Optimal Control Review

Abhishek Halder

August 4 \& 8, 2016

Development

Optimization (OPT)

$$
\downarrow
$$

Calculus of Variations (CoV)

$$
\downarrow
$$

Optimal Control Problem (OCP)

Overview

$$
\min _{x \in \mathcal{S} \subseteq \mathbb{R}^{n}} f(\boldsymbol{x})
$$

min
$f \in \mathcal{F}\left(\mathbb{R}^{n}\right) \subseteq C^{1}\left(\mathbb{R}^{n}\right)$

Overview

$$
\begin{gathered}
\min _{x \in \mathcal{S} \subseteq \mathbb{R}^{n}} f(\boldsymbol{x}) \\
\downarrow \\
\min _{f \in \mathcal{F}\left(\mathbb{R}^{n}\right) \subseteq C^{1}\left(\mathbb{R}^{n}\right)} I(f)=\int_{\operatorname{dom}(f)} L(\boldsymbol{x}, f, \nabla f) \mathrm{d} \boldsymbol{x} \\
\downarrow \\
\min _{\boldsymbol{u}(\cdot) \in \mathcal{U}([0, T]) \subseteq \mathcal{F}([0, T])} J(\boldsymbol{u}) \\
\text { subject to } \quad \dot{\boldsymbol{z}}(t)=\boldsymbol{\phi}(\boldsymbol{z}(t), \boldsymbol{u}(t), \boldsymbol{t})
\end{gathered}
$$

OPT example: Least squares

OPT template: $\min _{x \in \mathcal{S} \subseteq \mathbb{R}^{n}} f(\boldsymbol{x})$

In this problem: $\min _{x}\|A x-\boldsymbol{b}\|_{2}^{2}$

OPT example: Least squares

OPT template: $\min _{x \in \mathcal{S} \subseteq \mathbb{R}^{n}} f(\boldsymbol{x})$

$$
\begin{aligned}
& \text { In this problem: } \min _{x}\|A \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2} \\
& \qquad \mathcal{S}=\mathbb{R}^{n}, \quad f(\boldsymbol{x})=\|A \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}
\end{aligned}
$$

OPT example: two variable LP

OPT template: $\min _{x \in \mathcal{S} \subseteq \mathbb{R}^{n}} f(\boldsymbol{x})$

In this problem: $\max _{\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}} 15 x_{1}+10 x_{2}$
subject to $\quad \frac{1}{4} x_{1}+x_{2} \leq 65$,

$$
\begin{gathered}
\frac{5}{4} x_{1}+\frac{1}{2} x_{2} \leq 90 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

OPT example: two variable LP

OPT template: $\min _{x \in \mathcal{S} \subseteq \mathbb{R}^{n}} f(\boldsymbol{x})$

In this problem: $\max _{\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}} 15 x_{1}+10 x_{2}$

$$
\text { subject to } \quad \frac{1}{4} x_{1}+x_{2} \leq 65
$$

$$
\frac{5}{4} x_{1}+\frac{1}{2} x_{2} \leq 90
$$

$$
x_{1}, x_{2} \geq 0
$$

$$
\mathcal{S}=\left\{x \in \mathbb{R}^{2}: A x \leq b, x \geq 0\right\} \subset \mathbb{R}^{2}
$$

CoV example: Shortest planar path

CoV example: Shortest planar path

CoV template:
$\min _{\left(\mathbb{R}^{n}\right) \subseteq C^{1}\left(\mathbb{R}^{n}\right)} I(f)=\int_{\operatorname{dom}(f)} L(x, f, \nabla f) \mathrm{d} \boldsymbol{x}$ $f \in \mathcal{F}\left(\mathbb{R}^{n}\right) \subseteq C^{1}\left(\mathbb{R}^{n}\right)$

In this problem:

$$
I(f)=\int_{x_{1}}^{x_{2}} \sqrt{1+\left(f^{\prime}\right)^{2}} \mathrm{~d} x
$$

$\operatorname{dom}(f)=\left[x_{1}, x_{2}\right]$, assuming $x_{1} \neq x_{2}$

$$
\mathcal{F}(\mathbb{R})=\left\{f \in C^{1}(\mathbb{R}): f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}\right\}
$$

