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Abstract

The dynamics of a hysteretic relay oscillator with simple harmonic forcing is studied in this paper. Even
though there are no bounded solutions in the absence of forcing, periodic excitation gives rise to more complex
responses including periodic, quasiperiodic and chaotic behavior. A Poincaré map is introduced to facilitate
mathematical analysis. Families of period-one solutions are determined as fixed points of the Poincaré map.
These represent coexisting subharmonic responses. Conditions on the amplitude and frequency of the forcing
for the existence of periodic solutions have been obtained. Linear stability analysis reveals that these solutions
can be classified as centers or saddles. The presence of higher periodic, quasiperiodic motions together with
homoclinic and heteroclinic tangles imply the existence of chaotic solutions.

1 Introduction

Over the past decades, relay systems with hysteresis attracted increasing attention. This class of nonlinear systems
have found applications in a wide range of engineering problems including voltage regulators, DC motors, and
servomechanisms [1, 2, 3, 4, 5, 6, 7]. Relays, in general, have two output branches and the output of a relay jumps
discontinuously whenever the input exceeds a certain critical value as shown in Fig. 1. For an ideal relay, there is
a single critical value for which the output is discontinuous while for a relay with hysteresis, there are two such
critical input values as shown in Fig. 1.
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Figure 1: Input-output characteristics of (a) an ideal relay and (b) a relay with hysteresis.

Andronov [2] and Åström [7] studied the existence and stability of period-one solutions (i.e., solutions having
exactly two relay switchings per period). Gonçalves et al. [8, 9] presented a global analysis of relay systems using
Lyapunov functions. Johansson et al. and di Bernardo et al. extensively studied different aspects of feedback
systems with ideal relays (see [10, 11, 12] and references therein). Periodic solutions in a relay system with
square-wave excitation was considered by Varigonda and Georgiou [3], while Fleishman [13] focused on periodic
response under sinusoidal forcing. A related class of nonlinear systems involve relay operators with delays in the
input. Barton et al. [14], Fridman et al. [15], and Norbury and Wilson [16] considered first order delayed relay
systems while Bayer and Heiden [17], Sieber [18], Barton et al. [19] and Colombo et al. [20] studied second order
systems. These studies include periodic solutions, their bifurcations as well as chaotic solutions in these systems
with or without forcing.
Hysteretic relay operators are also used in modeling complex hysteresis in materials where they are commonly

known as the elementary Preisach operators [21, 22]. However, studies on the response of hysteretic systems
modeled using relay operators [23, 24] almost always neglect the dynamics of the relay operators.
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Relay systems belong to the general class of piecewise smooth dynamical systems. Other systems belonging
to this class include systems with play or backlash [25], systems with friction [26, 27, 28, 29, 30], systems with
impacts [26, 27, 28, 30, 31, 32, 33, 34, 35], and other hybrid systems [36, 37, 38, 39]. Leine and van Campen
[26] provide an overview and examples of bifurcation phenomena in such non-smooth dynamical systems. In
particular, the relay system considered in this study is a piecewise linear system which is similar to the much
studied repeated impact of a ball with a sinusoidally vibrating table [31, 40, 41, 42, 43, 44, 45] and its Hamiltonian
analog studied in relevance to particle physics [46, 47, 48]. Further, the equation studied in this paper can also be
taken as a simple model for automotive suspension with magneto-rheological (MR) damper [49] under periodic
forcing.
In this paper, we study the dynamics of a hysteretic relay operator under periodic excitation. It is shown that

in this system, a rich variety of dynamic responses ranging from periodic to chaotic solutions exist. We obtain
conditions on the parameters, i.e., amplitude and frequency of the forcing for which bounded solutions can exist.
To facilitate the analysis, we introduce a 2D Poincaré map. Fixed points of the Poincaré map correspond to
periodic solutions of the system. There are two families of period-one solutions corresponding to two families of
fixed points of the Poincaré map. On the Poincaré plane, one family of fixed points corresponds to centers while
the other corresponds to saddles. There are invariant curves around the centers on the Poincaré plane which
correspond to quasiperiodic solutions. The presence of homoclinic tangles has been shown numerically. This
indicates the existence of chaotic solutions. As the parameters are varied, the centers and the saddles merge in
a saddle-center bifurcation [50, 51]. For these parameter values, there is a single family of non-hyperbolic fixed
points corresponding to a single family of period-one solutions with no other bounded solutions.

2 Mathematical model of the relay oscillator

The equation studied in this work is

ẍ(t) + F [x(t)] = A cos(ωt+ φ) , A ≥ 0 , ω > 0, φ ∈ (−π, π] . (1)

Where A, ω, and φ are the amplitude, frequency, and phase of the forcing, respectively. The hysteretic relay
operator F [x(t)] (shown in Fig. 2) is defined as

F [x(t)] =






−1, x(t) ≤ 0
e, 0 < x(t) < 1
1, x(t) ≥ 1

(2)

where e is −1 or 1 depending on the initial conditions and the time history of the solution, i.e., whether the
solution enters the hysteretic region 0 < x(t) < 1 from the left or right. When F [x(t)] = ∓1, the evolution of the
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Figure 2: (a) The relay operator with hysteresis. (b) Phase portrait of (1) for A=0. Initial conditions are x(0) = 0
and ẋ(0) = 0.

dynamical system is described by

(I) ẍI(t)− 1 = A cos(ωt+ φI), (3)

(II) ẍII(t) + 1 = A cos(ωt+ φII) , (4)
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where the subscripts are used to differentiate between the two subsystems. The complete description of the system
also requires initial conditions. Without loss of generality, these initial conditions can be specified as

F [x(0)] = −1 , xI (0) = 0, ẋI (0) = vI . (5)

Figure 2(b) shows the phase portrait in x(t) and ẋ(t) for the free response of the system (i.e., A = 0, see section
4). The dynamics switches between the subsystems when the solution trajectories intersect xI(t) = 1 from the
left, i.e., ẋI(t) ≥ 0 or xII(t) = 0 from the right, i.e., ẋII(t) ≤ 0.
To make the analysis simpler, time is reset when transition occurs between subsystems. To account for

this artificial time-shift, the phase of the forcing is ’updated’ at the switchings. Therefore, the evolution of the
dynamics is completely specified by

ẍI(t)− 1 = A cos(ωt+ φI) , xI(0) = 0, ẋI(0) = vI , t ∈ [0, tI ] (6)

ẍII(t) + 1 = A cos(ωt+ φII) , xII(0) = 1, ẋII(0) = vII , t ∈ [0, tII ]. (7)

Here tI and tII are the switching times defined implicitly by xI(tI) = 1 and xII(tII) = 0, respectively.

