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 Abstract-This paper presents a method for aircraft 
parameter estimation using neural sensitivity analysis. The 
results are found to be superior to other ANN based methods.    

I. INTRODUCTION

The stability and control derivatives of an aircraft are of 
engineering significance for making flight simulator database, 
designing control law, expanding flight envelope and meeting 
airworthiness requirements. There are two broad approaches 
to estimate stability and control derivatives from flight data: 
direct approach and indirect approach. Widely applied 
parameter estimation techniques like output error method, 
filter error method and equation error method belong to the 
first category. In indirect approach, a non-linear filter is used 
to estimate the parameters which are defined as artificial state 
variables [1]. Furthermore, some methods can work in real 
time (on-line parameter estimation) and some deal with post-
flight data (off-line parameter estimation). However, these 
conventional methods need knowledge about initial values of 
the parameters (often supplied by computational fluid 
dynamics (CFD) simulations and wind tunnel tests). Poor 
initialization may result in divergence of the algorithm. 
Additionally, conventional methods require a priori 
knowledge of the aerodynamic model (model identification 
problem). This poses a severe limitation to the applicability of 
these methods for complex aerodynamic situations like stall 
hysteresis, large-amplitude time-dependent maneuvers and 
high angle of attack flight where coming up with a realistic 
non-linear aerodynamic model is not so obvious [2]. 

The ability of artificial neural network (ANN) to act as 
universal function approximator offers significant advantages 
for aircraft parameter estimation problem. It can capture 
highly non-linear complex phenomena in global sense without 
a priori knowledge about the dynamic model. Also initial 
estimates of the parameters are not necessary. These two 
qualities render ANN a natural choice for estimating stability 
and control derivatives from flight data. An early application 
of ANN for aircraft parameter estimation can be found in [3] 
where motion and control variables were mapped to 
aerodynamic forces and moments using back propagation 
algorithm. Various aspects of feed forward neural network for 
identification of aerodynamic coefficients were discussed in 
detail in [4], [5] and [6]. Raisinghani, Ghosh and Kalra [7] 
proposed two techniques, called delta method and zero   
method,      for   computing     the     stability     and       control  

derivatives using feed forward neural network with back 
propagation learning. In the first technique, the derivatives 
were interpreted as variations in the aerodynamic co-efficients 
due to a small (delta) variation in one of the motion or control 
variables in such a fashion that only that variable undergoes 
incremental change while the rest remain at their nominal 
values (hence the name delta method). In the second 
technique, the derivatives were interpreted as the ratio of 
variation in the value of the aerodynamic co-efficients to the 
incremental variation in one of the motion or control variables 
while the rest of them remain identically zero (hence the name 
zero method). Both the techniques employ central difference 
approximation for computing the derivatives. 

In this paper, a novel neuro-computing approach is 
presented to address the problem of aircraft parameter 
estimation by means of sensitivity analysis of the aerodynamic 
forces and moments with respect to motion variables and 
control inputs. The next section outlines the methodology. 
Simulation results are presented next, followed by conclusion.    

II. METHODOLOGY

The rationale behind applying sensitivity analysis for 
estimating stability and control derivatives lies in interpreting 
them as the sensitivity of the aerodynamic forces and 
moments on the motion and control variables. The motion and 
control variables are taken as the input to the ANN and the 
force and moment co-efficients are taken as the output of the 
network. A high (low) value of a parameter (derivative) 
implies that output variable of the ANN is highly (weakly) 
sensitive to the corresponding input variable.  