CoV example: Brachistochrone (1696)

$\left(x_{1}, y_{1}\right)$

CoV example: Brachistochrone (1696)

CoV template:
$\min _{\left(\mathbb{R}^{n}\right) \subseteq C^{1}\left(\mathbb{R}^{n}\right)} I(f)=\int_{\operatorname{dom}(f)} L(x, f, \nabla f) \mathrm{d} \boldsymbol{x}$

In this problem:

$$
I(f)=\int_{x_{1}}^{x_{2}} \sqrt{\frac{1+\left(f^{\prime}\right)^{2}}{f}} \mathrm{~d} x
$$

$\operatorname{dom}(f)=\left[x_{1}, x_{2}\right], x_{1} \neq x_{2}, y_{1}>y_{2}$

$$
\mathcal{F}(\mathbb{R})=\left\{f \in C^{1}(\mathbb{R}): f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}\right\}
$$

CoV theory: EL equation (1740-1760s)

Necessary conditions for $I(f)$ to achieve minimum:
for $f: \mathbb{R} \mapsto \mathbb{R}: \frac{\partial L}{\partial f}-\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\partial L}{\partial f^{\prime}}\right)=0$,
for $f: \mathbb{R}^{n} \mapsto \mathbb{R}: \frac{\partial L}{\partial f}-\nabla \cdot \frac{\partial L}{\partial \nabla f}=0$,
subject to B.C. $f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}$

CoV theory: Beltrami identity

A corollary of EL equation, in the special case $L(x, f, \nabla f)$ has no explicit dependence on x :
for $f: \mathbb{R} \mapsto \mathbb{R}: f^{\prime} \frac{\partial L}{\partial f^{\prime}}-L=$ constant.

EL equation example: $f^{\prime \prime}$ need not exist

Problem:

$$
\begin{aligned}
& \min _{f \in \mathcal{F}([-1,1]) \subseteq C^{1}([-1,1])} I(f)=\int_{-1}^{+1} f^{2}\left(2 x-f^{\prime}\right)^{2} \mathrm{~d} x \\
& \mathcal{F}([-1,1])=\left\{f \in C^{1}([-1,1]): f(-1)=0, f(1)=1\right\}
\end{aligned}
$$

Solution: From EL equation, minimum $I^{*}=0$ is achieved by

$$
f^{*}(x)=\left\{\begin{array}{lll}
0 & \text { for } & x \in[-1,0] \\
x^{2} & \text { for } & x \in(0,1]
\end{array}\right.
$$

CoV theory: when $f^{*} \in C^{2}$

Hilbert's theorem:
If $\frac{\partial^{2} L}{\partial f^{\prime 2}} \neq 0$ in the entire $\operatorname{dom}(f)$, then the extremal $f^{*}(\cdot) \in C^{2}$, and is called nonsingular.

Corollary:

If f^{*} nonsingular and $L \in C^{3}$, then f^{*} is the unique extremal.

CoV example: Shortest planar path

Solution:

Set $L=\sqrt{1+\left(f^{\prime}\right)^{2}}$ in EL equation:

$$
\begin{aligned}
& \frac{\partial}{\partial f} \sqrt{1+\left(f^{\prime}\right)^{2}}-\frac{\mathrm{d}}{\mathrm{~d} x}\left[\frac{\partial}{\partial f^{\prime}}\left(\sqrt{1+\left(f^{\prime}\right)^{2}}\right)\right]=0 \\
& \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} x}\left[\frac{2 f^{\prime}}{2 \sqrt{1+\left(f^{\prime}\right)^{2}}}\right]=\frac{f^{\prime \prime}}{\left[1+\left(f^{\prime}\right)^{2}\right]^{\frac{3}{2}}}=0 \\
& \Rightarrow f(x)=c_{1} x+c_{2}
\end{aligned}
$$

$$
\text { where } c_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, c_{2}=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}
$$

CoV example: Brachistochrone Solution:

Set $L=\sqrt{\frac{1+\left(f^{\prime}\right)^{2}}{f}}$ in Beltrami identity:
$\frac{\left(f^{\prime}\right)^{2}}{\sqrt{1+\left(f^{\prime}\right)^{2}} \sqrt{f}}-\frac{\sqrt{1+\left(f^{\prime}\right)^{2}}}{\sqrt{f}}=c$
$\Rightarrow \frac{-1}{\sqrt{1+\left(f^{\prime}\right)^{2}} \sqrt{f}}=c$
$\Rightarrow f^{\prime}=\sqrt{\frac{k-f}{f}}$, where $k:=\frac{1}{c^{2}}$
How to solve this nonlinear ODE?