3 The phase space and solutions

Figure 3(a) depicts the evolution of solution trajectories in x(t), ẋ(t) and F [x(t)]. Time t is introduced as another
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Figure 3: (a) Phase space of (1) in x(t), ẋ(t) and F [x(t)]. (b) Extended phase space
(xI(t), ẋI(t), t)

⋃
(xII(t), ẋII(t), t)

state variable resulting in an extended phase space [25, 31]. Clearly xI(t) ∈ XI = (−∞,−1] and xII(t) ∈ XII =
[0,∞). Also, ẋI(t), ẋII(t) ∈ R and t ∈ R+. The extended phase space is therefore XI ×R×R+

⋃
XII ×R×R+.

This space is a proper subset of R3 × {−1, 1}, where the discrete set {−1, 1} is simply the range of F [x(t)].
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It is again emphasized in Fig. 3 that the system consists of two distinct subsystems, viz. subsystem I and
subsystem II. The dynamics of subsystem I switches to that of subsystem II when the solution trajectories
intersect the surface SII = {(ẋ(t), t) |x(t) = 1, ẋ(t) ≥ 0} and from subsystem II to subsystem I when they
intersect the plane SI = {(ẋ(t), t) |x(t) = 0, ẋ(t) ≤ 0}) as demonstrated in Fig. 3(b).
Having described the structure of the phase space, we now turn our attention to the solutions. The solution

of subsystem I can be written in closed form as

xI(t) =
1

2
t2 +

(
vI −

A

ω
sin(φI)

)
t+

A

ω2
cos(φI)−

A

ω2
cos(ωt+ φI), (8)

ẋI(t) = t+ vI −
A

ω
sin(φI) +

A

ω
sin(ωt+ φI) . (9)

Similarly, the solution of subsystem II is

xII(t) = 1− 1

2
t2 +

(
vII −

A

ω
sin(φII)

)
t+

A

ω2
cos(φII)−

A

ω2
cos(ωt+ φII), (10)

ẋII(t) = −t+ vII −
A

ω
sin(φII) +

A

ω
sin(ωt+ φII) . (11)

Note that the transformation (vI , φI)→ (−vII , φII + π) in Eqs. (8) and (9) is equivalent to

(xI(t), ẋI(t))→ (1− xII(t),−ẋII(t)) , (12)

and the substitution (vII , φII)→ (−vI , φI + π) in Eqs. (10) and (11) leads to

(xII(t), ẋII(t))→ (1− xI(t),−ẋI(t)) . (13)

Therefore a solution of one subsystem with an initial velocity v and initial phase of the forcing φ also represents
solution trajectories of the other subsystem with the corresponding initial velocity −v and initial phase φ + π.
As a consequence, solutions appear in pairs, i.e. if (x(t), ẋ(t)) is a solution of Eq. (1), then so is (1− x(t),−ẋ(t)).
This motivates the introduction of the ’shift map’

Ψ

(
v
φ

)
=

(
−1 0
0 1

)(
v
φ

)
+

(
0
π

)
. (14)

which maps solutions of subsystem I into those of subsystem II. This map will be utilized in Section 6 during
the construction of the Poincaré map.
Having established some properties of the solutions, we proceed with our analysis of the model. First, the free

response of the model is discussed.

4 Free response

In this section, we show that in the absence of forcing, i.e., A = 0, all solutions of the system are unbounded.
The system is now given by

ẍ(t) + F [x(t)] = 0 . (15)

The solution of the subsystems I and II for this case becomes

xI(t) =
1

2
t2 + vI t (16)

ẋI(t) = t+ vI , (17)

and

xII(t) = 1− 1

2
t2 + vII t (18)

ẋII(t) = −t+ vII . (19)

When xI(tI) = 1, the system switches from subsystem I to subsystem II. The equation determining the switching
time tI is therefore

1

2
t2I + vI tI − 1 = 0 , (20)
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which can be solved in closed form to give (for tI > 0)

tI = −vI +
√

v2I + 2 . (21)

Substituting tI in Eq. (17), we get the velocity at the switching as

ẋI(tI) = −vI +
√

v2I + 2 + vI =
√

v2I + 2 .

The initial velocity for the subsystem II is ẋII(0) = vII = ẋI(tI). Substituting vII =
√

v2I + 2 in Eq. (18), the
solution xII(t) is given by

xII(t) = 1− 1

2
t2 +

√
v2I + 2 t . (22)

The switch from subsystem II to subsystem I occurs when xII(tII) = 0. This yields

1− 1

2
t2II +

√
v2I + 2 tII = 0 . (23)

The above equation can again be solved in closed form (for tII > 0) to give

tII =
√

v2I + 2 +
√

v2I + 4 . (24)

Substituting tII from Eq. (24) into Eq. (19), we get

vII(tII) = −
√

v2I + 4 . (25)

which is also the next initial velocity for subsystem I, i.e. ẋI(0) = vI = vII(tII). From Eq. (25), we note that
the absolute velocity of the system at switchings is monotonically increasing without bound. The phase portrait
depicted in Fig. 2(b) actually corresponds to the free response with x(0) = 0 and ẋ(0) = vI = 0. The unbounded
growth of the solution at switchings, can easily be seen in the figure.
Next we consider the case A > 0. For a detailed analysis of the forced response, it is convenient to introduce

a Poincaré map [25, 31] and study this discrete map instead of the continuous evolution of the system. In the
next Section, we compute the switching times that will be needed for obtaining the Poincaré map.