A multi-layer feed forward neural network (MFNN) with 
two hidden layers was used in this study for input-output 
mapping. The particulars of the network are summarized in 
Table I. The sensitivity analysis of the ANN is discussed next.  
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TABLE I 
PARTICULARS OF THE MULTI-LAYER FEED FORWARD NEURAL NETWORK 

No. Attribute Best Choice 

No. of Hidden Layers 

No. of Neurons (Hidden1 – Hidden2 – Output) 
Activation Function 

 (Hidden1 – Hidden2 – Output) 

Scaling Range (Input & Output) 

Initial Random Weights  

2

5 – 13 – 3

tanh – tanh – Identity  

- 0.9 to + 0.9  
- 0.1 to + 0.1 
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The Neural network model used consists of two hidden 
layers and one output layer as shown in figure 1. The input to 
the network is designated as x~ , which is a vector of size 

1+I   including the bias. The inputs are fed to the first hidden 
layer; output of the first hidden layer is fed to the second 
hidden layer; and output of the second hidden layer is fed to 
the output layer which consists of linear neurons i.e., just 
summation functions. The hidden layers neurons consist of 
tangent hyperbolic function as a neuronal nonlinearity. The 
outputs of the neurons for various layers are designated 
as ozy ~,~,~ , as shown in the figure. There are J  number of 
neurons in the first hidden layer, K  number of neurons in the 
second hidden layer, and L  number of neurons in the output 
layer. Therefore, the following equations can be written for the 
outputs of the first hidden layer, second hidden layer and the 
output layer of neurons. 

For the first hidden layer, 
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where, ix  is the thi  input; jiu  is the weight connecting thi

input to the thj  neuron in the first hidden layer; (.)f  is the 
tangent      hyperbolic     function      and     is    defined      as   
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1)( ; λ  being the steepness factor. 

Similarly, the output of the second hidden layer can be written 
as  
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where all the notations and subscripts follow the same 
connotation as explained above. The output layer output can 
be written as 
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where the subscript l  varies from 1 to L . Method of back 
propagation with scaled conjugate learning is used to train the 
neural network. Once the network is trained then it represents 
the function which is contained in the input-output data, i.e. 
network has identified the function embedded in the data the 
the partial derivatives of the outputs with respect to the inputs 
represent the sensitivity and can be derived as follows. 
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since there is no nonlinearity in the output layer of neurons, 
therefore ( ) 1=′ lnetf , where 

Fig.1. Neural network architecture 

Inputs Hidden layer 1 Hidden layer 2 Output layer 
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The input data are normalized before use and therefore, 
equation for the sensitivity can be written as 
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where the subscript n   refers to the normalized value. The 
following equation is utilized to normalize the input and the 
output 
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Here, ninl xo ,   are the normalized thl  output and thi  input 

respectively. maxlo  and minlo  stands for the minimum and 

the maximum value of the  thl  output. Similar connotation 
stands for maxix  and minix  also. diff  stands for the range of 
normalization used. In this case because the normalization was 
done in the range ]9.0,9.0[−   hence the value of   diff  is 

)8.1( . Therefore, 
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An investigation was done to reach the optimal combination 
for the number of neurons in each hidden layer. Tangent 
hyperbolic functions were used as activation functions for 

each of the neurons. A scaled conjugate gradient algorithm 
was used for fast supervised learning [8].  

The flight data used to train the network was for lateral-
directional dynamics of Advanced Technology Testing 
Aircraft System (ATTAS) from DLR, German Aerospace 
Center, Germany. The data was of total 85 seconds duration 
with the sampling time of 0.04 second. There were three 
distinct maneuvers performed by the pilot: short period mode 
(for first 25 seconds, using multi-step elevator input), bank-to-
bank maneuver (for next 30 seconds, using aileron input) and 
dutch roll (for last 30 seconds, using rudder doublet input). 
Once trained, the MFNN was subjected to testing data set, 
which was taken to be the entire length (2128 samples) of 
training data set. Simulations were performed for varying 
number of iterations to assess the accuracy of mapping. The 
measured (flight derived) force and moment co-efficients were 
then compared with ANN predictions.    

After predicting the aerodynamic co-efficients, the network 
was used to estimate the stability and control derivatives using 
sensitivity analysis [9]. Unlike delta method and zero method, 
neural sensitivity analysis computes the derivatives without 
applying finite difference approximation. Since partial 
derivatives are point functions, the proposed method yields 
mathematically more accurate estimates. The superiority of 
the derivatives, estimated by the method proposed here, is 
evident from the results presented in the next section.    

