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Overview

min
x∈S⊆Rn

f (x)y
min

f∈F (Rn)⊆C1(Rn)
I(f ) =

∫
dom(f ) L (x, f ,∇f ) dx

y
min

u(·)∈U ([0,T])⊆F ([0,T])
J(u)

subject to ż(t) = φ (z(t), u(t), t)
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OPT example: Least squares

OPT template: min
x∈S⊆Rn

f (x)

In this problem: min
x

‖ Ax− b ‖2
2

S = Rn, f (x) =‖ Ax− b ‖2
2
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OPT example: two variable LP

OPT template: min
x∈S⊆Rn

f (x)

In this problem: max(
x1
x2

)
∈R2

15x1 + 10x2

subject to 1
4x1 + x2 ≤ 65,

5
4x1 + 1

2x2 ≤ 90,

x1, x2 ≥ 0

S = {x ∈ R2 : Ax ≤ b, x ≥ 0} ⊂ R2
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CoV example: Shortest planar path

448 14 Calculus of Variations

14.1 The Fundamental Problem of Calculus of Variations

Calculus of variations is a branch of mathematics dealing with the optimization of
physical quantities (such as time, area, or distance). It finds applications in many
diverse fields, such as aeronautics (maximizing the lift of an airplane wing), sporting
equipment design (minimizing air resistance on a bicycle helmet, optimizing the shape
of a ski), mechanical engineering (maximizing the strength of a column, a dam, or an
arch), boat design (optimizing the shape of a boat hull), physics (calculating trajectories
and geodesics in both classical mechanics and general relativity).

We begin with two examples illustrating the types of problems that may be solved
using calculus of variations.

Example 14.1 This example is very simple and we already know the answer. However,
formalizing it will be of help later. The problem consists in finding the shortest path
between two points in the plane, A = (x1, y1) and B = (x2, y2). We already know that
the answer is simply the straight line connecting the two points, but we will go through
this solution using the framework of calculus of variations. Suppose that x1 ̸= x2 and
that it is possible to write the second coordinate as a function of the first. Then the
path is parameterized by (x, y(x)) for x ∈ [x1, x2], where y(x1) = y1 and y(x2) = y2.
The quantity I that we wish to minimize is the length of the path between A and B.
This length depends on the specific trajectory being followed, and is thus a function of
y, I(y). This “function of a function” is called a functional.

Fig. 14.1. A trajectory between the two points A and B.

•
(x, f(x))



CoV example: Shortest planar path

CoV template:
min

f∈F (Rn)⊆C1(Rn)
I(f ) =

∫
dom(f ) L (x, f ,∇f ) dx

In this problem:

I(f ) =
∫ x2

x1

√
1 + (f ′)2 dx

dom(f ) = [x1, x2], assuming x1 6= x2

F (R) = {f ∈ C1 (R) : f (x1) = y1, f (x2) = y2}



CoV example: Brachistochrone (1696)450 14 Calculus of Variations

Fig. 14.2. Three candidate profiles for the best half-pipe.

distance) be taken? Should the path covering the shortest distance be taken? Or should
it be something between these two extremes, such as the smooth profile in Figure 14.2?

It is relatively easy to calculate the time taken to travel the two extreme profiles. But
we will show that the best profile is actually a smooth curve between these two extremes.
To this end, we show how to calculate the travel time for a smooth curve described by
(x, y(x)).

Lemma 14.3 We choose our coordinate system such that the y axis is oriented down-
ward and the x axis proceeds from point A to B and we choose a profile described by a
curve y(x), where A = (x1, y(x1)) and B = (x2, y(x2)). We consider the time taken for
a point mass, propelled only by the force of gravity, to travel from point A to point B.
The time is given by the integral

I(y) =
1√
2g

∫ x2

x1

√
1 + (y′)2√

y
dx. (14.2)

Proof. The key to calculating the travel time is the physical principle of conservation of
energy. The total energy E of a point mass is the sum of its kinetic energy (T = 1

2mv2)
and its potential energy (V = −mgy). (Warning: the negative sign in our potential
energy term comes from us using an inverted y axis.) In these equations m is the mass
of the point, v its speed, and g the acceleration due to gravity. The constant g is
approximately g = 9.8 m/s2 on the surface of the Earth. The total energy E = T +V =
1
2mv2 − mgy of the point mass is constant throughout its trip along the curve. If its
speed is zero at A, then E is initially zero, and remains so along the entire trajectory.
Thus the speed of the point mass is related strictly to its height through the equation
E = 0, which simplifies to 1

