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Recap: Linear versus nonlinear

Process dynamics: uncontrolled and controlled

Example on stabilizing state feedback

Linear versus nonlinear dynamics



Fixed points and stability ideas outside control

A common problem across science and engineering:

Find the solutions or roots of a nonlinear equation f(x) = 0

Issue: may have multiple roots

Question: how to design algorithms to calculate the roots using a computer?

Issue: usually no known analytical solutions



Fixed point recursion: an algorithm to numerically solve f(x) = 0

Idea: rewrite the original equation  in the form f(x) = 0 x = g(x)

Hope: if the iterations converge, then it must converge to a root of f(x) = 0

Then iterate  in a computerx(t + 1) = g(x(t))

Worry: the iterations may diverge or settle to oscillation



Example: Fixed point recursion

Solve for  such that x ∈ (0,
π
2 ) cos(x) − x

f(x)

= 0



Example: Fixed point recursion

Solve for  such that x ∈ (0,
π
2 ) cos(x) − x

f(x)

= 0

Algorithm: iterate x(t + 1) = cos(x(t))

Rewrite: x = cos(x)

g(x)

Here  denotes iteration indext



Example: Process dynamics in state space

x1(t + 1) =
1
2

x1(t) −
3

2
x2(t)

x2(t + 1) =
3

2
x1(t) +

1
2

x2(t) + u

Oscillation u = 0 ⇝

GAS u = − x1 − x2 ⇝

Stabilizing state feedback control
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State Space

What does it mean: It is the space of process state variables

Mathematically: It is a set in which the collection of state variables belong to

Examples: 

, x(t + 1) = r x(t)(1 − x(t)), 0 < r ≤ 4 State space: [0,1] −∞ +∞0 1
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Example: state space for simple pendulum

Image credit: Shawn Shadden

ω



Example: state space for simple pendulum

Image credit: Shawn Shadden
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State space: [−π, π] × ℝ
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Example: state space for angular dynamics

Dynamics:
θ1(t + 1) = θ1(t) −

1
3 [sin(θ1(t) − θ2(t)) + sin (2θ1(t) + θ2(t))]

θ2(t + 1) = θ2(t) −
1
3 [sin(θ2(t) − θ1(t)) + sin (2θ2(t) + θ1(t))]



Example: state space for angular dynamics

State space: [−π, π] × [−π, π]Dynamics:
θ1(t + 1) = θ1(t) −

1
3 [sin(θ1(t) − θ2(t)) + sin (2θ1(t) + θ2(t))]

θ2(t + 1) = θ2(t) −
1
3 [sin(θ2(t) − θ1(t)) + sin (2θ2(t) + θ1(t))] Torus



Example: state space for angular dynamics

State space: [−π, π] × [−π, π]

Figure 3: Locations of the 18 fixed points in µ1µ2 torus for the three oscillator case. Like the previous figure,
black, blue and red dots represent aligned, balanced and unstable equilibria respectively.

6 Critical curves and others

As we have seen, when we increase c beyond 2, period 2 orbits are born from each of the stable aligned fixed
points through flip bifurcation. We noticed that around each aligned fixed point, three stable period 2 orbits and
another three unstable period 2 orbits appear simultaneously. Further increase in c resulted progressive births
of period 4 orbits, period 8 orbits and period 16 orbits. Further we found that there are invariant curves on the
torus such that if we initialize on those curves, we never leave them (we keep hopping on the particular curve
on which we initialize until we converge on the stable period 2 or stable period 4 etc.). Moreover, if we DO
NOT initialize on any of these invariant curves, then as the map iterates, we move closer to the bounded (sort of

elliptical) curve around the nearest aligned fixed point and once there, quickly converge to the stable period 2 (or
4 etc) solution. In fact, we observe that 3 (out of the total 6) invariant curves separates the basin of attraction
of the other three stable period 2 solutions.

Need to plot the critical curves for various c!!

Six curves, namely (µ1 + µ2) = 0 (in red), (µ1 ° µ2) = 0 (in blue), (2µ1 + µ2) = 0 (in magenta), (µ1 + 2µ2) = 0
(in black), µ1 = 2º

3 (in green), µ2 = 2º
3 (in yellow) are shown. We suspect that along these lines, the map gets

decoupled in µ1 and µ2. We are investigating these further.

7 Discrete time Kuramoto oscillators with time delay

One can write the time-delayed version of (2) as

µi(h + 1) 7! µi(h) +
c

N

NX

j=1

sin(µj(h° ø)° µi(h)), i = 1, 2, ..., N, (30)

where we assume that the ith agent knows its current phase but the information about the phase of all other
agents is known to it by a time delay ø 2 N. This means that the latest updates (current states) of all agents

8

Fixed points:

Dynamics:
θ1(t + 1) = θ1(t) −

1
3 [sin(θ1(t) − θ2(t)) + sin (2θ1(t) + θ2(t))]

θ2(t + 1) = θ2(t) −
1
3 [sin(θ2(t) − θ1(t)) + sin (2θ2(t) + θ1(t))] Torus


