Oscillation

Abhishek Halder

ahalder@ucsc.edu

All rights reserved. These slides cannot be shared, modified or distributed without instructor's permission.

Dept. of Applied Mathematics University of California, Santa Cruz

©Abhishek Halder

Recap: Fixed points and stability

How to calculate equilibrium / fixed points for discrete time dynamics

There could be multiple fixed points

We can simulate the dynamics to investigate if a fixed point is unstable, S, AS, GAS

Recap: Fixed points and stability example

0.6

$$x(t+1) = 2x(t)(1-x(t))$$
 0.4

0.2

Two fixed points: x = 0, and 0.5

$$(1)_{x} = 0.2$$

-0.2
-0.4

-0.8

-1

-1.2

x(t+1) = 3.2x

Find the equilibrium / fixed point(s)

$$x(t)\big(1-x(t)\big)$$

x(t+1) = 3.2

Find the equilibrium / fixed point(s)

$$x(t)\big(1-x(t)\big)$$

x(t+1) = 3.2

Find the equilibrium / fixed point(s)

Which one is unstable, S, AS, GAS?

$$x(t)\big(1-x(t)\big)$$

x(t+1) = 3.2 x

Stable oscillation between two points ⇔ Stable period 2 cycle

$$x(t)\big(1-x(t)\big)$$

Both fixed points x = 0, 0.6875 are unstable!!

The discrete time process dynamics is a recursion of the form x(t+1) = f(x(t))

Fixed points are the solutions / roots of the equation: x = f(x)

The previous example is the specific case f(x) = rx(1 - x), $0 \le r \le 4$, $f: [0,1] \mapsto [0,1]$

The discrete time process dynamics is a recursion of the form x(t+1) = f(x(t))

Fixed points are the solutions / roots of the equation: x = f(x)

For the specific f(x) = rx(1 - x), we get two solutions: x = 0, $\frac{r - 1}{r}$

The previous example is the specific case $f(x) = rx(1 - x), \quad 0 \le r \le 4, \quad f: [0,1] \mapsto [0,1]$

So we always have **two** fixed points

Period 2 points are the solutions / roots of the equation: x = f(f(x))

Two period 2 solutions for r > 3

Period 2 points are the solutions / roots of the equation: x = f(f(x))

For the specific f(x) = rx(1 - x), we get:

x = rf(x)(1 - x) $= r^2 x (1 - x)$ $= r^2 x(1 - x)$

$$f(x))$$
$$(1 - rx(1 - x))$$
$$(1 - rx + rx^{2})$$

$$\Rightarrow x \left[1 - r^2 (1 - x)(1 - rx + rx^2) \right] = 0$$

Factor the left hand side as $x\left(x - \frac{r-1}{r}\right)$ (another quadratic expression in x)