2mv2 = mgy and finally

v =
√

2gy. (14.3)

The time taken to travel the path is the sum over all the infinitesimally small dx of the
time dt taken to travel the corresponding distance ds. The time is the quotient of the
distance ds divided by its speed at the moment. Thus

•(x, f(x))



CoV example: Brachistochrone (1696)

CoV template:
min

f∈F (Rn)⊆C1(Rn)
I(f ) =

∫
dom(f ) L (x, f ,∇f ) dx

In this problem:

I(f ) =
∫ x2

x1

√
1 + (f ′)2

f
dx

dom(f ) = [x1, x2], x1 6= x2, y1 > y2

F (R) = {f ∈ C1 (R) : f (x1) = y1, f (x2) = y2}



CoV theory: EL equation (1740-1760s)

Necessary conditions for I(f ) to
achieve minimum:

for f : R 7→ R:
∂L
∂f
− d

dx

(
∂L
∂f ′

)
= 0,

for f : Rn 7→ R:
∂L
∂f
− ∇ · ∂L

∂∇f
= 0,

subject to B.C. f (x1) = y1, f (x2) = y2



CoV theory: Beltrami identity

A corollary of EL equation, in the
special case L(x, f ,∇f ) has no explicit
dependence on x:

for f : R 7→ R: f ′
∂L
∂f ′
− L = constant.



EL equation example: f ′′ need not exist

Problem:
min

f∈F ([−1,1])⊆C1([−1,1])
I(f ) =

∫ +1
−1 f 2 (2x− f ′)2 dx,

F ([−1, 1]) = {f ∈ C1 ([−1, 1]) : f (−1) = 0, f (1) = 1}

Solution: From EL equation, minimum
I∗ = 0 is achieved by

f ∗(x) =

{
0 for x ∈ [−1, 0]

x2 for x ∈ (0, 1]



CoV theory: when f ∗ ∈ C2

Hilbert’s theorem:

If
∂2L
∂f ′2
6= 0 in the entire dom(f ), then

the extremal f ∗(·) ∈ C2, and is called
nonsingular.

Corollary:

If f ∗ nonsingular and L ∈ C3, then f ∗ is
the unique extremal.



CoV example: Shortest planar path
Solution:
Set L =

√
1 + (f ′)2 in EL equation:

∂

∂f

√
1 + (f ′)2− d

dx

[
∂

∂f ′

(√
1 + (f ′)2

)]
= 0

⇒ d
dx

[
2f ′

2
√

1 + (f ′)2

]
=

f ′′

[1 + (f ′)2]
3
2
= 0

⇒ f (x) = c1x + c2

where c1 =
y2− y1

x2− x1
, c2 =

y1x2− y2x1

x2− x1



CoV example: Brachistochrone
Solution:

Set L =
√

1+(f ′)2

f in Beltrami identity:

(f ′)2√
1 + (f ′)2

√
f
−
√

1 + (f ′)2√
f

= c

⇒ −1√
1 + (f ′)2

√
f
= c

⇒ f ′ =

√
k− f

f
, where k :=

1
c2

How to solve this nonlinear ODE?



CoV example: Brachistochrone
Solution (contd.):

Let f = k sin2 φ⇒ df
dx

=

√
k− f

f
= cot φ

By chain rule:
dφ

dx
=

dφ

df
df
dx

=
1

2k sin φ cos φ
cot φ =

1
2k sin2 φ

⇒ dx = 2k sin2 φ dφ

⇒ x = k
∫

(1− cos 2φ) dφ = kφ− k
2

sin 2φ + c1

⇒ (x, f (x)) =
(
kφ− k

2 sin 2φ + c1, k
2(1− cos 2φ)

)



CoV example: Brachistochrone

Solution (contd.):
Apply B.C. at point A (0, 0): c1 = 0

Introducing a :=
k
2

and θ := 2φ, we get

x = a (θ − sin θ), y ≡ f (x) = a (1− cos θ)

These are parametric equations for a cycloid



CoV example: Brachistochrone

Solution (contd.):

Since
∂2L
∂f ′2

=
1√

f [1 + (f ′)2]
3
2
6= 0 in dom(f ),

hence f ∗ ∈ C2 (by Hilbert’s Theorem)



CoV theory: Integral constraints

CoV template:

min
f∈F (Rn)⊆C1(Rn)