CoV example: Brachistochrone Solution (contd.):

Let $f=k \sin ^{2} \phi \Rightarrow \frac{\mathrm{~d} f}{\mathrm{~d} x}=\sqrt{\frac{k-f}{f}}=\cot \phi$
By chain rule: $\frac{\mathrm{d} \phi}{\mathrm{d} x}=\frac{\mathrm{d} \phi}{\mathrm{d} f} \frac{\mathrm{~d} f}{\mathrm{~d} x}=\frac{1}{2 k \sin \phi \cos \phi} \cot \phi=\frac{1}{2 k \sin ^{2} \phi}$
$\Rightarrow \mathrm{d} x=2 k \sin ^{2} \phi \mathrm{~d} \phi$
$\Rightarrow x=k \int(1-\cos 2 \phi) \mathrm{d} \phi=k \phi-\frac{k}{2} \sin 2 \phi+c_{1}$
$\Rightarrow(x, f(x))=\left(k \phi-\frac{k}{2} \sin 2 \phi+c_{1}, \frac{k}{2}(1-\cos 2 \phi)\right)$

CoV example: Brachistochrone

Solution (contd.):
Apply B.C. at point $\mathrm{A}(0,0): c_{1}=0$
Introducing $a:=\frac{k}{2}$ and $\theta:=2 \phi$, we get
$x=a(\theta-\sin \theta), y \equiv f(x)=a(1-\cos \theta)$
These are parametric equations for a cycloid

CoV example: Brachistochrone

Solution (contd.):

Since $\frac{\partial^{2} L}{\partial f^{\prime 2}}=\frac{1}{\sqrt{f}\left[1+\left(f^{\prime}\right)^{2}\right]^{\frac{3}{2}}} \neq 0$ in $\operatorname{dom}(f)$,
hence $f^{*} \in C^{2}$ (by Hilbert's Theorem)

CoV theory: Integral constraints

CoV template:
$\min _{\left(\mathbb{R}^{n}\right) \subseteq C^{1}\left(\mathbb{R}^{n}\right)} I(f)=\int_{\operatorname{dom}(f)} L(x, f, \nabla f) \mathrm{d} x$ $f \in \mathcal{F}\left(\mathbb{R}^{n}\right) \subseteq C^{1}\left(\mathbb{R}^{n}\right)$

$$
I(f)=\int_{\operatorname{dom}(f)} L(x, f, \nabla f) \mathrm{d} \boldsymbol{x}
$$

subject to $\int_{\operatorname{dom}(f)} \boldsymbol{M}(x, f, \nabla f) \mathrm{d} \boldsymbol{x}=\boldsymbol{k}$
Euler-Lagrange equation:

$$
\frac{\partial}{\partial f}\left(L+\lambda^{\top} \boldsymbol{M}\right)-\nabla \cdot \frac{\partial}{\partial \nabla f}\left(L+\lambda^{\top} \boldsymbol{M}\right)=0
$$

CoV example: Isoperimetric problem

CoV example: Isoperimetric problem

CoV template:

$$
\begin{gathered}
\min _{f \in \mathcal{F}\left(\mathbb{R}^{n}\right) \subseteq C^{1}\left(\mathbb{R}^{n}\right)} I(f)=\int_{\operatorname{dom}(f)} L(x, f, \nabla f) \mathrm{d} \boldsymbol{x} \\
\text { subject to } \int_{\operatorname{dom}(f)} \boldsymbol{M}(\boldsymbol{x}, f, \nabla f) \mathrm{d} \boldsymbol{x}=\boldsymbol{k}
\end{gathered}
$$

In this problem:

minimize $I(f)=\int_{-a}^{+a} f(x) \mathrm{d} x, 0<2 a<\ell$, subject to

$$
\int_{-a}^{+a} \sqrt{1+\left(f^{\prime}\right)^{2}} \mathrm{~d} x=\ell \text { (given), } f(-a)=f(a)=0
$$

