State Space

Abhishek Halder
Dept. of Applied Mathematics
University of California, Santa Cruz
ahalder@ucsc.edu

All rights reserved. These slides cannot be shared, modified or distributed without instructor's permission.

Recap: Linear versus nonlinear

Process dynamics: uncontrolled and controlled

Example on stabilizing state feedback

Linear versus nonlinear dynamics

Fixed points and stability ideas outside control

A common problem across science and engineering:

$$
\text { Find the solutions or roots of a nonlinear equation } f(x)=0
$$

Issue: may have multiple roots
Issue: usually no known analytical solutions

Question: how to design algorithms to calculate the roots using a computer?

Fixed point recursion: an algorithm to numerically solve $f(x)=0$

Idea: rewrite the original equation $f(x)=0$ in the form $x=g(x)$

Then iterate $x(t+1)=g(x(t))$ in a computer

Hope: if the iterations converge, then it must converge to a root of $f(x)=0$

Worry: the iterations may diverge or settle to oscillation

Example: Fixed point recursion

Solve for $x \in\left(0, \frac{\pi}{2}\right)$ such that $\underbrace{\cos (x)-x}_{f(x)}=0$

Example: Fixed point recursion

Solve for $x \in\left(0, \frac{\pi}{2}\right)$ such that $\cos (x)-x=0$

Rewrite: $x=\cos (x)$

$$
g(x)
$$

Algorithm: iterate $x(t+1)=\cos (x(t))$

Here t denotes iteration index

Example: Process dynamics in state space

$$
\begin{aligned}
& x_{1}(t+1)=\frac{1}{2} x_{1}(t)-\frac{\sqrt{3}}{2} x_{2}(t) \\
& x_{2}(t+1)=\frac{\sqrt{3}}{2} x_{1}(t)+\frac{1}{2} x_{2}(t)+u
\end{aligned}
$$

$$
u=0 \rightsquigarrow \text { Oscillation }
$$

$$
u=-x_{1}-x_{2} \leadsto \text { GAS }
$$

Example: Process dynamics in state space

$$
\begin{aligned}
& x_{1}(t+1)=\frac{1}{2} x_{1}(t)-\frac{\sqrt{3}}{2} x_{2}(t) \\
& x_{2}(t+1)=\frac{\sqrt{3}}{2} x_{1}(t)+\frac{1}{2} x_{2}(t)+u
\end{aligned}
$$

$$
u=0 \rightsquigarrow \text { Oscillation }
$$

$$
u=-x_{1}-x_{2} \leadsto \text { GAS }
$$

Stabilizing state feedback control

State Space

What does it mean: It is the space of process state variables

Mathematically: It is a set in which the collection of state variables belong to

Examples:

$x(t+1)=r x(t)(1-x(t)), \quad 0<r \leq 4, \quad$ State space: $[0,1]$

State Space

What does it mean: It is the space of process state variables

Mathematically: It is a set in which the collection of state variables belong to

Examples:

$$
x(t+1)=r x(t)(1-x(t)), \quad 0<r \leq 4, \quad \text { State space: }[0,1]
$$

$x_{1}(t+1)=\frac{1}{2} x_{1}(t)-\frac{\sqrt{3}}{2} x_{2}(t)$
$x_{2}(t+1)=\frac{\sqrt{3}}{2} x_{1}(t)+\frac{1}{2} x_{2}(t)$
State space: $\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}$

Example: state space for simple pendulum

Image credit: Shawn Shadden

Example: state space for simple pendulum

State space: $[-\pi, \pi] \times \mathbb{R}$

Image credit: Shawn Shadden

Example: state space for angular dynamics

Dynamics:

$$
\begin{aligned}
& \theta_{1}(t+1)=\theta_{1}(t)-\frac{1}{3}\left[\sin \left(\theta_{1}(t)-\theta_{2}(t)\right)+\sin \left(2 \theta_{1}(t)+\theta_{2}(t)\right)\right] \\
& \theta_{2}(t+1)=\theta_{2}(t)-\frac{1}{3}\left[\sin \left(\theta_{2}(t)-\theta_{1}(t)\right)+\sin \left(2 \theta_{2}(t)+\theta_{1}(t)\right)\right]
\end{aligned}
$$

Example: state space for angular dynamics

Dynamics:

$$
\begin{aligned}
& \theta_{1}(t+1)=\theta_{1}(t)-\frac{1}{3}\left[\sin \left(\theta_{1}(t)-\theta_{2}(t)\right)+\sin \left(2 \theta_{1}(t)+\theta_{2}(t)\right)\right] \\
& \theta_{2}(t+1)=\theta_{2}(t)-\frac{1}{3}\left[\sin \left(\theta_{2}(t)-\theta_{1}(t)\right)+\sin \left(2 \theta_{2}(t)+\theta_{1}(t)\right)\right]
\end{aligned}
$$

State space: $[-\pi, \pi] \times[-\pi, \pi]$

Torus

Example: state space for angular dynamics

Dynamics:

$$
\begin{aligned}
& \theta_{1}(t+1)=\theta_{1}(t)-\frac{1}{3}\left[\sin \left(\theta_{1}(t)-\theta_{2}(t)\right)+\sin \left(2 \theta_{1}(t)+\theta_{2}(t)\right)\right] \\
& \theta_{2}(t+1)=\theta_{2}(t)-\frac{1}{3}\left[\sin \left(\theta_{2}(t)-\theta_{1}(t)\right)+\sin \left(2 \theta_{2}(t)+\theta_{1}(t)\right)\right]
\end{aligned}
$$

Fixed points:

State space: $[-\pi, \pi] \times[-\pi, \pi]$

Torus

