Oscillation

Abhishek Halder
Dept. of Applied Mathematics
University of California, Santa Cruz
ahalder@ucsc.edu

All rights reserved. These slides cannot be shared, modified or distributed without instructor's permission.

Recap: Fixed points and stability

How to calculate equilibrium / fixed points for discrete time dynamics

There could be multiple fixed points

We can simulate the dynamics to investigate if a fixed point is unstable, S, AS, GAS

Recap: Fixed points and stability example

$$
x(t+1)=2 x(t)(1-x(t))
$$

Two fixed points: $x=0$, and 0.5
$\leadsto x=0$ is unstable, $x=0.5$ is AS but not GAS

Example: Oscillation in discrete time dynamics

$$
x(t+1)=3.2 x(t)(1-x(t))
$$

Find the equilibrium / fixed point(s)

Example: Oscillation in discrete time dynamics

$$
x(t+1)=3.2 x(t)(1-x(t))
$$

Find the equilibrium / fixed point(s)

Still two fixed points
We get the fixed points: $x=0$, and $\frac{11}{16} \approx 0.6875$

Example: Oscillation in discrete time dynamics

$$
x(t+1)=3.2 x(t)(1-x(t))
$$

Find the equilibrium / fixed point(s)
\leadsto Still two fixed points
We get the fixed points: $x=0$, and $\frac{11}{16} \approx 0.6875$

Which one is unstable, S, AS, GAS?

Example: Oscillation in discrete time dynamics

$$
x(t+1)=3.2 x(t)(1-x(t))
$$

Stable oscillation between two points \Leftrightarrow Stable period 2 cycle

Both fixed points $x=0,0.6875$ are unstable!!

Example: Oscillation in discrete time dynamics

$$
x(t+1)=3.2 x(t)(1-x(t))
$$

How can we analyze such things?

The discrete time process dynamics is a recursion of the form $x(t+1)=f(x(t))$

The previous example is the specific case $f(x)=r x(1-x), \quad 0 \leq r \leq 4, \quad f:[0,1] \mapsto[0,1]$

Fixed points are the solutions/roots of the equation: $x=f(x)$

How can we analyze such things?

The discrete time process dynamics is a recursion of the form $x(t+1)=f(x(t))$

The previous example is the specific case $f(x)=r x(1-x), \quad 0 \leq r \leq 4, \quad f:[0,1] \mapsto[0,1]$

Fixed points are the solutions/roots of the equation: $\quad x=f(x)$

For the specific $f(x)=r x(1-x)$, we get two solutions: $x=0, \frac{r-1}{r}$

So we always have two fixed points

How can we analyze such things?

Period 2 points are the solutions/roots of the equation: $x=f(f(x))$

For the specific $f(x)=r x(1-x)$, we get four solutions: $x=0, \frac{r-1}{r}, \frac{r+1 \pm \sqrt{(r-3)(r+1)}}{2 r}$

First two are the already known fixed points

Two period 2 solutions for $r>3$

How can we analyze such things?

Period 2 points are the solutions/roots of the equation: $x=f(f(x))$

For the specific $f(x)=r x(1-x)$, we get:

$$
\begin{aligned}
& \qquad \qquad \begin{aligned}
x & =r f(x)(1-f(x)) \\
& =r^{2} x(1-x)(1-r x(1-x)) \\
& =r^{2} x(1-x)\left(1-r x+r x^{2}\right) \\
\Rightarrow x & {\left[1-r^{2}(1-x)\left(1-r x+r x^{2}\right)\right]=0 }
\end{aligned} \\
& \text { Factor the left hand side as } x\left(x-\frac{r-1}{r}\right)(\text { another quadratic expression in } x)
\end{aligned}
$$

