(t)+0.3 x_{2}(t)
\end{array}\right)
$$

Find the equilibrium / fixed point(s)

$$
\text { Again, we get }\left(x_{1}, x_{2}\right)=(0,0) \quad \text { Unique fixed point }
$$

Example 3: Fixed point in discrete time dynamics

$$
x(t+1)=2 x(t)(1-x(t))
$$

Find the equilibrium / fixed point(s)

Example 3: Fixed point in discrete time dynamics

$$
x(t+1)=2 x(t)(1-x(t))
$$

Find the equilibrium / fixed point(s)

We get $x=0$, and 0.5 .

But are these fixed points stable or unstable?

Example 1
$\binom{x_{1}(t+1)=-2 x_{1}(t)-5 x_{2}(t)}{x_{2}(t+1)=x_{1}(t)+3 x_{2}(t)}$

Example 2
$\left(\begin{array}{ccc}x_{1}(t+1) & = & -0.2 x_{1}(t)-0.5 x_{2}(t) \\ x_{2}(t+1) & = & x_{1}(t)+0.3 x_{2}(t)\end{array}\right)$

Example 3
$x(t+1)=2 x(t)(1-x(t))$

But are these fixed points stable or unstable?

Example 1
$\binom{x_{1}(t+1)=-2 x_{1}(t)-5 x_{2}(t)}{x_{2}(t+1)=x_{1}(t)+3 x_{2}(t)}$
$\leadsto\left(x_{1}, x_{2}\right)=(0,0)$ is unstable

Example 2
$\left(\begin{array}{l}x_{1}(t+1)= \\ x_{2}(t+1)\end{array}=-0.2 x_{1}(t)-0.5 x_{2}(t), ~ x_{1}(t)+0.3 x_{2}(t) \quad\right)$
$\leadsto\left(x_{1}, x_{2}\right)=(0,0)$ is GAS

Example 3
$x(t+1)=2 x(t)(1-x(t))$
$\leadsto x=0$ is unstable, $x=0.5$ is AS but not GAS

But are these fixed points stable or unstable?

Example 1
$\rightsquigarrow\left(x_{1}, x_{2}\right)=(0,0)$ is unstable

But are these fixed points stable or unstable?

Example 2
$\leadsto\left(x_{1}, x_{2}\right)=(0,0)$ is GAS

But are these fixed points stable or unstable?

Example $3 \leadsto x=0$ is unstable, $x=0.5$ is AS but not GAS

