Linear versus nonlinear

Abhishek Halder
Dept. of Applied Mathematics
University of California, Santa Cruz
ahalder@ucsc.edu

All rights reserved. These slides cannot be shared, modified or distributed without instructor's permission.

Recap: Oscillation

Period 2 cycle or oscillation: definition and example

Period 2 cycle or oscillation: how to analyze

Example: Process dynamics

$$
\begin{aligned}
& x_{1}(t+1)=\frac{1}{2} x_{1}(t)-\frac{\sqrt{3}}{2} x_{2}(t) \\
& x_{2}(t+1)=\frac{\sqrt{3}}{2} x_{1}(t)+\frac{1}{2} x_{2}(t)+u
\end{aligned}
$$

Question: What is/are the fixed point(s) for the uncontrolled dynamics (when $u=0$)?

Example: Process dynamics

$$
\begin{aligned}
& x_{1}(t+1)=\frac{1}{2} x_{1}(t)-\frac{\sqrt{3}}{2} x_{2}(t) \\
& x_{2}(t+1)=\frac{\sqrt{3}}{2} x_{1}(t)+\frac{1}{2} x_{2}(t)+u
\end{aligned}
$$

Question: What is/are the fixed point(s) for the uncontrolled dynamics (when $u=0$)?

Answer: Unique fixed point $\left(x_{1}, x_{2}\right)=(0,0)$.

Example: Process dynamics

$$
\begin{aligned}
& x_{1}(t+1)=\frac{1}{2} x_{1}(t)-\frac{\sqrt{3}}{2} x_{2}(t) \\
& x_{2}(t+1)=\frac{\sqrt{3}}{2} x_{1}(t)+\frac{1}{2} x_{2}(t)+u
\end{aligned}
$$

Question: What is/are the fixed point(s) for the controlled dynamics with $u=-x_{1}-x_{2}$?

Example: Process dynamics

$$
\begin{aligned}
& x_{1}(t+1)=\frac{1}{2} x_{1}(t)-\frac{\sqrt{3}}{2} x_{2}(t) \\
& x_{2}(t+1)=\frac{\sqrt{3}}{2} x_{1}(t)+\frac{1}{2} x_{2}(t)+u
\end{aligned}
$$

Question: What is/are the fixed point(s) for the controlled dynamics with $u=-x_{1}-x_{2}$?

Answer: Still unique fixed point $\left(x_{1}, x_{2}\right)=(0,0)$.

Example: Process dynamics

$$
\begin{aligned}
& x_{1}(t+1)=\frac{1}{2} x_{1}(t)-\frac{\sqrt{3}}{2} x_{2}(t) \\
& x_{2}(t+1)=\frac{\sqrt{3}}{2} x_{1}(t)+\frac{1}{2} x_{2}(t)+u
\end{aligned}
$$

Question: What is/are the fixed point(s) for the controlled dynamics with $u=-x_{1}-x_{2}$?

Answer: Still unique fixed point $\left(x_{1}, x_{2}\right)=(0,0)$.

Question: Is $u=-x_{1}-x_{2}$ feedback or feedforward control?

Example: Process dynamics

$$
\begin{aligned}
& x_{1}(t+1)=\frac{1}{2} x_{1}(t)-\frac{\sqrt{3}}{2} x_{2}(t) \\
& x_{2}(t+1)=\frac{\sqrt{3}}{2} x_{1}(t)+\frac{1}{2} x_{2}(t)+u
\end{aligned}
$$

Question: What is/are the fixed point(s) for the controlled dynamics with $u=-x_{1}-x_{2}$?

Answer: Still unique fixed point $\left(x_{1}, x_{2}\right)=(0,0)$.

Question: Is $u=-x_{1}-x_{2}$ feedback or feedforward control?
Answer: Feedback control since it is feeding back a function of the state variables

Example: Process dynamics

Example: Process dynamics

Stabilizing state feedback control

Linear versus nonlinear dynamics

Recall: general discrete time process dynamics is of the form $x(t+1)=f(x(t))$

We say that the function f is linear if and only if $f(a x+b y)=a f(x)+b f(y)$ for any real a, b

Function f is nonlinear \Leftrightarrow Function f is NOT linear介

Dynamics $x(t+1)=f(x(t))$ is nonlinear

Generalizes for multiple variables x_{1}, x_{2}, x_{3} etc.

Which of the following dynamics are linear, which one are nonlinear?

Example 1

$$
x(t+1)=3.2 x(t)(1-x(t))
$$

Example 2, set $u=0$

$$
\begin{aligned}
& x_{1}(t+1)=\frac{1}{2} x_{1}(t)-\frac{\sqrt{3}}{2} x_{2}(t) \\
& x_{2}(t+1)=\frac{\sqrt{3}}{2} x_{1}(t)+\frac{1}{2} x_{2}(t)+u
\end{aligned}
$$

Example 2, now with $u=-x_{1}-x_{2}$

Which of the following dynamics are linear, which one are nonlinear?

Example 1
$x(t+1)=3.2 x(t)(1-x(t)) \quad$ Nonlinear

Example 2, set $u=0$

$$
\begin{array}{ll}
x_{1}(t+1) & =\frac{1}{2} x_{1}(t)-\frac{\sqrt{3}}{2} x_{2}(t) \quad \text { Linear } \\
x_{2}(t+1) & =\frac{\sqrt{3}}{2} x_{1}(t)+\frac{1}{2} x_{2}(t)+u
\end{array}
$$

Example 2, now with $u=-x_{1}-x_{2}$