5 Switching times

In order to find the switching time tI at which transition takes place between subsystems I and II, the switching
criterion xI(tI) = 1 is substituted into Eq. (8) resulting in

1

2
t2I +

(
vI −

A

ω
sin(φI)

)
tI +

A

ω2
cos(φI)−

A

ω2
cos(ωtI + φI)− 1 = 0 . (26)

The switching time tI is the first positive root of Eq. (26) and is a function of vI and φI for fixed A and ω. Due
to the transcendental nature of the equation numerical solution is required (details of the numerical algorithm is
provided in the Appendix A. It will be shown that when A � 1, the algorithm works irrespective of the value of
ω). The function tI (vI , φI) can have discontinuities corresponding to grazing bifurcations [52, 53] depending on
the parameters A and ω (this is discussed in detail in Appendix B). The velocity at the transition (from Eq. (9))
is

ẋI(tI) = tI + vI −
A

ω
sin(φI) +

A

ω
sin(ωtI + φI) . (27)

The phase of the forcing at the transition is simply

φI + ω tI mod 2π . (28)

Similarly, to find the time tII of the transition from subsystem II to subsystem I, the switching criterion xII(tII) =
0 is substituted into equation Eq. (10) to yield

−1

2
t2II +

(
vII −

A

ω
sin(φII)

)
tII +

A

ω2
cos(φII)−

A

ω2
cos(ωtII + φII) + 1 = 0 . (29)
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The switching time tII is the smallest positive root of this equation. The velocity at the transition is (from Eq.
(11))

ẋII(tII) = −tII + vII −
A

ω
sin(φII) +

A

ω
sin(ωtII + φII) (30)

and the phase is φII + ω tII mod 2π. From here on, the modulo 2π notation for the phase variable will not be
explicitly written out.
Next, we outline the procedure for obtaining the discrete Poincaré map.

6 Poincaré map

With the knowledge of the switching times, we are now in the position to construct a map to effectively study
the behavior of solutions of Eq. (1). First, consider the mapping (ẋI (0) = vI , φI) → (ẋI(tI), φI + ω tI) of the
initial velocity and phase to the velocity and phase at the time of the transition from subsystem I to subsystem
II. Recall that the initial and final positions are uniquely specified by xI (0) = 0 and xI(tI) = 1. As already
mentioned in Section 4, the final velocity and phase for the solution of subsystem I at the transition (Eqs. (27)
and (28)) will serve as initial velocity and phase for the solution of subsystem II, i.e.

vII = ẋI(tI) = tI + vI −
A

ω
sin(φI) +

A

ω
sin(φII), (31)

φII = φI + ω tI . (32)

Similarly, the final values of velocity and phase of the solution of subsystem II will provide the initial conditions
for the solution of subsystem I as

vI = ẋII(tII) = −tII + vII −
A

ω
sin(φII) +

A

ω
sin(φI), (33)

φI = φII + ω tII . (34)

Rearranging Eqs. (31) and (33) yields

vII −
A

ω
sin(φII) = tI + vI −

A

ω
sin(φI), (35)

vI −
A

ω
sin(φI) = −tII + vII −

A

ω
sin(φII) . (36)

The form of these expressions motivates the introduction of a new variable z = v − A
ω
sin(φ)1 . Equations (35)

and (36) can now be rewritten as
zII = tI + zI , (37)

zI = −tII + zII , (38)

where zI = vI − A
ω
sin(φI) and zII = vII − A

ω
sin(φII). We can now relate initial values of the variables z, φ to

their values at the switchings by the two maps ΠI , ΠII as
(

zII
φII

)
= ΠI

(
zI
φI

)
=

(
zI + tI
φI + ωtI

)
. (39)

(
zI
φI

)
= ΠII

(
zII
φII

)
=

(
zII − tII

φII + ωtII

)
. (40)

Note that Eq. (40) can also be written as

ΠII

(
zII
φII

)
=

(
zII − tII
φII + ωtII

)
= Ψ ◦ΠI ◦Ψ

(
zII
φII

)
, (41)

where Ψ is the shift map introduced in Eq. (14). To specify the range and domain of these maps, we introduce
the Poincaré surfaces ΣI = {(zI , φI)|x(t) = 0} and ΣII = {(zII , φII)|x(t) = 1}. Clearly, ΠI and ΠII are maps
from ΣI onto ΣII and from ΣII onto ΣI , respectively. The Poincaré map (a.k.a. return map) Π is now defined

1 z is the velocity component induced by the hysteretic force field F [x(t)]. It can also be viewed as the relative velocity between
the solution trajectories of Eq. (1) with F [x(t)] as defined in Eq. (2) with F [x(t)] ≡ 0.
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as the map of the plane ΣI onto itself after a pair of switchings. The map Π is therefore obtained by composing
the two maps ΠII and ΠI as

Π

(
zI
φI

)
= ΠII ◦ΠI

(
zI
φI

)
= Ψ ◦ΠI ◦Ψ ◦ΠI

(
zI
φI

)
, (42)

where the last equality comes from Eq. (41). The final expression for the Poincaré map in Eq. (42) again
emphasizes the symmetry in the problem. Substituting Eqs. (39) and (40) for ΠI and ΠII into Eq. (42) results in

Π

(
zI
φI

)
=

(
zI + tI(zI , φI)− tII(zI , φI)

φI + ωtI(zI , φI) + ωtII(zI , φI)

)
. (43)

Equation (43) defines the Poincaré map Π to be used in the subsequent analysis. The implicit dependence of the
switching times tI and tII on (zI , φI) is also emphasized. With the new variables zI and zII introduced in Eqs.
(26) and (29), the switching times tI and tII are determined as the first positive roots of

1

2
t2I + zItI +

A

ω2
cos(φI)−

A

ω2
cos(ωtI + φI) − 1 = 0 , (44)

−1

2
t2II + zIItII +

A

ω2
cos(φII)−

A

ω2
cos(ωtII + φII) + 1 = 0 , (45)

respectively. Substituting for zII and φII from Eqs. (37) and (32) into Eq. (45) results in

−1

2
t2II + (zI + tI)tII +

A

ω2
cos(φI + ωtI)−

A

ω2
cos(φI + ωtI + ωtII) + 1 = 0 . (46)

Equations (44) and (46) now define the implicit dependence of tI and tII on (zI , φI). As mentioned previously,
the switching times are not necessarily continuous functions of the parameters and depending on the parameters
A and ω, the switching times tI and tII can in general have discontinuities corresponding to grazing bifurcations
[52, 53] as zI and φI are varied. This will result a discontinuous Poincaré map leading to further complexity of
the system. However, in this work, we only consider parameter values A and ω for which the switching times
and consequently the Poincaré map are continuous (Appendix B discusses conditions for which this parametric
continuity holds).
With the introduction of the Poincaré map we have reduced the study of the original hybrid system (1) to

that of the discrete map Π : ΣI → ΣII . After having obtained the Poincaré map, we now wish to calculate its
inverse, to be utilized later for discussing global dynamics of the system.