CoV example: Isoperimetric problem

Solution:

$$
\begin{aligned}
& \quad \text { EL equation: } \frac{\partial}{\partial f}\left(f+\lambda \sqrt{1+\left(f^{\prime}\right)^{2}}\right)- \\
& \frac{\mathrm{d}}{\mathrm{~d} x}\left[\frac{\partial}{\partial f^{\prime}}\left(f+\lambda \sqrt{1+\left(f^{\prime}\right)^{2}}\right)\right]=0 \\
& \Rightarrow 1+\frac{\lambda f^{\prime \prime}}{\left[1+\left(f^{\prime}\right)^{2}\right]^{\frac{3}{2}}}=0
\end{aligned}
$$

Set $f^{\prime}=\tan \theta \Rightarrow f^{\prime \prime}=\sec ^{2} \theta \frac{\mathrm{~d} \theta}{\mathrm{~d} x}$ (by chain rule)
EL equation becomes: $1+\lambda \cos \theta \frac{\mathrm{d} \theta}{\mathrm{d} x}=0$
$\Rightarrow \mathrm{dx}=-\lambda \cos \theta \mathrm{d} \theta \Rightarrow x=-\lambda \sin \theta+c_{1}$

CoV example: Isoperimetric problem

Solution (contd.):

On the other hand: $\mathrm{d} f=\tan \theta \mathrm{d} x=-\lambda \sin \theta \mathrm{d} \theta$
$\Rightarrow y \equiv f(x)=\lambda \cos \theta+c_{2}$
$\Rightarrow\left(c_{1}-x\right)^{2}+\left(y-c_{2}\right)^{2}=\lambda^{2}$ (circular arc)
To determine c_{1}, c_{2} and λ, first use endpoint BCs:
$f(-a)=0 \Rightarrow\left(c_{1}+a\right)^{2}+c_{2}^{2}=\lambda^{2}$
$f(+a)=0 \Rightarrow\left(c_{1}-a\right)^{2}+c_{2}^{2}=\lambda^{2}$
These yield: $c_{1}=0, c_{2}=\sqrt{\lambda^{2}-a^{2}}$

CoV example: Isoperimetric problem

Solution (contd.):

Now use the integral constraint:

$$
\begin{aligned}
\ell & =\int_{x=-a}^{x=+a} \sqrt{1+\left(f^{\prime}\right)^{2}} \mathrm{~d} x \\
& =\int_{\theta=\arcsin \left(\frac{a}{\lambda}\right)}^{\theta=-\arcsin \left(\frac{a}{\lambda}\right)} \sec \theta(-\lambda \cos \theta) \mathrm{d} \theta \\
& =2 \lambda \arcsin \left(\frac{a}{\lambda}\right)
\end{aligned}
$$

λ solves transcendental equation: $\sin \left(\frac{\ell}{2 \lambda}\right)=\frac{a}{\lambda}$
Think: Our solution makes sense for

$$
\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \Leftrightarrow \ell<\pi a
$$

OCP (in continuous time)

OCP template for $x:[0, T] \mapsto \mathbb{R}^{n}, u:[0, T] \mapsto \mathbb{R}^{m}$ $\min _{\boldsymbol{u}(\cdot) \in \mathcal{U}([0, T])} J(\boldsymbol{u}):=\underbrace{\phi(x(T), T))}_{\text {terminal cost }}+\underbrace{\int_{0}^{T} \mathcal{L}(\boldsymbol{x}(t), \boldsymbol{u}(t), t) \mathrm{d} t}_{\text {cost-to-go }}$ subject to
(1) $\underbrace{\dot{x}(t)=f(x(t), \boldsymbol{u}(t), t)}_{\text {dynamics }}, \underbrace{x(0)=x_{0}}_{\text {initial condition }}$ given
(2) $\underbrace{\psi(x(T), T)=0}_{\text {terminal constraint }}$

OCP theory: Necessary conditions

Hamiltonian $\mathcal{H}(\boldsymbol{x}(t), \boldsymbol{u}(t), \boldsymbol{\lambda}(t), t)$

$$
:=\mathcal{L}(x(t), \boldsymbol{u}(t), t)+\boldsymbol{\lambda}^{\top}(t) \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t), t)
$$