III. RESULTS AND OBSERVATIONS 

Numerous simulations revealed some important aspects of 
the MFNN. It was observed that reducing the number of 
neurons in the hidden layer lowers the order of the prediction 
curve resulting poor estimation of the aerodynamic co-
efficients. It was also noted that using a tangent hyperbolic 
function in the output layer degrades the prediction. Hence 
only weighted sum was performed at the output layer. 

To make a direct comparison, the same flight data was used 
to train and test delta method (which gives better estimates 
than zero method). Table II clearly shows that, smaller mean 
square error (MSE) and cost function value is achieved in less 
number of iterations by scaled conjugate gradient algorithm 
used in this study. Beyond 5000 iterations the MFNN shows 
no significant improvement in predictions.  

MSE Cost Function Number of 
Iterations  Delta  

Method 
Sensitivity 
Analysis 

Delta  
Method  

Sensitivity 
Analysis  

Starting 
Value 

5.27e-3 6.71e-5 3.00e-7 2.48e-13 

500 6.29e-4 4.49e-6 5.00e-13 1.90e-19 
5000 8.50e-5 3.40e-7 4.70e-13 1.02e-19 

15,000 4.50e-5 - 3.80e-13 - 

In Fig. 2, 3 and 4, the measured (blue) and ANN predicted 
(red) aerodynamic co-efficients (side force co-efficient, rolling  
moment co-efficient and yawing moment co-efficient 
respectively) are plotted with time. These figures show much 
superior tracking of the aerodynamic co-efficients compared 

TABLE II 
MSE AND COST FUNCTION 

(6)

(7)

(8)

(9)

(10)  

(11)  

(12)  

(13)  

(14)  

(15)  
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to results obtained by employing output error method, filter 
error method, equation error method and delta method on the 
same flight data.  

    

       

Fig. 2. Measured (blue) and ANN predicted (red) side force co-efficient  

Fig. 3. Measured (blue) and ANN predicted (red) rolling moment co-efficient  

Fig. 4. Measured (blue) and ANN predicted (red) yawing moment co-efficient  

Fig.5. RMS values of side force derivatives over the entire training set  

Fig.6. RMS values of rolling moment derivatives over the entire training set  

Fig.7. RMS values of yawing moment derivatives over the entire training set  
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During training cycle, weights of a network get adjusted. 
Once trained, the weights of an ANN remain fixed but the 
activation values of the neurons still change across the training 
set. Corresponding to each training vector one sensitivity 
matrix will result. In this particular case, 2128 samples will 
result 2128 sensitivity matrices. To get an average measure of 
the parameters over the entire training set, RMS values of the 
stability and control derivatives were obtained. These values 
are often [9] termed as mean square average sensitivities 
(MSAS). Fig. 5, 6 and 7 depicts the convergence of the RMS 
values of the parameters (MSAS) over the iterations.  

One would expect the side force to be more sensitive to 
angle of sideslip and yaw rate and less sensitive to roll rate 
and aileron input. Its sensitivity on rudder input should be 
moderate. These are indeed the case as shown in Fig. 4. Again 
rolling moment should be highly sensitive on roll rate and 
aileron input and weakly sensitive on angle of sideslip and 
rudder input. Fig. 5 justifies these arguments. The significant 
dependence of rolling moment co-efficient on yaw rate is a 
result of roll-yaw coupling. Similarly, the trends of the 
parameters shown in Fig. 6 corroborate well with those 
expected from the knowledge of flight dynamics. Thus the 
RMS values of the parameters not only unify the gradients of 
all the training vectors of the ANN, but also provide an insight 
to the mechanics of flight. The histogram distribution (not 
shown in this extended abstract) of the parameters show near 
normal distribution and hence their arithmetic means were 
taken as the average values of the parameters.  

IV. CONCLUSION 

A novel method for estimating aircraft stability and control 
derivatives is proposed in this paper based on neural 
sensitivity   analysis.    The  proposed    method   shows  much  

superior estimation of aerodynamic forces and moments 
compared to all existing methods for aircraft parameter 
estimation using neural network.  
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