7 Inverse Poincaré map

The Poincaré map was defined as the return map from the surface ΣI to itself after a pair of switchings and is
described by

Π

(
zI
φI

)
= ΠII ◦ΠI

(
zI
φI

)
,

where ΠI is the map from the surface ΣI to ΣII while ΠII is the map from the surface ΣII to ΣI . The inverse
Poincaré map is given by

Π−1
(

zI
φI

)
= Π−1I ◦Π−1II

(
zI
φI

)
. (47)

Hence, the map Π is invertible iff the individual maps ΠI and ΠII are invertible. We will assume that the
individual maps ΠI and ΠII are invertible and hence, the maps Π

−1
I and Π−1II are uniquely defined. The domain

and range of the map Π−1I are the switching surfaces ΣII and ΣI , respectively, while the domain and the range
of the map Π−1II are the switching surfaces ΣI and ΣII , respectively. The inverse map will be used in Section 9
to compute backward iterations.
The inverse Poincaré map Π−1 is given by the transformation t→ tI+tII−t. Further, the above transformation

implies the transformations (zI , φI) → (−zI ,−φI) and (zII , φII) → (−zII ,−φII) for the variables z and φ on
the switching surfaces. Thus, using these two transformations, one can compute the individual inverse maps
Π−1II and Π−1I and following (47), take their composition to obtain the inverse Poincaré map. However, a more
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straightforward derivation results if one resorts to the equivalent transformation t→ tI + tII − t. In view of this
transformation, from (43), it follows that (dropping the modulo 2π notation for the phase variable as before)

Π−1
(

zI
φI

)
= Π−1I ◦Π−1II

(
zI
φI

)
=

(
zI − tI + tII

φI − ω tI − ω tII

)
, (48)

where tI and tII are the corresponding switching times to be determined.
To determine switching times tI and tII for this case, we first recall that the domain of Π

−1
II is ΣI . Accordingly,

the initial conditions for the subsystem II for the inverse map are xII(0) = 0, ẋII(0) = −zI −
A

ω
sin(φI). With

these initial conditions, the solution for the subsystem II is

xII(t) = −
1

2
t2 − zI t+

A

ω2
cos(−φI)−

A

ω2
cos(ω t− φI) ,

ẋII(t) = −t− zI +
A

ω
sin(ω t− φI) .

Hence, the switching time tII from the subsystem II to the subsystem I using the switching criterion xII(t) = 1
is the root of the equation

−1

2
t2II − zI tII +

A

ω2
cos(−φI)−

A

ω2
cos(ω tII − φI)− 1 = 0

which can be rewritten as

1

2
t2II + zI tII −

A

ω2
cos(−φI) +

A

ω2
cos(ω tII − φI) + 1 = 0 . (49)

At the instant of switching from subsystem II to subsystem I, we have ẋII ≤ 0. The first root of Eq. (49) is
associated with ẋII ≥ 0 and therefore, the switching time tII is the first root of Eq. (49) if ẋII(tII) = 0, otherwise
it is the second root of Eq. (49).
Similarly the initial conditions for the subsystem I for the inverse map are xI(0) = 1, ẋI(0) = −zII −

A

ω
sin(φII). With these initial conditions, the solution for the subsystem I is

xI(t) = 1 +
1

2
t2 − zII t+

A

ω2
cos(−φII)−

A

ω2
cos(ω t− φII) ,

ẋI(t) = t− zII +
A

ω
sin(ω t− φII) .

Using the above solution along with the switching criterion xI(t) = 0 results in

1 +
1

2
t2I − zII tI +

A

ω2
cos(−φII)−

A

ω2
cos(ω tI − φII) = 0 (50)

which yields the switching time tI from the subsystem I to subsystem II as its second root.
The switching times tI and tII thus obtained as the second roots of Eqs. (49) and (50) respectively, need to be

substituted in (48) to complete the derivation of the inverse Poincaré map. In the following section, we proceed
to study the periodic solutions of the system.

8 Periodic solutions

We first locate period-one solutions of Eq. (1), i.e., solutions which involve a single pair of switchings between ΣI
and ΣII . Equivalently, we are looking for the fixed points of the Poincaré map Π.

8.1 Period-one solutions

Fixed points of the Poincaré map are given by
(

z∗I
φ∗I

)
= Π

(
z∗I
φ∗I

)
.
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Accordingly, Eq. (43) yields the conditions

z∗I = z∗I + tI − tII , (51)

φ∗I = φ∗I + ω tI + ω tII . (52)

Equation (51) gives
tI = tII , (53)

which after substitution into Eq. (52) results in

tI = tII =
nπ

ω
, (54)

since t > 0, n ∈ Z+. Having obtained the switching times tI and tII for a fixed point of the Poincaré map, we
still need to determine the values of z∗I and φ∗I . Using Eqs. (44), (46) and (54), we obtain

n2π2

2ω2
+ z∗I

nπ

ω
− 1 +

A cos(φ∗I)

ω2
(1− (−1)n) = 0 (55)

and
n2π2

2ω2
+ z∗I

nπ

ω
+ 1 +

A cos(φ∗I)

ω2
((−1)n − 1) = 0 . (56)

Subtracting Eq. (55) from Eq. (56) yields

2 + 2
A cos(φ∗I)

ω2
((−1)n − 1) = 0 . (57)

Equation (57) can only be solved for odd n to yield

cos(φ∗I) =
ω2

2A
. (58)

Recall that A > 0. Since | cos(φ∗I)| ≤ 1, the condition for existence of a period-one solution is given by

ω2 ≤ 2A . (59)

From Eq. (58), the initial phase φ∗I corresponding to the period-one solution is obtained as

φ∗I = ± arccos

(
ω2

2A

)
. (60)

Adding Eqs. (55) and (56), we have
n2π2

ω2
+ 2 z∗I

nπ

ω
= 0

which can be solved for z∗I to give

z∗I = −nπ

2ω
, n = 1, 3, 5, · · · . (61)