State equation: $\dot{\boldsymbol{x}}(t)=\nabla_{\boldsymbol{\lambda}} \mathcal{H}=\boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t), t)$
Costate equation: $\dot{\lambda}(t)=-\nabla_{x} \mathcal{H}$
Pontryagin's Maximum Principle (PMP): $0=\nabla_{u} \mathcal{H}$ Transversality conditon:

$$
\begin{aligned}
& \left.\left(\nabla_{x} \phi+\left(\nabla_{x} \psi\right)^{\top} v-\lambda\right)^{\top}\right|_{t=T} \mathrm{~d} x(T)+ \\
& \left.\left(\frac{\partial \phi}{\partial t}+\left(\frac{\partial \psi}{\partial t}\right)^{\top} v+\mathcal{H}\right)\right|_{t=T} \mathrm{~d} T=0
\end{aligned}
$$

OCP theory: Optimized Hamiltonian \mathcal{H}^{*}

By chain rule:
$\frac{\mathrm{d}}{\mathrm{d} t} \mathcal{H}(x, u, \lambda, t)$
$=\frac{\partial \mathcal{H}}{\partial t}+\left(\nabla_{x} \mathcal{H}\right)^{\top} \dot{x}+\left(\nabla_{\boldsymbol{u}} \mathcal{H}\right)^{\top} \boldsymbol{u}+(\dot{\boldsymbol{\lambda}})^{\top} f$
$=\frac{\partial \mathcal{H}}{\partial t}+\underbrace{\left(\nabla_{\boldsymbol{u}} \mathcal{H}\right)^{\top}}_{=0} \dot{\boldsymbol{u}}+\underbrace{\left(\nabla_{x} \mathcal{H}+\dot{\lambda}\right)^{\top}}_{=0} f$
$=\frac{\partial \mathcal{H}}{\partial t} \Rightarrow \mathcal{H}^{*}$ is constant for time invariant OCP

OCP example: Shortest planar path redux

In this problem: $\dot{x}(t)=u(t), \dot{y}(t)=v(t)$,

$$
\mathcal{L}=\sqrt{1+\frac{v^{2}}{u^{2}}, \phi=0}
$$

Hamiltonian $\mathcal{H}=\sqrt{1+\frac{v^{2}}{u^{2}}}+\lambda_{1} u+\lambda_{2} v$
$\dot{\lambda}_{1}=-\frac{\partial \mathcal{H}}{\partial x}=0 \Rightarrow \lambda_{1}=c_{1}, \dot{\lambda}_{2}=-\frac{\partial \mathcal{H}}{\partial y}=0 \Rightarrow \lambda_{2}=c_{2}$
$0=\frac{\partial \mathcal{H}}{\partial u}=\frac{\frac{v^{2}}{u^{2}}}{\sqrt{u^{2}+v^{2}}}+\lambda_{1}, 0=\frac{\partial \mathcal{H}}{\partial v}=\frac{\frac{v}{u}}{\sqrt{u^{u}+v^{2}}}+\lambda_{2}$
$\Rightarrow\left(u^{*}, v^{*}\right)=\left(k_{1}, k_{2}\right) \Rightarrow\left(x^{*}, y^{*}\right)=\left(k_{1} t+\widetilde{k}_{1}, k_{2} t+\widetilde{k}_{2}\right)$
$\Rightarrow y^{*}=\kappa_{1} x^{*}+\kappa_{2}, \kappa_{1}:=\frac{k_{2}}{k_{1}}, \kappa_{2}:=\widetilde{k}_{2}-\frac{k_{2}}{k_{1}} \widetilde{k}_{1}$
Use B.C. $y\left(x_{1}\right)=y_{1}, y\left(x_{2}\right)=y_{2}$ to find κ_{1}, κ_{2}

OCP example: Shortest planar path redux

$$
\mathcal{H}^{*}=\sqrt{1+\frac{k_{2}^{2}}{k_{1}^{2}}}+c_{1} k_{1}+c_{2} k_{2}=\text { constant }
$$

