

Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX 77843

Research Objective

thermostatically controlled loads (TCLs) such as residential air conditioners.

Research Challenges

Proposed Architecture: A Two Layer Approach

Fig. 1. Architecture of the proposed demand response system.

Formulation

First layer: optimal planning of target consumption

$$\begin{array}{ll} \underset{\{u_{1}(t),\ldots,u_{N}(t)\}\in\{0,1\}^{N}}{\text{minimize}} & \int_{0}^{T} P\pi\left(t\right)\left(u_{1}(t)+u_{2}(t)+\ldots+u_{N}(t)\right) & \mathrm{d}t, \\ \text{subject to} \\ (1) & \dot{\theta}_{i}=-\alpha\left(\theta_{i}(t)-\widehat{\theta}_{a}(t)\right)-\beta Pu_{i}(t) & \forall \, i=1,\ldots,N, \\ (2) & \int_{0}^{T}\left(u_{1}(t)+u_{2}(t)+\ldots+u_{N}(t)\right) \, \mathrm{d}t=\tau\doteq\frac{E}{P}(< T, \text{given}) \\ (3) & L_{0}^{(i)}\leq\theta_{i}(t)\leq U_{0}^{(i)} & \forall \, i=1,\ldots,N. \end{array}$$

A Control System Framework for Privacy Preserving Demand Response of Thermal Inertial Loads

A. Halder, X. Geng, G. Sharma, L. Xie, and P.R. Kumar {ahalder,gengxbtamu,gash,le.xie,prk}@tamu.edu

Second layer: setpoint control

$$P_{\text{ref}}^{*}(t) = P \sum_{i=1}^{N} u_{i}^{*}(t), \qquad e(t) = P_{\text{ref}}^{*}(t) - P(t),$$

$$v(t) = k_{p}e(t) + k_{i} \int_{0}^{t} e(\tau)d\tau + \frac{d}{dt}e(t), \qquad \frac{ds_{i}}{dt} = \Delta_{i}v(t),$$

$$L_{t}^{(i)} = L_{0}^{(i)} \lor (s_{i}(t) - \Delta_{i}), \qquad U_{t}^{(i)} = U_{0}^{(i)} \land (s_{i}(t) + \Delta_{i}).$$

Conclusions

• A simple framework for optimal demand response. • Designs optimal target consumption using forecast.

- Tracks the designed target consumption in real-time.
- LSE does not need to know individual states \Rightarrow preserves privacy.

References

[1] A. Halder, X. Geng, G. Sharma, L. Xie, and P.R. Kumar, "A Control System Framework for Privacy Preserving Demand Response of Thermal Inertial Loads". 6th IEEE International Conference on Smart Grid Communications, Miami, Florida, Nov. 2–5, 2015.

Acknowledgement

This material is based upon work partially supported by NSF under Contract Nos. ECCS-1546682, CPS-1239116, Science & Technology Center Grant CCF-0939370, DGE-1303378, and ECCS-1150944.