The countably many values of n in Eq. (61) together with the two values of φ∗I given by Eq. (60) define two
families of fixed points of the Poincaré map for a given set of parameters A and ω as

(z∗I , φ
∗

I)1,2 =

(
−nπ

2ω
,± arccos

(
ω2

2A

))
, n = 1, 3, 5, · · · . (62)

Each of these fixed points corresponds to a period-one solution of Eq. (1). The x(t)-ẋ(t) portraits of the system
corresponding to n = 1, 3, 5 and 7 are shown in Fig. 4. These different period-one motions represent 1 : n
subharmonic resonances of the system and they coexist for a given set of parameter values. The period-one
solutions shown in Fig. 4 corresponding to (−π/2, π/3), (−π/2,−π/3), (−3π/2, π/3) and (−3π/2,−π/3) are
plotted together in Fig. 5 to emphasize their coexistence. The initial conditions for each x(t)-ẋ(t) portrait has
been chosen to be consistent with the fixed points given in Eq. (62), i.e., for A = 1, ω = 1 and n = 1, the initial
conditions corresponding to zI = −π/2 and φI = −π/3 are x(0) = 0 and ẋ(0) = −π/2−

√
3/2.

Having obtained the conditions for the existence of period-one solutions of the system governed by Eq. (1), or
equivalently the fixed points of the Poincaré map Eq. (43), we perform stability analysis of these fixed points in
the next section.
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Figure 4: x(t)-ẋ(t) portraits for A = 1 and ω = 1 corresponding to the fixed points of the Poincaré map for
n = 1, 3, 5 and 7.

8.2 Stability analysis of period-one solutions

For the purpose of stability analysis of the fixed points of the Poincaré map Eq. (43), we calculate the linearized
Poincaré map about the fixed points (z∗I , φ

∗

I) using a perturbation expansion. The linearized Poincaré map DΠ
of map (43) can be written as

DΠ =

(
1 + ∂tI

∂zI
− ∂tII

∂zI

∂tI
∂φI

− ∂tII
∂φI

ω
(
∂tI
∂zI

+ ∂tII
∂zI

)
1 + ω

(
∂tI
∂φI

+ ∂tII
∂φI

)
)

. (63)

The derivatives ∂tI
∂zI
, ∂tI
∂φI
, ∂tII
∂zI

and ∂tII
∂φI

are obtained by differentiating Eqs. (44) and (46) w.r.t. the variables zI
and φI . For example

∂tI
∂zI

= − ω tI
ω (zI + tI) +A sin(ω tI + φI)

,

∂tI
∂φI

=
A (sin(φI)− sin(ω tI + φI))

ω (ω (zI + tI) +A sin(ω tI + φI))
.

The expressions for ∂tII
∂zI

and ∂tII
∂φI

are a bit lengthier. However, when evaluated at the fixed points, these expressions
can be simplified (with the introduction of new variables p, q, r and s) as follows

∂tI
∂zI

∣∣∣∣
(z∗
I
,φ∗
I
)

=
nπ

A sin(φ∗I)− ω z∗I − nπ
= p (64)

and
∂tI
∂φI

∣∣∣∣
(z∗
I
,φ∗
I
)

=
2A sin(φ∗I)

ω (A sin(φ∗I)− ω z∗I − nπ)
= q. (65)

∂tII
∂zI

∣∣∣∣
(z∗
I
,φ∗
I
)

=
nπ (ω z∗I − 3A sin(φ∗I))

(A sin(φ∗I) + ωZ∗I ) (A sin(φ∗I)− ω z∗I − nπ)
= r (66)
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and
∂tII
∂φI

∣∣∣∣
(z∗
I
,φ∗
I
)

=
2A sin(φ∗I) (ω z∗I + A sin(φ∗I) + 2nπ )

ω (A sin(φ∗I) + ωZ∗I ) (A sin(φ∗I)− ω z∗I − nπ)
= s. (67)

Now the linearized Poincaré map (DΠ) governing the evolution of the perturbations around the fixed point
(z∗I , φ

∗

I) can be represented succinctly as

DΠ =

(
1 + p− r q − s
ω(p+ r) 1 + ω(q + s)

)
. (68)

The eigenvalues of the matrix DΠ determine the stability of the fixed points of the Poincaré map Eq. (43) or
equivalently the period-one solutions of the system Eq. (1). The eigenvalues of DΠ are given by

λ1,2 = −
tr (DΠ)

2
±
√
tr (DΠ)2 − 4 det(DΠ)

2
, (69)

where
tr (DΠ) = 2 + p− r + ω(q + s)

and
det(DΠ) = 1 + p− r + ω (2ps+ 2qr + q + s) .

Substituting for p, q, r and s from (64)-(67) in the above, it is easy to verify that det(DΠ) = 1 and

tr (DΠ) =
2 (2A sin(φ∗I) + nπ)

2
+ 16Anπ sin(φ∗I)

(2A sin(φ∗I)− nπ)2
. (70)

Since λ1 λ2 = det(DΠ) = 1, there are three possibilities for the eigenvalues:

1. Both λ1 and λ2 are real and distinct. In this case, one has a modulus greater than one (eigenvalue outside
the unit circle) and the other smaller than one (eigenvalue inside the unit circle). This fixed point is a
saddle.

2. λ1 and λ2 are complex conjugate with |λ1| = |λ2| = 1 (eigenvalues on the unit circle). The fixed point is a
center.

11



3. Either λ1 = λ2 = 1 or λ1 = λ2 = −1. The fixed point is a non-hyperbolic fixed point and nonlinear analysis
is required to determine the behavior of the fixed point.

From Eq. (69), we note that the eigenvalues λ1,2 are real and distinct if tr (DΠ) > 2, and they are complex

conjugate if tr (DΠ) < 2. Substituting φ∗I = arccos

(
ω2

2A

)
in Eq. (70) gives

tr (DΠ) =
2
(
4A2 − ω4 + n2π2 + 6nπ

√
4A2 − ω4

)

4A2 − ω4 + n2π2 − 2nπ
√
4A2 − ω4

.