OCP example: LQR with terminal cost

In this problem: $\dot{\boldsymbol{x}}(t)=A \boldsymbol{x}(t)+B \boldsymbol{u}(t)$,

$$
\mathcal{L}=\frac{1}{2}\left(\boldsymbol{x}^{\top}(t) Q x(t)+\boldsymbol{u}^{\top}(t) R \boldsymbol{u}(t)\right)
$$

$$
\phi=\frac{1}{2} \boldsymbol{x}^{\top}(T) M \boldsymbol{x}(T), \boldsymbol{\psi} \equiv \mathbf{0}, \text { where } T \text { is fixed }
$$

Here: $M, Q \in \mathbb{S}_{+}^{n}, R \in \mathbb{S}_{++}^{m},(A, B) \in\left(\mathbb{R}^{n \times n}, \mathbb{R}^{n \times m}\right)$
$\mathcal{H}=\frac{1}{2}\left(\boldsymbol{x}^{\top} Q \boldsymbol{x}+\boldsymbol{u}^{\top} R \boldsymbol{u}\right)+\boldsymbol{\lambda}^{\top}(A \boldsymbol{x}+B \boldsymbol{u})$
$\dot{\lambda}=-\nabla_{x} \mathcal{H}=Q x+A^{\top} \boldsymbol{\lambda}$
$\mathbf{0}=\nabla_{\boldsymbol{u}} \mathcal{H}=R \boldsymbol{u}+B^{\top} \boldsymbol{\lambda} \Rightarrow \boldsymbol{u}(t)=-R^{-1} B^{\top} \boldsymbol{\lambda}(t)$
Transversality: $\mathrm{d} T=0, \mathrm{~d} x(T) \neq 0 \Rightarrow \lambda(T)=M x(T)$

OCP example: LQR with terminal cost Two point boundary value problem (TPBVP):

$$
\binom{\dot{x}}{\dot{\lambda}}=\underbrace{\left[\begin{array}{cc}
A & -B R^{-1} B^{\top} \\
-Q & -A^{\top}
\end{array}\right]}\binom{x}{\boldsymbol{\lambda}}
$$

Hamiltonian matrix H
$x(0)=x_{0}, \boldsymbol{\lambda}(T)=M x(T)$
To solve TPBVP, consider ansatz: $\lambda(t)=P(t) \boldsymbol{x}(t)$
We find: $\dot{\lambda}=\dot{P} \boldsymbol{x}+P \dot{x}=\dot{P} \boldsymbol{x}+P\left(A x-B R^{-1} B^{\top} P x\right)$
But LHS $=-Q x-A^{\top} \lambda=-Q x-A^{\top} P x$
This gives: $-\dot{P} \boldsymbol{x}=\left(A^{\top} P+P A-P B R^{-1} B^{\top} P+Q\right) \boldsymbol{x}$

OCP example: LQR with terminal cost

For this to hold for all x_{0}, and hence for all $x(t)$ where $t \in[0, T]$, we must have:

$$
\underbrace{-\dot{P}=A^{\top} P(t)+P(t) A-P(t) B R^{-1} B^{\top} P(t)+Q}
$$

Riccati matrix differential equation in unknown $P(t)$
B.C.: $\boldsymbol{\lambda}(T)=P(T) x(T)=M x(T) \Rightarrow P(T)=M$

Back integrate Riccati $\rightarrow P(t) \rightarrow \boldsymbol{u}^{*}(t)=-K(t) \boldsymbol{x}(t)$
where $\underbrace{K(t)=R^{-1} B^{\top} P(t)}_{\text {Kalman gain }}$
Forward integrate $\dot{\boldsymbol{x}}(t)=A \boldsymbol{x}(t)+B \boldsymbol{u}^{*}(t), \boldsymbol{x}(0)=x_{0}$ to get $x^{*}(t)$

OCP example: LQR with terminal cost

Optimal costate trajectories: $\boldsymbol{\lambda}^{*}(t)=P(t) \boldsymbol{x}^{*}(t)$
Closed-loop system: $\dot{\boldsymbol{x}}(t)=(A-B K(t)) \boldsymbol{x}(t)$
Sufficiency: $\nabla_{u} \circ \nabla_{u} J_{\text {LQR }}=R \succ 0$
Same derivation goes through for LTV dynamics ($A(t), B(t))$