I(f ) =
∫

dom(f ) L (x, f ,∇f ) dx

subject to
∫

dom(f )
M (x, f ,∇f ) dx = k

Euler-Lagrange equation:

∂

∂f
(
L + λ>M

)
− ∇ · ∂

∂∇f
(
L + λ>M

)
= 0



CoV example: Isoperimetric problem

x

y

•(x, f(x))

rope of length `

(−a, 0) (a, 0)



CoV example: Isoperimetric problem

CoV template:

min
f∈F (Rn)⊆C1(Rn)

I(f ) =
∫

dom(f ) L (x, f ,∇f ) dx

subject to
∫

dom(f )
M (x, f ,∇f ) dx = k

In this problem:

minimize I(f ) =
∫ +a

−a
f (x) dx, 0 < 2a < `, subject to∫ +a

−a

√
1 + (f ′)2 dx = ` (given), f (−a) = f (a) = 0



CoV example: Isoperimetric problem

Solution:

EL equation:
∂

∂f

(
f + λ

√
1 + (f ′)2

)
−

d
dx

[
∂

∂f ′

(
f + λ

√
1 + (f ′)2

)]
= 0

⇒ 1 +
λf ′′

[1 + (f ′)2]
3
2
= 0

Set f ′ = tan θ ⇒ f ′′ = sec2 θ dθ
dx (by chain rule)

EL equation becomes: 1 + λ cos θ dθ
dx = 0

⇒ dx = −λ cos θdθ ⇒ x = −λ sin θ + c1



CoV example: Isoperimetric problem

Solution (contd.):
On the other hand: df = tan θ dx = −λ sin θ dθ

⇒ y ≡ f (x) = λ cos θ + c2

⇒ (c1− x)2 + (y− c2)2 = λ2 (circular arc)

To determine c1, c2 and λ, first use endpoint BCs:

f (−a) = 0⇒ (c1 + a)2 + c2
2 = λ2

f (+a) = 0⇒ (c1− a)2 + c2
2 = λ2

These yield: c1 = 0, c2 =
√

λ2− a2



CoV example: Isoperimetric problem
Solution (contd.):

Now use the integral constraint:

` =
∫ x=+a

x=−a

√
1 + (f ′)2 dx

=
∫ θ=− arcsin( a

λ)

θ=arcsin( a
λ)

sec θ (−λ cos θ) dθ

= 2λ arcsin
( a

λ

)
λ solves transcendental equation: sin

(
`

2λ

)
= a

λ

Think: Our solution makes sense for
θ ∈ (−π

2 , π
2 )⇔ ` < πa



OCP (in continuous time)

OCP template for x : [0, T] 7→ Rn, u : [0, T] 7→ Rm

min
u(·)∈U ([0,T])

J(u) := φ (x(T), T))︸ ︷︷ ︸
terminal cost

+
∫ T

0
L (x(t), u(t), t)dt︸ ︷︷ ︸

cost-to-go

subject to

(1) ẋ(t) = f (x(t), u(t), t)︸ ︷︷ ︸
dynamics

, x(0) = x0︸ ︷︷ ︸
initial condition

given

(2) ψ (x(T), T) = 0︸ ︷︷ ︸
terminal constraint



OCP theory: Necessary conditions
Hamiltonian H(x(t), u(t), λ(t), t)

:= L(x(t), u(t), t) + λ>(t)f (x(t), u(t), t)

State equation: ẋ(t) = ∇λH = f (x(t), u(t), t)

Costate equation: λ̇(t) = −∇xH
Pontryagin’s Maximum Principle (PMP): 0 =∇uH
Transversality conditon:(

∇xφ + (∇xψ)> ν− λ
)> ∣∣∣∣

t=T
dx(T) +(

∂φ
∂t +

(
∂ψ
∂t

)>
ν +H

) ∣∣∣∣
t=T

dT = 0



OCP theory: Optimized Hamiltonian H∗

By chain rule:

d
dt
H (x, u, λ, t)

=
∂H
∂t

+ (∇xH)> ẋ + (∇uH)> u̇ +
(
λ̇
)>

f

=
∂H
∂t

+ (∇uH)>︸ ︷︷ ︸
=0

u̇ +
(
∇xH+ λ̇

)>︸ ︷︷ ︸
=0

f

=
∂H
∂t
⇒ H∗ is constant for time invariant OCP



OCP example: Shortest planar path redux
In this problem: ẋ(t) = u(t), ẏ(t) = v(t),