Clearly tr (DΠ) > 2 for ω <
√
2A and hence, the eigenvalues are real and distinct. Therefore, the family of fixed

points corresponding to φ∗I = arccos

(
ω2

2A

)
are saddles. Similarly, a substitution of φ∗I = − arccos

(
ω2

2A

)
results

in

tr (DΠ) =
2
(
4A2 − ω4 + n2π2 − 6nπ

√
4A2 − ω4

)

4A2 − ω4 + n2π2 + 2nπ
√
4A2 − ω4

< 2

for ω <
√
2A. Hence, the family of fixed points corresponding to φ∗I = − arccos

(
ω2

2A

)
are centers. These two

branches of period-one solutions are shown in Fig. 6.
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z
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Figure 6: The two branches of fixed points of the Poincaré map Eq. (43).

In the limiting case of ω2 = 2A, the saddle and the center merge in a saddle-center bifurcation [50, 51] leaving
a single family of fixed points

(z∗I , φ
∗

I) =

( −nπ

2
√
2A

, 0

)
n = 1, 3, 5, · · · .

At these points both the eigenvalues are equal to 1. Therefore, this represents a family of non-hyperbolic fixed
points.
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8.3 Higher-period solutions

In this section, we illustrate the procedure for a period-2 solution only. The procedure for higher periodic solutions
is similar. A period-2 solution of Eq. (1) is a fixed point of the map Π2. The sequence of switching times for Eq.
(1) are denoted as tI , tII , tIII , tIV , · · · . Denoting the fixed point of the map Π2 as (z∗∗I , φ∗∗I ), from Eq. (43) we
have (

z∗∗I
φ∗∗I

)
= Π ◦Π

(
z∗∗I
φ∗∗I

)
=

(
z∗∗I + tI − tII + tIII − tIV

φ∗∗I + ω (tI + tII + tIII + tIV )

)

From the above, we get two equations, viz.

tI − tII + tIII − tIV = 0 (71)

and
ω (tI + tII + tIII + tIV ) = 2nπ (72)

for some integer n. We require four more equations in order to be able to solve for the six unknowns z∗∗I , φ
∗∗

I , tI ,
tII , tIII and tIV . These equations come from the four switching criteria, xI(tI) = 1, xII(tII) = 0, xI(tIII) = 1
and xII(tIV ) = 0. Substituting for the appropriate initial conditions in each case, these equations are given by

1

2
t2I + z∗∗I tI +

A

ω2
cos(φ∗∗I )− A

ω2
cos(φ∗∗I + ωtI)− 1 = 0 , (73)

−1

2
t2II + (z∗∗I + tI) tII +

A

ω2
cos(φ∗∗I + ωtI)−

A

ω2
cos(φ∗∗I + ωtI + ωtII) + 1 = 0 , (74)

1

2
t2III + (z∗∗I + tI − tII) tIII +

A

ω2
cos(φ∗∗I + ωtI + ωtII)−

A

ω2
cos(φ∗∗I + ωtI + ωtII + ωtIII)− 1 = 0 , (75)

−1

2
t2IV + (z∗∗I + tI − tII + tIII) tIV +

A

ω2
cos(φ∗∗I + ωtI + ωtII + ωtIII)−

A

ω2
cos(φ∗∗I + ωtI + ωtII + ωtIII + ωtIV ) + 1 = 0 . (76)

Equations (71)-(76) need to be solved for the six unknowns z∗∗I , φ∗∗I , tI , tII , tIII and tIV numerically. In
our simulations, we found no period-2 solutions. However, we found four period-3 solutions which are shown
in Fig. 7. These period-3 solutions appear in pairs as noted previously. Solutions a and b form a center-
type pair, while solutions c and d form a saddle-type pair. This is concluded from the numerical evaluation
of the eigenvalues of the linearized Poincaré map, i.e., the Floquet multipliers associated with the numerically
obtained period-three solution pair. These solution pairs have the symmetry defined by Eqs. (12) and (13) as
(xb(t), ẋb(t)) = (1 − xa(t), ẋa(t)) and (xa(t), ẋa(t)) = (1 − xb(t), ẋb(t)) where the subscripts a and b are used to
refer to the solutions a and b in Fig. 7. We also found other higher odd period solution pairs and some even period
solution pairs. The phase portrait corresponding to the period-8 and period-14 solutions obtained for A = 1 and
ω = 1/2 are shown in Figs. 8 and 9, respectively.

8.4 Quasiperiodic solutions

It has been observed numerically that there are invariant curves surrounding the center which correspond to
quasiperiodic solutions of Eq. (1). The trajectory of Eq. (1) in the x(t)-ẋ(t) plane corresponding to one of this
quasiperiodic solutions for the first few cycles is shown in Fig. 10. A 3D plot corresponding to the quasiperiodic
solution shown in Fig. 10 (using a delayed value of the state variable x(t) as a new variable [54]) is depicted in
Fig. 11. The delayed state is used here only for the purpose of illustration. Figure 11 shows that the quasiperiodic
solutions lie on a torus. Also plotted in the figure is the period-three solution a (from Fig. 7 again) to emphasize
the coexistence of the quasiperiodic and the period-three solutions.
The winding numbers of these quasiperiodic solutions [45] measure the average rotation induced by the

Poincaré map on the Poincaré plane. These prove useful in the classification of the different quasiperiodic solu-
tions, viz., the ones associated with the invariant curves around the center-type period-one solutions and those
around the center-type higher periodic solution pairs. To illustrate this, the winding numbers of the quasiperiodic
solutions as a function of the distance from the first period-one solution along the φI = φ∗I line are plotted in Fig.
12. The plateaus in Fig. 12 at zI − z∗I = 0.4 (0.33) correspond to the period-five (period-three) and associated
quasiperiodic solutions around them.
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Figure 7: x(t)-ẋ(t) portraits of the period-three solutions of Eq. (1) for A = 1 and ω = 1.

