A Physics-informed Deep Learning Approach for Minimum **Effort Stochastic Control of Colloidal Self-Assembly**

inodozi@ucsc.edu

Department of Electrical and Computer Engineering

University of California, Santa Cruz

Joint work with

Jared O'Leary (UC Berkeley)

Iman Nodozi

Abhishek Halder (UC Santa Cruz)

Ali Mesbah (UC Berkeley)

2023 American Control Conference, San Diego, May 31, 2023

Controlled Self-assembly

Dispersed particles

Ordered structure

Applications:

Precision (e.g., sub nm scale) manufacturing of materials with advanced electrical, magnetic or optical properties

Controlled Self-assembly

Dispersed particles

Ordered structure

Typical state variable: $\langle C_6 \rangle \in (0,6)$

Average number of hexagonally close packed neighboring particles in 2D

Typical control variable: *U*

Electric field voltage

Technical challenge:

Nonlinear + noisy molecular dynamics

 $\langle C_6 \rangle$ is a controlled stochastic process

Controlled Self-assembly as PDF Steering

Intuition: $\langle C_6 \rangle \approx 0 \Leftrightarrow \text{Crystalline disorder}$ $\langle C_6 \rangle \approx 5 \Leftrightarrow \text{Crystalline order}$

Steer the PDF of the stochastic state $\langle C_6 \rangle$ from disordered at $t = t_0 \equiv 0$ to ordered at $t = T \equiv 200$ s

Typical prescribed finite horizon for controlled self-assembly

Endpoint PDF constraints: $\langle C_6 \rangle (t = t_0) \sim \rho_0$ (given) $\langle C_6 \rangle (t = T) \sim \rho_T \text{ (given)}$

Control policy to accomplish $u = \pi(\langle C_6 \rangle, t)$ the PDF steering: Underdetermined

Minimum Effort Self-assembly

Proposed formulation:

$$\inf_{u \in \mathscr{U}} \mathbb{E}_{\mu^{u}} \left[\int_{0}^{T} \frac{1}{2} u^{2} dt \right],$$

subject to
$$dx^{u} = D_{1}(x^{u}, u) dt + \sqrt{2D_{2}(x^{u}, u)}$$

$$\langle C_{6} \rangle$$

 $x^{u}(t=0) \sim d\mu_{0} = \rho_{0} dx^{u}, \quad x^{u}(t=0)$

 \overline{u} dw, standard Wiener process

$$= T) \sim \mathrm{d}\mu_T = \rho_T \,\mathrm{d}x^u$$

Minimum Effort Self-assembly

Equivalent formulation:

$$\inf_{(\rho^{u},u)} \int_{0}^{T} \int_{\mathbb{R}} \frac{1}{2} u^{2}(x^{u},t) \rho^{u}(x^{u},t) \, \mathrm{d}x^{u} \, \mathrm{d}t$$

subject to
$$\frac{\partial \rho^{u}}{\partial t} = -\frac{\partial}{\partial x^{u}} \left(D_{1} \rho^{u} \right) + \frac{\partial^{2}}{\partial x^{u2}} \left(D_{1} \rho^$$

 $\rho^{u}(x^{u}, t = 0) = \rho_{0}, \quad \rho^{u}(x^{u}, t = T) = \rho_{T}$

Generalized Schrödinger Bridge

Schrödinger bridge problem: $D_1 \equiv u$ and $D_2 \equiv$ Identity

This is still a challenge to mathematicany to asloe a certain buildary value protain 14. I. 52, E. S. Überreicht vom Verfasser

ÜBER DIE UMKEHRUNG DER NATURGESETZE

E. SCHRÖDINGER

SONDERAUSGABE AUS DEN SITZUNGSBERICHTEN DER PREUSSISCHEN AKADEMIE DER WISSENSCHAFTEN PHYS.-MATH KLASSE. 1931. IX

J'ai l'intention d'exposer dans ces conférences diverses idées concernant la mécanique quantique et l'interprétation qu'on en donne généralement à l'heure actuelle ; je parlerai principalement de la théorie quantique relativiste du mouvement de l'électron. Autant que nous pouvons nous en rendre compte aujourd'hui, il semble à peu près sûr que la mécanique quantique de l'électron, sous sa forme idéale, que nous ne possédons pas encore, doit former un jour la base de toute la physique. A cet intérêt tout à fait général, s'ajoute, ici à Paris, un intérêt particulier : vous savez tous que les bases de la théorie moderne de l'électron ont été posées à Paris par votre célèbre compatriote Louis de BROGLIE.