L =
√

1 + v2

u2 , φ = 0

Hamiltonian H =
√

1 + v2

u2 + λ1u + λ2v

λ̇1 = − ∂H
∂x = 0⇒ λ1 = c1, λ̇2 = − ∂H

∂y = 0⇒ λ2 = c2

0 = ∂H
∂u =

v2

u2√
u2+v2 + λ1, 0 = ∂H

∂v =
v
u√

u2+v2 + λ2

⇒ (u∗, v∗) = (k1, k2)⇒ (x∗, y∗) = (k1t + k̃1, k2t + k̃2)

⇒ y∗ = κ1x∗ + κ2, κ1 := k2
k1

, κ2 := k̃2− k2
k1

k̃1

Use B.C. y(x1) = y1, y(x2) = y2 to find κ1, κ2



OCP example: Shortest planar path redux

H∗ =
√

1 +
k2

2

k2
1
+ c1k1 + c2k2 =constant



OCP example: LQR with terminal cost

In this problem: ẋ(t) = Ax(t) + Bu(t),
L = 1

2

(
x>(t)Qx(t) + u>(t)Ru(t)

)
,

φ = 1
2x>(T)Mx(T), ψ ≡ 0, where T is fixed

Here: M, Q ∈ Sn
+, R ∈ Sm

++, (A, B) ∈ (Rn×n, Rn×m)

H = 1
2

(
x>Qx + u>Ru

)
+ λ> (Ax + Bu)

λ̇ = −∇xH = Qx + A>λ

0 = ∇uH = Ru + B>λ⇒ u(t) = −R−1B>λ(t)

Transversality: dT = 0, dx(T) 6= 0⇒ λ(T) = Mx(T)



OCP example: LQR with terminal cost
Two point boundary value problem (TPBVP):(

ẋ
λ̇

)
=

[
A −BR−1B>

−Q −A>

]
︸ ︷︷ ︸

Hamiltonian matrix H

(
x
λ

)

x(0) = x0, λ(T) = Mx(T)

To solve TPBVP, consider ansatz: λ(t) = P(t)x(t)

We find: λ̇ = Ṗx + Pẋ = Ṗx + P
(
Ax− BR−1B>Px

)
But LHS = −Qx−A>λ = −Qx−A>Px

This gives: −Ṗx =
(
A>P + PA− PBR−1B>P + Q

)
x



OCP example: LQR with terminal cost
For this to hold for all x0, and hence for all x(t)

where t ∈ [0, T], we must have:

−Ṗ = A>P(t) + P(t)A− P(t)BR−1B>P(t) + Q︸ ︷︷ ︸
Riccati matrix differential equation in unknown P(t)

B.C.: λ(T) = P(T)x(T) = Mx(T)⇒ P(T) = M

Back integrate Riccati→ P(t)→ u∗(t) = −K(t)x(t)

where K(t) = R−1B>P(t)︸ ︷︷ ︸
Kalman gain

Forward integrate ẋ(t) = Ax(t) + Bu∗(t), x(0) = x0
to get x∗(t)



OCP example: LQR with terminal cost

Optimal costate trajectories: λ∗(t) = P(t)x∗(t)

Closed-loop system: ẋ(t) = (A− BK(t)) x(t)

Sufficiency: ∇u ◦ ∇u JLQR = R � 0

Same derivation goes through for LTV dynamics
(A(t), B(t))



OCP example: LQR with terminal cost
Solving quadratic Riccati matrix ODE via linear

Hamiltonian matrix ODE (a.k.a. Bernoulli
substituition):

Intuition: λ(t) = P(t)x(t) suggests that
P(t) = λ(t) (x(t))−1 (nonsense unless n = 1)

Now consider linear Hamiltonian ODE in matrix
(not vector) variables X(t), Λ(t) ∈ Rn×n(

Ẋ
Λ̇

)
=

[
A −BR−1B>

−Q −A>

]
︸ ︷︷ ︸

Hamiltonian matrix H

(
X
Λ

)

with final conditions X(T) = In, Λ(T) = M



OCP example: LQR with terminal cost

Theorem: P(t) = Λ(t) (X(t))−1

Proof: Let Ψ(t) := Λ(t) (X(t))−1. We will show
that Ψ(t) ≡ P(t).