9 Global dynamics

The presence of centers and saddles on the Poincaré plane hints towards possible homoclinic and heteroclinic orbits
or tangles. The dynamics of the system in the z-φ variables on the Poincaré plane for A = 1 and ω = 1 is shown
in Fig. 13. Here we have shown the dynamics around the first three centers and saddles. The eigenvector for the
first saddle is also plotted in the figure and matches well with the numerically observed directions of the stable and
unstable manifolds of the saddle. While it seems that there is a homoclinic orbit around the center, the unstable
and the stable manifolds of the saddles intersect transversally giving rise to chaotic tangles. A zoomed view of
the boxed portion of Fig. 13 (bottom) is shown in Fig. 13 (top). Here, we notice the presence of isolated invariant
curves close to the apparent homoclinic orbit. These isolated curves correspond to quasiperiodic solutions around
the center type period-three solution pair. Also shown are the approximate heteroclinic connections between
the saddle type period-three solution pair. The presence of several higher period solution pairs hints toward the
existence of a Smale horseshoe [31, 55] related to the transverse intersection of the stable and unstable manifolds
of the saddle. In Fig. 14, we have plotted the result of forward and backward iterations of 250× 250 points in a
small neighborhood of the saddle. To compute the backward iterations, the inverse Poincaré map presented in
Section 7 is used. The transverse intersection of the stable and the unstable manifolds of the saddle is clearly
visible in Fig. 14. This numerical evidence shows the existence of a Smale horseshoe which imply the existence
of an infinite number of higher periodic and bounded aperiodic solutions.
At the saddle-center bifurcation point, we have a single family of non-hyperbolic fixed points on the Poincaré

plane.

10 Conclusions

Dynamics of a system with a hysteretic relay operator with simple harmonic forcing is studied in this paper. A
Poincaré map has been introduced to facilitate the analysis. Conditions on the amplitude and frequency of the
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Figure 8: x(t)-ẋ(t) portrait of the period-8 solution of Eq. (1) for A = 1 and ω = 1/2. Initial conditions:
zI = −0.1328 and φI = −1.3325

forcing for the existence of periodic solutions have been obtained. There are two families of period-one solutions
determined as the fixed points of the Poincaré map. On the Poincaré plane, one family of the fixed points is a
center and the other one is a saddle. Higher-period solutions have been obtained numerically. Invariant curves
surrounding the center on the Poincaré plane have been obtained which correspond to quasiperiodic solutions.
Homoclinic and heteroclinic tangles have been observed numerically implying the presence of chaotic solutions.
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Figure 13: Dynamics around first three centers and saddles in φI-zI plane for A = 1 and ω = 1.

A Numerical algorithm to obtain the first positive root of a second

order polynomial containing a cosine term

The first positive root of Eqs. (26) and (29) can be obtained by forward marching in time with a suitably chosen
time step as in [45]. To obtain the first root with sufficient numerical accuracy, the time step required might be
very small when there are two roots close to each other which renders the time-marching algorithm inefficient.
This motivates the development of an algorithm wherein we identify disjoint intervals which can contain only
a single root and use standard numerical root-finding algorithms like the bisection method in these intervals to
locate the roots therein.
The switching conditions, Eqs. (26) and (29), can be written in the general form as

a t2 + b t+ c− d cos(ω t+ φ) = 0 . (77)

First we reduce the number of free parameters in Eq. (77) by dividing throughout by d and scaling time as τ = ω t.
This reduces Eq. (77) to

a1 τ
2 + b1 τ + c1 − cos(τ + φ) = 0 , (78)

where a1 =
a

dω2
, b1 =

b

dω
and c1 =

c

d
. The first root t of Eq. (77) is related to the first root τ of Eq. (78) as

t =
τ

ω
. The algorithm for reliably obtaining the first root of Eq. (78) can be summarized as follows:
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Figure 14: Dynamics in φI-zI plane for A = 1 and ω = 1 showing transverse intersection of the stable and
unstable manifolds of the saddle. The region corresponds to the boxed region in Fig. 13 (top).

1. The first step involves identifying the intervals in which the roots of Eq. (78) can possibly exist. To determine
these intervals, Eq. (78) is rewritten as f(τ)−g(τ) = 0 where f(τ) = a1 τ2+b1 τ +c1 and g(τ) = cos(τ+φ).
Since |g(τ)| ≤ 1, feasible intervals for the roots of f(τ)−g(τ) = 0 are determined by the roots of f(τ)±1 = 0.
We define the set of real positive roots of f(τ)±1 = 0 as R = {ri ∈ R+|f(ri)±1 = 0}. The feasible intervals
are now determined by the cardinality of the set R (denoted by n(R)) along with the members of R as
follows. For n(R) = 0, there are no real positive roots of f(τ) − g(τ) = 0. For n(R) > 0, the feasible
intervals for the roots are given by [0, r1] for n(R) = 1, [r1, r2] for n(R) = 2, [0, r1]

⋃
[r2, r3] for n(R) = 3

and [r1, r2]
⋃
[r3, r4] for n = 4, where 0 < r1 < r2 < r3 < r4.

2. Each of the feasible intervals for the roots of f(τ) − g(τ) = 0 determined in the previous step can have
multiple number of roots. The next step in the algorithm, therefore, involves partitioning the above intervals
into sub-intervals (not necessarily of equal length) such that each sub-interval can have exactly one root.
But this can only happen if the function is monotonic in that sub-interval. To ensure this, we use the fact
that a function is monotonic in the interval in which its derivative has the same sign and hence, can have
only one root in that interval. This requirement can be met if somehow we can guarantee that our ’target
sub-interval’ (which we seek to obtain in a way that it contains either zero or exactly one root) contains
exactly one inflexion point of the slopes.

Thus, we simply need to compute the zeros of the second derivative of the function and then construct the
sub-intervals such that each sub-interval contains exactly one zero of the second derivative, hence exactly
one inflexion point of the first derivative and hence the monotonicity, of the function itself, is guaranteed.
As a result, now the bisection algorithm can be applied as we already know that the sub-interval on which
we are applying bisection, contains at most one root. To perform the above partition, we proceed as follows:

(a) Since f ′′(τ) = 2a1 and g′′(τ) = − cos(τ + φ), the roots of f ′′(τ)− g′′(τ) = 0 can be obtained in closed

form (for |a1| ≤
1

2
) as

τdd = 2mπ ± (arccos(−2a1)− φ) , m = 0, 1, 2, · · · .