OCP example: LQR with terminal cost

Solving quadratic Riccati matrix ODE via linear Hamiltonian matrix ODE (a.k.a. Bernoulli substituition):

Intuition: $\boldsymbol{\lambda}(t)=P(t) \boldsymbol{x}(t)$ suggests that

$$
\left.P(t)=\lambda(t)(x(t))^{-1} \text { (nonsense unless } n=1\right)
$$

Now consider linear Hamiltonian ODE in matrix (not vector) variables $X(t), \Lambda(t) \in \mathbb{R}^{n \times n}$

$$
\binom{\dot{X}}{\dot{\Lambda}}=\underbrace{\left[\begin{array}{cc}
A & -B R^{-1} B^{\top} \\
-Q & -A^{\top}
\end{array}\right]}_{\text {Hamiltonian matrix } H}\binom{X}{\Lambda}
$$

with final conditions $X(T)=I_{n}, \Lambda(T)=M$

OCP example: LQR with terminal cost

Theorem: $P(t)=\Lambda(t)(X(t))^{-1}$
Proof: Let $\Psi(t):=\Lambda(t)(X(t))^{-1}$. We will show that $\Psi(t) \equiv P(t)$.
$\dot{\Psi}=\dot{\Lambda} X^{-1}-\Lambda X^{-1} \dot{X} X^{-1}$
$=\left(-Q X-A^{\top} \Lambda\right) X^{-1}-\Lambda X^{-1}\left(A X-B R^{-1} B^{\top}\right) X^{-1}$
$=-Q-A^{\top} \Psi-\Psi A+\Psi B R^{-1} B^{\top} \Psi$
with $\Psi(T)=\Lambda(T)(X(T))^{-1}=M I_{n}^{-1}=M$
This is the Riccati ODE we derived for $P(t)$

OCP example: LQR with terminal cost

Think: From the Hamiltonian matrix $\operatorname{ODE}, X(t)$ is nonsingular (invertible)

For LTI case, solution of Hamiltonian matrix ODE:

$$
\binom{X(t)}{\Lambda(t)}=\underbrace{e^{H(t-T)}}_{=: \Theta(t)}\binom{I_{n}}{M}=\underbrace{\left[\begin{array}{ll}
\Theta_{11}(t) & \Theta_{12}(t) \\
\Theta_{21}(t) & \Theta_{22}(t)
\end{array}\right]}_{\text {four } n \times n \text { blocks }}\binom{I_{n}}{M}
$$

$$
\therefore P(t)=(\underbrace{\Theta_{21}(t)+\Theta_{22}(t) M}_{\Lambda(t)})(\underbrace{\Theta_{11}(t)+\Theta_{12}(t) M}_{X(t)})^{-1}
$$

OCP example: LQR with terminal cost

Davison-Maki Algorithm [Davison and Maki, TAC 1973]

Motivation: Direct Runge-Kutta on Riccati matrix ODE may be slow and numerically unstable, depending on the problem data

Idea: Avoid direct numerical integration by taking advantage of the linear Hamiltonian matrix ODE solution. For LTI, matrix exponential evaluation can be fast

OCP example: LQR with terminal cost

 Davison-Maki Algorithm [Davison and Maki, TAC 1973]Let $\Theta^{(1)}:=\Theta(1 \Delta t)=e^{H(\Delta t-T)}$, where Δt is step-size
Then recursively $\Theta^{(k+1)}=\Theta^{(k)} \Theta^{(1)}$
Computational cost $=$ startup cost to evaluate $2 n \times 2 n$ matrix exponential $\Theta^{(1)}+$ cost of multiplying two $n \times n$ matrices to form $\Theta^{(k+1)}+$ cost for evaluating

$$
P^{(k+1)}=\left(\Theta_{21}^{(k+1)}+\Theta_{22}^{(k+1)} M\right)\left(\Theta_{11}^{(k+1)}+\Theta_{12}^{(k+1)} M\right)^{-1}
$$

Issue: may still be numerically unstable for large t since inversion may cause ill-conditioning