Ψ̇ = Λ̇X−1−ΛX−1ẊX−1

=
(
−QX−A>Λ

)
X−1−ΛX−1

(
AX− BR−1B>

)
X−1

= −Q−A>Ψ−ΨA + ΨBR−1B>Ψ

with Ψ(T) = Λ(T)(X(T))−1 = M I−1
n = M

This is the Riccati ODE we derived for P(t) �



OCP example: LQR with terminal cost

Think: From the Hamiltonian matrix ODE, X(t) is
nonsingular (invertible)

For LTI case, solution of Hamiltonian matrix ODE:

(
X(t)
Λ(t)

)
= eH(t−T)︸ ︷︷ ︸

=:Θ(t)

(
In

M

)
=

[
Θ11(t) Θ12(t)
Θ21(t) Θ22(t)

]
︸ ︷︷ ︸

four n×n blocks

(
In

M

)

∴ P(t) = (Θ21(t) + Θ22(t)M︸ ︷︷ ︸
Λ(t)

)(Θ11(t) + Θ12(t)M︸ ︷︷ ︸
X(t)

)−1



OCP example: LQR with terminal cost

Davison-Maki Algorithm [Davison and Maki, TAC 1973]

Motivation: Direct Runge-Kutta on Riccati matrix
ODE may be slow and numerically unstable,
depending on the problem data

Idea: Avoid direct numerical integration by taking
advantage of the linear Hamiltonian matrix
ODE solution. For LTI, matrix exponential
evaluation can be fast



OCP example: LQR with terminal cost
Davison-Maki Algorithm [Davison and Maki, TAC 1973]

Let Θ(1) := Θ(1∆t) = eH(∆t−T), where ∆t is step-size

Then recursively Θ(k+1) = Θ(k)Θ(1)

Computational cost = startup cost to evaluate
2n× 2n matrix exponential Θ(1) + cost of
multiplying two n× n matrices to form Θ(k+1) +
cost for evaluating
P(k+1) = (Θ(k+1)

21 +Θ(k+1)
22 M)(Θ(k+1)

11 +Θ(k+1)
12 M)−1

Issue: may still be numerically unstable for large t
since inversion may cause ill-conditioning



OCP example: LQR with terminal cost

Modified Davison-Maki Algorithm
[Kenney and Leipnik, TAC 1985]

To keep t small, use Bernoulli substitution in each
interval [k∆t, (k + 1)∆t] resetting B.C.:

i.e., solve
(

Ẋ
Λ̇

)
= H

(
X
Λ

)
,
(

X(k∆t)
Λ(k∆t)

)
=

(
Xk

Λk

)
This yields recursion

P(k+1) =(
Θ21(∆t) + Θ22(∆t)P(k)

) (
Θ11(∆t) + Θ12(∆t)P(k)

)−1

Also works for LTV by taking Θ as STM



OCP example: LQR with cross-weights
More general Lagrangian:

L = 1
2 (x(t) u(t))> Π

(
x(t)
u(t)

)
Popov matrix: Π :=

[
Q S
S> R

]
∈ S

(m+n)
+ ,

where cross-weight matrix S ∈ Rn×m

Then K(t) = R−1B>P(t) + S>, Riccati ODE:

−Ṗ=A>P(t)+P(t)A−(P(t)B+S)R−1(P(t)B+S)>+Q

and H =

[
A− BR−1S> −BR−1B>

−Q + SR−1S> −A> + SR−1B>

]



OCP example: Finite Horizon LQR with
Terminal Cost for Tracking
ẋ = Ax(t) + Bu(t), y(t) = Cx(t), t ∈ [0, T]

Reference/desired trajectory to track: yd(t)

J = 1
2(y(T)︸︷︷︸

Cx(T)

−yd(T))
>M(y(T)︸︷︷︸

Cx(T)

−yd(T)) +

∫ T

0
[(y(t)︸︷︷︸

Cx(t)

−yd(t))
>Q(y(t)︸︷︷︸

Cx(t)

−yd(t))+u(t)>Ru(t)]dt

Optimal control:

u∗(x(t), t) = u∗feedback(x(t)) + u∗feedforward(t)



OCP example: Finite Horizon LQR with
Terminal Cost for Tracking (contd.)
u∗feedback(x(t)) = −K(t)x(t), K(t) = R−1B>P(t)

Riccati ODE:

−Ṗ(t)=A>P(t)+P(t)A−P(t)BR−1B>P(t)+C>QC

terminal condition: P(T) = C>MC

u∗feedforward(t) = R−1B>v(t)

Feedforward ODE:

−v̇(t)=(A− BK(t))>v(t) + C>Q yd(t)

terminal condition: v(T) = C>M yd(T)