For |a1| >
1

2
, f ′′(τ)−g′′(τ) = 0 has no real roots. The roots τdd along with the endpoints of the feasible

intervals provide a partition of the feasible intervals into feasible sub-intervals such that f ′(τ)−g′(τ) = 0
can have only one root in each subinterval. It can be noted that all numerical simulations given in this

paper accord with the condition |a1| ≤
1

2
, namely forcing amplitude is chosen in a way such that it

does not exceed unity.
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(b) The existence of roots of f ′(τ) − g′(τ) = 0 in the sub-intervals determined in the previous step is
ascertained by evaluating f ′(τ)−g′(τ) at the endpoints of the subinterval. If the value is zero at either
of the end-points, that end-point is the root τd of f ′(τ)−g′(τ) = 0. If the function f ′(τ)−g′(τ) changes
sign at the end-points, there is a root τd in the subinterval which can be obtained using the bisection
method otherwise there is no root in that sub-interval. The roots τd of f ′(τ)− g′(τ) = 0 in each of the
subintervals along with the end-points of the feasible intervals form a partition of the feasible intervals
into sub-intervals such that f(τ)− g(τ) = 0 can have only one root in each subinterval.

3. Having obtained sub-intervals of the semi-real axis R+ such that there can be exactly one root of the function
f(τ)− g(τ) = 0 in each sub-interval, each sub-interval is checked for the roots analogous to the procedure
described for the roots of f ′(τ)− g′(τ) in the previous step. The procedure starts with the first sub-interval
and is terminated if either a root is obtained or all the sub-intervals are exhausted in which case there are
no real positive roots of Eq. (78).

B Grazing discontinuities in the switching times

As mentioned in Appendix A, determination of the switching times require solution of Eqs. (26) and (29) which
are of the form of Eq. (77). Geometrically, the roots of the transcendental equation (77) represent points of
intersection of a parabola and a cosine curve. Since the parameters b, c and φ in the above equation depend on
the state variables zI and φI , or zII and φII , therefore, the switching times tI and tII are functions of the state
variables zI and φI , and zII and φII , respectively. A 3D plot of this function for the first switching time tI(zI , φI)
for A = 1 and ω = 1, and zI ∈ [−4, 0] and φI ∈ [−π, π] is shown in Fig. 15.
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Figure 15: A 3D plot of the function tI(zI , φI) for A = 1 and ω = 1.

From Fig. 15, we note that the function defines a smooth surface for these parameter values. However, the
function for the switching times can in general have discontinuities corresponding to a grazing intersection of
the parabola and the trigonometric function as shown in Fig. 16. The first intersection of the parabola and the
trigonometric function is shown by a ∗. It can be seen from Fig. 16 that a small change in the parameters result
in a large discontinuous change in the first intersection point.
For a grazing intersection, the velocity at the instant of switching tI is zero as well. Hence, the equations

related to the grazing intersection are given by

1

2
t2I + zItI +

A

ω2
cos(φI)−

A

ω2
cos(ωtI + φI)− 1 = 0

and

tI + zI +
A

ω
sin(ωtI + φI) = 0 .
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Figure 16: Grazing intersection of a parabola and the cosine curve.

For a given set of parameters A and ω, a point in the plane (zI , φI) for which the above set of equations is satisfied
for some real positive tI is a grazing point. We define the set of all grazing points in the plane (zI , φI) as the
grazing curve for that particular set of parameters A and ω. From the above set of equations, the switching time
tI can be solved in closed form in terms of zI , φI , A and ω using trigonometric elimination. However, our aim
is to get the grazing curves and not necessarily the switching time at grazing. We use a fixed arc-length based
continuation scheme (see [?]) in conjunction with the Newton-Raphson method to obtain these grazing curves.
The grazing curves for A = 3 and different values of ω are plotted in Fig. 17. Thick lines represent the curves of
actual discontinuities in tI and thin dotted lines represent the case when the grazing root is the second root and
hence does not correspond to a discontinuity in tI . These two curves form a closed loop in the zI−φI plane. A 3D
plot of the function tI(zI , φI) for A = 3 and ω = 1 is shown in Fig. 18 which clearly illustrates the discontinuities
in the function t(zI , φI). Also plotted with a thick line is the grazing curve. It can be seen that the discontinuities
in the function tI(zI , φI) correspond exactly to the grazing curve.
It can be seen from Fig. 17 that the length of the grazing curves decrease with increasing ω. In general,

there exist a value of ω = ωcritical for which this loop degenerates into a point. For ω > ωcritical, there are no
discontinuities in the function tI(zI , φI). This value of ωcritical decreases with a decrease in the other parameter
A. It has been observed numerically that ωcritical → 0 as A→ 1 from above. This implies that for A ≤ 1, there
are no discontinuities in the function tI(zI , φI) for any ω. This can be demonstrated as follows:
The acceleration of the subsystem I is given by

ẍI(t) = 1 +A cos(ωt+ φ) .

For A ≤ 1, ẍI(t) ≥ 0 and hence the velocity of the subsystem is monotonic and non-decreasing. Therefore, the
equation ẋI(t) = 0 can have only one real root. Next, we consider two cases: ẋI(0) ≥ 0 and ẋI(0) < 0.

1. For the case of ẋI(0) ≥ 0, ẋI(t) > 0 for t > 0. Therefore, ẋI(tI) > 0 where tI is the root of xI(tI)− 1 = 0.
Hence, the two equations xI(t)− 1 = 0 and ẋI(t) = 0 cannot hold simultaneously. This implies that there
can be no grazing intersection and accordingly no discontinuities in the function tI(zI , φI) for any value of
ω.

2. For the case of ẋI(0) < 0, the equation xI(t) = 0 has a single root say t = td. However, for t ∈ [0, td), ẋ(t) < 0
and therefore, the displacement x(t) is monotonically decreasing in this interval. Since x(0) = 0, it follows
that x(td) < 0 and therefore, x(td) − 1 < 0. Again this implies that the two equations xI(t) − 1 = 0 and
ẋI(t) = 0 cannot hold simultaneously and hence, there can be no discontinuities in the function tI(zI , φI).
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Figure 17: Grazing curves for A = 3. Thick lines represent the curves of actual discontinuities in tI and thin
dotted lines represent the case when the grazing root is the second root and hence does not correspond to a
discontinuity in tI .

Hence, for A ≤ 1, the function tI(zI , φI) is continuous for any value of the parameter ω.
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Figure 18: A 3D plot of the function tI(zI , φI) for A = 3 and ω = 1.
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