OCP example: LQR with terminal cost

Modified Davison-Maki Algorithm

[Kenney and Leipnik, TAC 1985]
To keep t small, use Bernoulli substitution in each interval $[k \Delta t,(k+1) \Delta t]$ resetting B.C.:
i.e., solve $\binom{\dot{X}}{\dot{\Lambda}}=H\binom{X}{\Lambda},\binom{X(k \Delta t)}{\Lambda(k \Delta t)}=\binom{X_{k}}{\Lambda_{k}}$

This yields recursion

$$
\begin{aligned}
& P^{(k+1)}= \\
& \left(\Theta_{21}(\Delta t)+\Theta_{22}(\Delta t) P^{(k)}\right)\left(\Theta_{11}(\Delta t)+\Theta_{12}(\Delta t) P^{(k)}\right)^{-1}
\end{aligned}
$$

Also works for LTV by taking Θ as STM

OCP example: LQR with cross-weights

 More general Lagrangian:$$
\mathcal{L}=\frac{1}{2}\left(\begin{array}{ll}
x(t) & \boldsymbol{u}(t))^{\top} \Pi\binom{x(t)}{\boldsymbol{u}(t)}
\end{array}\right.
$$

Popov matrix: $\Pi:=\left[\begin{array}{cc}Q & S \\ S^{\top} & R\end{array}\right] \in \mathrm{S}_{+}^{(m+n)}$, where cross-weight matrix $S \in \mathbb{R}^{n \times m}$ Then $K(t)=R^{-1} B^{\top} P(t)+S^{\top}$, Riccati ODE:

$$
-\dot{P}=A^{\top} P(t)+P(t) A-(P(t) B+S) R^{-1}(P(t) B+S)^{\top}+Q
$$

$$
\text { and } H=\left[\begin{array}{cc}
A-B R^{-1} S^{\top} & -B R^{-1} B^{\top} \\
-Q+S R^{-1} S^{\top} & -A^{\top}+S R^{-1} B^{\top}
\end{array}\right]
$$

OCP example: Finite Horizon LQR with Terminal Cost for Tracking

$\dot{x}=A \boldsymbol{x}(t)+B \boldsymbol{u}(t), \boldsymbol{y}(t)=C x(t), t \in[0, T]$
Reference/desired trajectory to track: $y_{d}(t)$

$$
\begin{aligned}
J= & \frac{1}{2}(\underbrace{\boldsymbol{y}(T)}_{C x(T)}-\boldsymbol{y}_{d}(T))^{\top} M(\underbrace{\boldsymbol{y}(T)}_{C x(T)}-\boldsymbol{y}_{d}(T))+ \\
& \int_{0}^{T}[(\underbrace{\boldsymbol{y}(t)}_{C \boldsymbol{x}(t)}-\boldsymbol{y}_{d}(t))^{\top} Q(\underbrace{\boldsymbol{y}(t)}_{C x(t)}-\boldsymbol{y}_{d}(t))+\boldsymbol{u}(t)^{\top} \boldsymbol{R} \boldsymbol{u}(t)] \mathrm{d} t
\end{aligned}
$$

Optimal control:

$$
\boldsymbol{u}^{*}(\boldsymbol{x}(t), t)=\boldsymbol{u}_{\text {feedback }}^{*}(\boldsymbol{x}(t))+\boldsymbol{u}_{\text {feedforward }}^{*}(t)
$$

OCP example: Finite Horizon LQR with Terminal Cost for Tracking (contd.) $\boldsymbol{u}_{\text {feedback }}^{*}(\boldsymbol{x}(t))=-K(t) \boldsymbol{x}(t), K(t)=R^{-1} B^{\top} P(t)$

Riccati ODE:

$$
-\dot{P}(t)=A^{\top} P(t)+P(t) A-P(t) B R^{-1} B^{\top} P(t)+C^{\top} Q C
$$ terminal condition: $P(T)=C^{\top} M C$

$\boldsymbol{u}_{\text {feedforward }}^{*}(t)=R^{-1} B^{\top} \boldsymbol{v}(t)$
Feedforward ODE:

$$
-\dot{\boldsymbol{v}}(t)=(A-B K(t))^{\top} \boldsymbol{v}(t)+C^{\top} Q y_{d}(t)
$$

$$
\text { terminal condition: } \boldsymbol{v}(T)=C^{\top} M y_{d}(T)
$$

