# Linear versus nonlinear

#### **Abhishek Halder**

Dept. of Applied Mathematics University of California, Santa Cruz

ahalder@ucsc.edu

All rights reserved. These slides cannot be shared, modified or distributed without instructor's permission.

©Abhishek Halder





# **Recap: Oscillation**

Period 2 cycle or oscillation: definition and example

Period 2 cycle or oscillation: how to analyze

$$x_1(t+1) = \frac{1}{2}x_1(t)$$
$$x_2(t+1) = \frac{\sqrt{3}}{2}x_1(t)$$

#### **Question:** What is / are the fixed point(s) for the **uncontrolled** dynamics (when u = 0)?



$$x_1(t+1) = \frac{1}{2}x_1(t)$$
$$x_2(t+1) = \frac{\sqrt{3}}{2}x_2(t)$$

**Question:** What is / are the fixed point(s) for the **uncontrolled** dynamics (when u = 0)?

**Answer:** Unique fixed point  $(x_1, x_2) = (0,0)$ .

 $(t) - \frac{\sqrt{3}}{2} x_2(t)$  $x_1(t) + \frac{1}{2}x_2(t) + u$ 

$$x_1(t+1) = \frac{1}{2}x_1(t)$$
$$x_2(t+1) = \frac{\sqrt{3}}{2}x_2(t)$$

 $(t) - \frac{\sqrt{3}}{2} x_2(t)$  $x_1(t) + \frac{1}{2}x_2(t) + u$ 

**Question:** What is / are the fixed point(s) for the **controlled** dynamics with  $u = -x_1 - x_2$ ?



$$x_1(t+1) = \frac{1}{2}x_1(t)$$
$$x_2(t+1) = \frac{\sqrt{3}}{2}x_2(t)$$

**Question:** What is / are the fixed point(s) for the **controlled** dynamics with  $u = -x_1 - x_2$ ?

**Answer:** Still unique fixed point  $(x_1, x_2) = (0,0)$ .

 $(t) - \frac{\sqrt{3}}{2}x_2(t)$  $x_1(t) + \frac{1}{2}x_2(t) + u$ 



$$x_1(t+1) = \frac{1}{2}x_1(t)$$
$$x_2(t+1) = \frac{\sqrt{3}}{2}x_2(t)$$

**Question:** What is / are the fixed point(s) for the **controlled** dynamics with  $u = -x_1 - x_2$ ?

**Answer:** Still unique fixed point  $(x_1, x_2) = (0, 0)$ .

**Question:** Is  $u = -x_1 - x_2$  feedback or feedforward control?

 $(t) - \frac{\sqrt{3}}{2} x_2(t)$  $x_1(t) + \frac{1}{2}x_2(t) + u$ 



$$x_1(t+1) = \frac{1}{2}x_1(t)$$
$$x_2(t+1) = \frac{\sqrt{3}}{2}x_2(t)$$

**Answer:** Still unique fixed point  $(x_1, x_2) = (0,0)$ .

**Question:** Is  $u = -x_1 - x_2$  feedback or feedforward control?

 $(t) - \frac{\sqrt{3}}{2} x_2(t)$  $x_1(t) + \frac{1}{2}x_2(t) + u$ 

**Question:** What is / are the fixed point(s) for the **controlled** dynamics with  $u = -x_1 - x_2$ ?

- Answer: Feedback control since it is feeding back a function of the state variables







Stabilizing state feedback control

# Linear versus nonlinear dynamics

Recall: general discrete time process dynamics is of the form x(t+1) = f(x(t))

Function *f* is **nonlinear**  $\Leftrightarrow$  Function *f* is NOT linear  $\mathbf{1}$ Dynamics x(t + 1) = f(x(t)) is **nonlinear** 

Generalizes for multiple variables  $x_1, x_2, x_3$  etc.

We say that the function f is linear if and only if f(ax + by) = af(x) + bf(y) for any real a, b



# Which of the following dynamics are linear, which one are nonlinear?

Example 1

$$x(t+1) = 3.2 x(t) (1 - x(t))$$

Example 2, set u = 0

$$x_1(t+1) = \frac{1}{2}x_1(t) - \frac{\sqrt{3}}{2}x_2(t)$$
$$x_2(t+1) = \frac{\sqrt{3}}{2}x_1(t) + \frac{1}{2}x_2(t) + u$$

Example 2, now with  $u = -x_1 - x_2$ 



# Which of the following dynamics are linear, which one are nonlinear?

Example 1

$$x(t+1) = 3.2 x(t) (1 - x(t))$$

Example 2, set u = 0

$$x_1(t+1) = \frac{1}{2}x_1(t) - \frac{\sqrt{3}}{2}x_2(t)$$

$$x_2(t+1) = \frac{\sqrt{3}}{2}x_1(t) + \frac{1}{2}x_2(t) + u$$

Example 2, now with  $u = -x_1 - x_2$ 

Nonlinear

#### Linear

#### Linear