In our setting: both D_1 and D_2 are nonlinear in state + non-affine in control

Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique

PAR

E. SCHRÖDINGER

I. — Introduction

Conditions for Optimality

$$\frac{\partial \psi}{\partial t} = \frac{1}{2} \left(\pi^{\text{opt}} \right)^2 - \frac{\partial \psi}{\partial x} D_1 - \frac{\partial^2 \psi}{\partial x^{u^2}} d_1$$
$$\frac{\partial \rho^u}{\partial t} = -\frac{\partial}{\partial x^u} \left(D_1 \rho^u \right) + \frac{\partial^2}{\partial x^{u^2}} \left(D_2 \rho^u \right)$$
$$\pi^{\text{opt}}(x^u, t) = \frac{\partial \psi}{\partial x^u} \frac{\partial D_1}{\partial u} + \frac{\partial^2 \psi}{\partial x^{u^2}} \frac{\partial D_2}{\partial u}$$
$$\rho^u(x^u, t = 0) = \rho_0, \quad \rho^u(x^u, t = T)$$

value o

function cont

to be solved for the triple: $\psi(x^u, t)$, $\rho^u(x^u, t)$, $\pi^{\text{opt}}(x^u, t)$

Solve via PINN

Loss term for policy equation

Loss term for initial condition

Loss term for terminal condition

 $\mathscr{L}_{\rho_T^u} = -$

$$\begin{aligned} \mathscr{L}_{\psi} &= \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\partial \psi}{\partial t} \Big|_{x_{i}} - \frac{1}{2} (\pi^{\text{opt}})^{2} \Big|_{x^{u_{i}}} - \frac{\partial \psi}{\partial x^{u}} D_{1} \Big|_{x^{u}_{i}} - \frac{\partial^{2} \psi}{\partial x^{u2}} D_{2} \Big|_{x^{u}_{i}} \right) \\ \mathscr{L}_{\rho^{u}} &= \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\partial \rho^{u}}{\partial t} \Big|_{x^{u}_{i}} + \frac{\partial}{\partial x^{u}} \left(D_{1} \rho^{u} \right) \Big|_{x^{u}_{i}} - \frac{\partial^{2}}{\partial x^{u2}} \left(D_{2} \rho^{u} \right) \Big|_{x^{u}_{i}} \right)^{2} \\ \mathscr{L}_{\pi^{\text{opt}}} &= \frac{1}{n} \sum_{i=1}^{n} \left(\pi^{\text{opt}} \Big|_{x^{u}_{i}} - \frac{\partial \psi}{\partial x^{u}} \frac{\partial D_{1}}{\partial u} \Big|_{x^{u}_{i}} - \frac{\partial^{2} \psi}{\partial x^{u2}} \frac{\partial D_{2}}{\partial u} \Big|_{x^{u}_{i}} \right)^{2} \\ \mathscr{L}_{\rho^{u}_{i}} &= \frac{1}{n} \sum_{i=1}^{n} \left(\rho^{u} \Big|_{i=0} - \rho^{u}_{0}(x) \right)^{2} \\ \mathscr{L}_{\rho^{u}_{i}} &= \frac{1}{n} \sum_{i=1}^{n} \left(\rho^{u} \Big|_{i=T} - \rho^{u}_{T}(x) \right)^{2} \end{aligned}$$

PINN Architecture

[Lu Lu, et al, 2021] [Niaki, et al, 2021]

 $\mathscr{L}_{\mathscr{N}} = \mathscr{L}_{\psi} + \mathscr{L}_{\rho^{u}} + \mathscr{L}_{\pi^{\mathrm{opt}}} + \mathscr{L}_{\rho^{u}_{0}} + \mathscr{L}_{\rho^{u}_{T}}$

Training of the PINN

Benchmark controlled self-assembly system: [Y Xue, et al, IEEE Trans. Control Sys. Technology, 2014]

Optimal Policy

Value Function

 $\langle C_6 \rangle, t \rangle$ $\langle \rangle$

Optimally Controlled State PDFs

Optimal State and Optimal Control Sample Paths

15

Data-driven learning

$$\langle C_{10} \rangle \in [-0.1, 0.6]$$

 $\downarrow \langle C_{12} \rangle \in [-0.1, 0.6]$
Steinhart bond order parameters

Body-centered cube (BCC) crystal

Thank You

